ECEN 607 (ESS)

HOW TO APPROXIMATE AN EXPRESSION FOR 3dB BANDWIDTH OF A MULTIPLE POLE SYSTEM?

Let us consider an all pole system

$$A(s) = \frac{A_o}{(1 + s/\omega_{p1})(1 + s/\omega_{p2})(1 + s/\omega_{p3})\cdots(1 + s/\omega_{pn})}$$
$$|A(j\omega)| = \frac{A_o}{(1 + (\omega/\omega_{p1})^2)(1 + (\omega/\omega_{p2})^2)(1 + (\omega/\omega_{p3})^2)\cdots}$$

The 3dB cutoff frequency ω_{3dB} is defined at magnitude value $A_{\text{o}}/\sqrt{2}\,,$ therefore

$$2 = \left(1 + \left(\omega_{3\,dB} / \omega_{p_1}\right)^2\right) \left(1 + \left(\omega_{3\,dB} / \omega_{p_2}\right)^2\right) \left(1 + \left(\omega_{3\,dB} / \omega_{p_3}\right)^2\right) \cdots$$

Since $\omega_{3dB} < \omega_{p_1}, \omega_{p_2} \cdots, \omega_{p_n}$ one can approximate

$$2 \cong 1 + \omega_{3dB}^{2} \left(\frac{1}{\omega_{p1}^{2}} + \frac{1}{\omega_{p2}^{2}} + \frac{1}{\omega_{p3}^{2}} + \cdots \right)$$

Hence

$$\omega_{3dB}^{2} = \frac{1}{\frac{1}{\omega_{p1}^{2} + \frac{1}{\omega_{p2}^{2}} + \frac{1}{\omega_{p3}^{2}} + \cdots}} \qquad \qquad \omega_{3dB}^{2} \cong \frac{1}{\sum_{i=1}^{n} \frac{1}{\omega_{pi}^{2}}}$$

Another approach to obtain the ω_{3dB} is by means of "The Time - Constant Method".

Consider the network consisting of capacitors, resistors and depending sources

The transfer function of the network above can be expressed as

$$H(s) = \frac{N(s)}{1 + a_1 s + a_2 s^2 + \cdots}$$

It can be proved that a_1 is the sum of the time constants and a_2 is the sum of the product of time constants.

Lets consider the case of three capacitors, thus

$$a_1 = R_{11}^{\circ}C_1 + R_{22}^{\circ}CL_2 + R_{33}^{\circ}C_3$$

where R_{11}^{o} , R_{22}^{o} , R_{33}^{o} are the zero frequency resistances seen by C_1 , C_2 and C_3 respectively.

For example to compute R₁₁ the circuit shown is used

$$\mathbf{C}_2 = \mathbf{C}_3 = 0$$

Thus if we obtain R_{22}^{o} and R_{33}^{o} in a similar way, one can express a_1 as

$$a_1 = \sum_{i=1}^{n} R_{ii}^{o} C_i = \sum_{i=1}^{n} \tau_i$$

 a_1 can be seen as the sum of open - circuit time constants. Thus an approximation of $\,\omega_{3dB}\,$

can be as

$$\omega_{3dB} \cong \frac{1}{a_1} = \frac{1}{\sum_{i=1}^{n} \tau_i} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\omega_{p_i}}}$$

For the sake of completeness let us discuss how to compute a₂.

$$a_2 = R_{11}^o C_1 R_{22}^1 C_2 + R_{11}^o C_1 R_{33}^1 C_3 + R_{22}^o C_2 R_{33}^2 C_3$$

Where $R_{ii}^{\ j}$ is the zero - frequency resistance seen by C_i when C_j is short - circuited.

Notation Remarks

 $R_{ii}^{\,j}$, ii Indicates the terminals at which the resistance is computed j denotes the capacitance that is shorted.

The general form of each term in a₂ is

$$R_{ii}^{o} C_{i} R_{jj}^{i} C_{j} = R_{jj}^{o} C_{j} R_{ii}^{j} C_{i}$$

For instance if $R_{22}^{o} C_2 R_{33}^2 C_3$ is replaced by $R_{33}^{o} C_3 R_{22}^3 C_2$ the value of a_2 is not modified.

Ref. J. Millman and A. Grabel "Microelectronics", 2nd Edition, New York, 1987.

OPEN – CIRCUIT TIME CONSTANT TECHNIQUE: A NESTED Gm-C EXAMPLE

There are three capacitors, therefore 3 times constants. First short-circuit \boldsymbol{v}_{in}

Time Constant Associated With C_p

Therefore

$$R_{t}=R_{thevenin}=1\!/g_{01}=R_{p}^{\,\mathrm{o}}$$
 , $\tau_{p}=C_{p}\big/g_{01}$

Time Constant Associated with C_L

Time Constant Associated with C_m

$$V_1 = i_t/g_{o1}$$

KVL

$$V_t = V_1 + (g_{m_2}V_1 + i_t)/(g_{o2} + g_{of})$$

Thus

$$\begin{split} V_t &= i_t \left\{ \left[g_{o1}^{-1} + \left(g_{o2} + g_{of} \right)^{-1} \right] + \frac{g_{m2}}{g_{o1}} \frac{1}{g_{o2} + g_{of}} \right\} \\ R_T &= \frac{V_t}{i_t} = \frac{1}{g_{o1}} + \frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}} \right) = R_m^o \\ \tau_m &= C_m \left[\frac{1}{g_{o1}} + \frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}} \right) \right] \end{split}$$

