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Abstract—In practical implementations of LC oscillators in
which the quality factor of the tank is dominated by the quality
factor of the inductor, due to dependence of the oscillation am-
plitude on the square of the oscillation frequency and the bias
current of the LC tank, a stable amplitude control loop is essential
to maintain a constant oscillation amplitude over the tuning range
of the voltage-controlled oscillator (VCO) and to optimally bias
the VCO over different conditions. In this paper, an enhanced loss
control scheme incorporating an integral feedback to automati-
cally tune the oscillation amplitude of LC oscillators is proposed.
The proposed loss control feedback (LCF) loop is conditionally
stable with an easy stability requirement to meet and its stability
is examined: 1) by linearizing the system around the stable point
using a perturbation method; and 2) by numerically solving the
nonlinear differential equation of the LCF loop describing the
transient behavior of the step response of the loop. A prototype
including the LC VCO and the proposed LCF loop has been imple-
mented in TSMC 0.35- m CMOS process and occupies an area of
0.057 mm2 and consumes 8.1 mA from a 2.8-V power supply. The
LCF loop, with respect to the VCO, has an overhead of 25% on
the area and consumes only 1.3% of the total power. Measurement
results of the proposed LCF loop show an 11 dBm amplitude
tuning range from 16 dBm to 5 dBm at any frequency over
the 2–2.5-GHz tuning range of the VCO. The step response of the
loop has a settling time less than 0.5 ns.

Index Terms—Automatic amplitude tuning, LC resonator, loss
control, phase noise, -enhancement , stability, Van der Pol equa-
tion, voltage-controlled oscillator (VCO).

I. INTRODUCTION

WITH the constant shrinking of feature sizes and in-
creasing clock speeds in integrated circuit (IC) tech-

nology, designers are approaching a widespread use of digital
systems with clock speeds in the gigahertz range. One of the
major challenges in the distribution and synchronization of
these gigahertz clocks is on-chip phase-locked loop (PLL)
clock multipliers which rely on the oscillation amplitude of LC
voltage-controlled oscillator (VCOs) [1]. Since the oscillation
amplitude of current-biased LC VCOs varies over its tuning
range [2], an amplitude control scheme is needed to set the am-
plitude to a predefined level so the operation of the frequency
dividers in the PLL is not compromised [3], [4].
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Fig. 1. Automatic tuning control method using PLL [7].

On the other hand, to ensure a clock with very low jitter,
a high-quality LC tank is needed. However, the quality factor

of practical on-chip inductors is typically very low ( 3–5)
and frequency dependent. The low quality factor and frequency
dependence is mainly due to a lossy silicon substrate and thin
metal layers. A great deal of attention has been focused on im-
proving the performance of lossy LC tanks by introducing a neg-
ative transconductance to compensate its resistive loss [5]. By
tuning this loss, and thus the factor of the LC tank, it is pos-
sible to control the amplitude of oscillation in an LC VCO im-
plementation. The tuning results in a fast and reliable start up
with an optimal bias point in terms of phase noise performance
[6]. However, the bias current required by the oscillator depends
on the amplitude of oscillation, the losses in the tank, and also
other process and environment parameters. Consequently, if the
VCO circuit is biased with a fixed current, oscillations over all
conditions may not be guaranteed, nor can an optimum value
to minimize power and ensure fixed amplitude of oscillation be
found [4], [6].

Therefore, having a stable, efficient, and cost-effective mech-
anism to control the resistive loss of the LC tank can also be used
to tune the quality factor of on-chip LC filters [7]. This concept
is illustrated in Fig. 1. The PLL circuit locks the oscillation fre-
quency of the VCO and thus the center frequency of the slaved
filter. Assuming identical tanks for both VCO and filter, the
control loop locks the oscillation amplitude to a reference signal,
and feeds the same control voltage to the slaved resonator. In
other words, the same concept used to tune the quality factor of
the LC filters has been modified to regulate the oscillation am-
plitude. However, the main problem of using a VCO is its ampli-
tude regulation during the tuning process. The oscillation ampli-
tude should be large enough so that its zero-crossing points can
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Fig. 2. Q-enhancement LC resonator.

be detected by the loop and at the same time it should be small
enough so that the negative resistor in the VCO can maintain its
linear region of operation. Harmonic distortion and nonlineari-
ties of the negative resistor can cause not only loss-control error,
but also frequency-tuning error [12].

In this paper, a stable enhanced loss control feedback (LCF)
loop is presented to automatically regulate, arbitrarily, the oscil-
lation amplitude of an LC VCO. The VCO can achieve robust
amplitude regulation while a significant frequency tuning range
of 0.5 GHz around a 2.25-GHz frequency can be obtained.

