
Due: November 17, 2015

Homework # 6

Undergraduate students pick only two problems.

Problem 1. Problem 9.12 (fourth-edition)

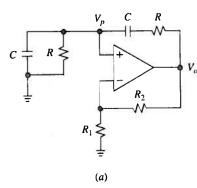
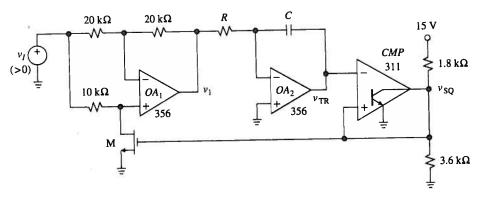

9.12 (a) Assuming the op amp of Fig. 9.20a saturates at ± 13 V, sketch and label the VTC if a resistance $R_3 = 33 \text{ k}\Omega$ is connected between the nodes labeled v_P and -15 V. (b) Suitably modify the circuit of Fig. 9.21a so that it gives $V_{TL} = 1$ V and $V_{TH} = 2$ V.

FIGURE 9.20


Problem 2. Problem 10.1 (fourth-edition)

10.1 Show that for arbitrary component values in its positive-feedback network, the Wienbridge circuit of Fig. 10.2a gives $B(jf_0) = 1/(1 + R_s/R_p + C_p/C_s)$ and $f_0 = 1/(2\pi \sqrt{R_s R_p C_s C_p})$, where R_p and C_p are the parallel and R_s and C_s the series elements. Hence, verify that neutral stability requires $R_2/R_1 = R_s/R_p + C_p/C_s$.

Problem 3. Problem 10.31 (fourth-edition)

10.31 Shown in Fig. P10.31 is another popular VCO. Sketch and label its waveforms, and find an expression for f_0 in terms of v_I .

Problem 4. Problem 11.17 (fourth-edition)

11.17 Using a 741 op amp, an LM385 2.5-V reference diode, and pnp BJTs, design an overload-protected negative regulator with $V_O = -12$ V and $I_{O(max)} = 100$ mA.