Thus the approximated ω_{3dB} becomes

$$\omega_{3dB} = \frac{1}{\tau_p + \tau_L + \tau_m}$$

$$\omega_{3dB} = \frac{1}{\frac{C_{m} + C_{p}}{g_{o1}} + C_{m}} \left[\frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}} \right) \right] + \frac{C_{L}}{g_{o2} + g_{of}}$$

Note that $\tau_p \ll \tau_m$, thus one can approximate

$$\omega_{3dB} \cong \frac{1}{\tau_m + \tau_L}$$

Also

$$\omega_{m} = \frac{1}{\tau_{m}} \cong \frac{g_{o2} + g_{of}}{C_{m} \left(1 + \frac{g_{m2}}{g_{o1}}\right)} \cong \frac{g_{o2} + g_{of}}{C_{m} \frac{g_{m2}}{g_{o1}}}$$

$$\omega_{L} = \frac{1}{\tau_{L}} = \frac{g_{o2} + g_{of}}{C_{L}}$$

Open-Circuit Time Constant for Amplifier with Current Buffer

First Short-Circuited V_{in}

$$\tau_L = \frac{C_L}{g_{o2}}$$
 and $\tau_p = \frac{C_p}{g_{o1}}$

Time Constant Associated with $C_{\rm m}$ is considered next

$$I_x = I_t$$
; $V_o = -V_t$
 $V_1 = +g_{o1}A_iI_x$

KCL

$$V_{\scriptscriptstyle o}g_{\scriptscriptstyle o2}=g_{\scriptscriptstyle m2}V_{\scriptscriptstyle 1}+i_{\scriptscriptstyle t}$$

$$V_{t}g_{o2} = g_{m2}g_{o1}A_{i}i_{t} + i_{t}$$

$$V_{t} = (g_{m2}g_{o1}A_{i} + 1)\frac{1}{g_{o2}}$$

$$R_{T} = \frac{1 + g_{m2}g_{o1}A_{i}}{g_{o2}}$$

$$\tau_{m} = \frac{1 + g_{m2}g_{o1}A_{i}}{g_{o2}}C_{m}$$

$$\omega_{\rm m} = \frac{g_{\rm o2}}{(1 + g_{\rm m2}g_{\rm o1}A_{\rm i})C_{\rm m}} \cong \frac{g_{\rm o2}}{g_{\rm m2}g_{\rm o1}A_{\rm i}C_{\rm m}}$$

$$\omega_{3dB} \cong \frac{1}{1/\omega_m + 1/\omega_L} = \frac{1}{\tau_m + \tau_L}$$

$$\omega_{3dB} \cong \frac{g_{o2}}{g_{m2}g_{o1}A_iC_m + C_L}$$

Let us illustrate how to compute a₂ using the amplifier shown in Figure of Slide 5. Thus for a two capacitor system*

$$a_2 = R_p^o C_p R_m^p C_m = R_m^o C_m R_p^m C_p$$

The open-circuit resistances R_p^o and R_m^o are known since they were derived

previously

$$R_{m}^{o} = \frac{1}{g_{o1}} + \frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}} \right)$$

$$R_{p}^{o} = \frac{1}{g_{o1}}$$

To illustrate the analysis we will obtain R_m^p and R_p^m using the following circuits

$$V_1=0 \text{ , thus } R_m^p=\frac{1}{g_{o2}+g_{of}}$$
 Therefore

Therefore
$$a_{2} = \frac{1}{g_{o1}} C_{p} \frac{C_{m}}{g_{o2} + g_{of}} = \frac{C_{p} C_{m}}{g_{o1} (g_{o2} + g_{of})}$$

Thus

$$a_2 = R_m^o C_m R_p^m C_p$$

$$a_{2} = \left[\frac{1}{g_{o1}} + \frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}}\right)\right] C_{m} \frac{1/g_{o1}}{1 + \frac{g_{m2}}{g_{o1}} + \frac{g_{o2} + g_{of}}{g_{o1}}} C_{p}$$

$$a_2 \cong \frac{C_p C_m}{g_{ol} (g_{o2} + g_{of})}$$

Let us consider C_L

Note
$$R_L^m = R_p^m = \frac{1}{g_{m2} + g_{o2} + g_{of} + g_{o1}}$$

Thus

$$a_2 = R_m^o C_m R_p^m C_p + R_m^o C_m R_L^m C_L + R_m + R_p^o C_p R_L^p C_L$$

The dominant term of a_2 when $C_p \ll C_L$, C_m becomes

$$a_2 \cong R_m^o R_L^m C_m C_L$$

Thus

$$a_{2} = \left\{ \frac{1}{g_{o1}} + \frac{1}{g_{o2} + g_{of}} \left(1 + \frac{g_{m2}}{g_{o1}} \right) \right\} \frac{\frac{1}{g_{o1}}}{1 + \frac{g_{m2}}{g_{o1}} + \frac{g_{o2} + g_{of}}{g_{o1}}} C_{m} C_{L}$$

$$a_2 \cong \frac{C_m C_L}{g_{ol} (g_{of} + g_{o2})}$$

Ref. 2:

R.T. Howe and C.G. Sodini, "Microelectronics An Integrated Approach", Prentice Hall, Upper Saddle 1997