In Section II, the principle of the -Enhanced LC resonator
and its amplitude stability are discussed. The fundamentals of
the currently available LCF techniques used to regulate the os-
cillation amplitude are also discussed in this section. The pro-
posed LCF architecture and its stability properties are presented
in Section III. Section IV presents the experimental results of
a CMOS 0.35- m test chip. Concluding remarks are given in
Section V.

II. LCF MECHANISM

A. Amplitude Stability of LC Resonators

A lossless LC resonant tank has an ideal quality factor of in-
finity and, with a nonzero initial condition, produces a steady
sinusoidal oscillation. However, mainly due to losses associated
with the integrated spiral inductors, the achievable quality factor
of the tank in the gigahertz frequency range is, in practice, low.
This loss inhibits the oscillation. To over compensate the total
loss of the LC tank, a -enhancement technique can be achieved
by introducing a negative loss (resistor) through a positive feed-
back around the tank. Fig. 2 shows the conceptual implemen-
tation of the -enhancement technique [7], [8]. In the vicinity
of the resonant frequency , the series combination of the in-
ductor and its resistive loss can be modeled as a parallel
combination of and
where is the quality factor of the inductor at

.
The nonlinear transfer characteristic of can be approx-

imated by the following third degree polynomial. Even-order
terms do not appear due to the nature of the fully differential
circuit

(1)

Fig. 3. Oscillator with amplitude control feedback.

Applying Kirchoff’s current law at the output node, the non-
linear differential equation governing the oscillator of Fig. 2 can
be found as

(2)
where .

Observe that (2) represents the self-sustained nonlinear
equation describing the Van der Pol oscillator [9]. Assuming
a steady-state response for the output voltage

in Fig. 2, the describing function (DF) of
, which is the linear transconductance gain relating the

amplitudes of the fundamental frequency component of the
output current to that of the input voltage [10], can be expressed
as . Thus,
in the -domain, the describing equation of the circuit can be
expressed as

(3)

where .
In the oscillator’s dynamic amplitude control mechanism, the

position of the real part of the poles in (3)) depends
on the oscillation amplitude . If is less than the desired
steady-state amplitude , the poles move into the right half
plane, making the amplitude increase. If is greater than ,
the poles move into the left half plane, decreasing the ampli-
tude. As a consequence of this property, the poles will stay on
the imaginary axis for . In other words, the stability
condition [13] requires .

Next, VCO amplitude regulation techniques based on the
LCF scheme currently available in the literature are discussed
and the proposed scheme is presented afterwards.

B. Principles of the LCF Loop Technique

Fig. 3 shows the block diagram of an oscillator with a dy-
namic amplitude control mechanism in which and con-
trol the frequency and amplitude of the oscillation, respectively.
In practical realizations of an oscillator, usually the signal in
Fig. 3 changes with , which means the oscillation amplitude
changes as changes even when the is fixed. As shown
in Fig. 4(a), integrating the error signal before going to the
oscillator can minimize this effect [11]. Assuming linearly
controls the real part of the poles in (3) i.e., ,
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Fig. 4. Oscillator with amplitude regulation loop (a) unconditionally unstable
automatic gain control (AGC) [11] (b) conditionally stable AGC using a feed-
forward path [13].

the frequency response of the amplitude control loop in Fig. 4(a)
[12] can be described as

(4)

where , , and are the oscillation amplitude at , the
integrator, and the envelop detector time constants, respectively.

By observing the change of signs of the coefficients of the
denominator of (4), based on the Routh–Hurwitz criteria, one
can conclude the poles are located in the right half plane. This
equation will be derived as a particular case of our proposed
architecture in Section IV.

The loop in Fig. 4(a) can be made conditionally stable by in-
troducing a feedforward path as depicted in Fig. 4(b) and
reported in [13]. Unfortunately, this scheme requires stringent
limitations on for stability purposes and degrades the phase
noise of the oscillator by injecting the low frequency noise as-
sociated with the feedback loop to the control voltage . This
effect has been analyzed extensively in a bipolar implementa-
tion of the amplitude control loop in [14]. Next, an alternative
solution is proposed which overcomes the previous drawbacks.

III. PROPOSED LCF LOOP

It can be shown that the transfer function of in
the VCO of Fig. 4(a) has a characteristic (see (A5) and
(A6) in the Appendix). Thus, the loop gain of the amplitude
control loop in Fig. 4(a) has two poles at zero which makes the
loop unstable. Thus, to improve the stability the pole associated
with the integrator can be placed in a nonzero frequency which
suggests the use of a lossy integrator in the loop.

Fig. 5 shows the proposed LCF loop scheme. This technique
not only relaxes the stability requirement imposed on the local

Fig. 5. Proposed LCF loop for amplitude tuning.

Fig. 6. LC oscillator (VCO) core in Fig. 5.

feedback , to be discussed next, but it also generates a low
pass filter which reduces and bounds the low frequency noise
effect of the LCF loop. The frequency response of the amplitude
control loop in Fig. 5 can be expressed as (see Appendix)

(5)

To guarantee the stability of (5), the coefficients of the denomi-
nator should have the same polarity, thus the following require-
ment for can be obtained to ensure stability of the proposed
LCF loop in Fig. 5:

(6)

Equation (5) represents a second-order system with a damping
factor of which for a
critically damped step response, i.e., , the exact value
of can be found as

(7)

In the case of the LC oscillator shown in Fig. 6, which is mod-
eled in Fig. 2, the parameter in the above expressions can be
derived using the characteristic equation of the circuit

(8)
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Fig. 7. Macromodel of the proposed LCF of Fig. 5.

Comparing (8) with (3) reveals that
which for and

yields the following ex-
pression for (see (A6)):

(9)

where and are the ratios of M1 and
Mtail in Fig. 6, respectively.

For typical values of , V and
ns, (6) results in . Observe from (A8) that a

higher value of yields a higher damping factor and thus less
overshoot in the step response of the loop. However, a tradeoff
should be considered, since in terms of circuit implementation,

represents the ratio of two different transconductance’s and
a higher results in increased power consumption.

A. Transient Response of the Proposed LCF Loop

The effect of on the transient response of the amplitude
control loop in Fig. 6 can be explored using the model de-
picted in Fig. 7. The envelope detector in Fig. 7 is considered
ideal. The parameter in this model is equal to the ratio of

. A step input is assumed for the reference signal
so that it changes from to at , and the

corresponding steady-state oscillation amplitudes are and
, respectively.

The control voltage in Fig. 8 can be expressed as

(10)

where .
From (A3), it can be found that

(11)

By substituting (10) and (11) in (A6), the equation governing
the transient behavior of the amplitude dynamics of the system
in Fig. 7 can be solved

(12)

where and
.

The numerical solutions of (12) for V and for
both the proposed (see (A8) and Fig. 5) and the reported am-
plitude control loops in Fig. 4 are shown in Fig. 8. As Fig. 8(a)
shows, removing the local feedback , which corresponds to

, results in an unstable system [see Fig. 4(a)]. By
using (A4) and following the above procedure used to derive
(12), the poles of the unstable system are determined to be lo-
cated at .

In a similar way, the step response of the amplitude control
loop in Fig. 4(b) is shown in Fig. 8(b). By selecting proper value
of the feedforward in this scheme, the loop can be stable.
However, there is a large settling time at the output, which shows
the behavior of a damped oscillation in the form of .
In the previous expression for the output

and are the damping factor and the
natural frequency of free oscillations in the circuit of Fig. 2.

In Fig. 7, when the local feedback is
present, the system becomes stable primarily due to a nonzero

. Depending on the value of , the step response of the
system can change from being over damped (small ) to under
damped (large ). Assuming , the transient re-
sponse of (10) for three different values of has been shown in
Fig. 8(c). Note for a higher , which corresponds with higher

, results in a smaller and thus smaller settling time.
While increasing improves the settling time of the tran-
sient response, it also increases power consumption. The power
consumed by can be expressed as

(13)

An optimum value of requires a trade off between the set-
tling time of the step response of the amplitude control loop de-
picted in Fig. 8(c), and the power consumption described in (13).
These two parameters, for pF and , as
a function of are plotted in Fig. 9.

B. Circuit Implementation of the Proposed LCF Loop

Fig. 10 shows the fully integrated circuit implementation of
the proposed LCF loop together with the LC oscillator. Cross-
coupled transistors M3-M4 compose the negative transconduc-
tance which is controlled by the tail current source (M5).
The implemented inductors use the top metal layer and are de-
signed and optimized using AISTIC [16]. The varactors are ac-
cumulation-mode pMOS capacitors, and are realized using mul-
tiple simple pMOS transistors connected in parallel with drain
and source connected to ground. The control voltage at the
bulk terminal modifies the capacitance value of each varactor.

Fig. 11 depicts the circuit used as the envelop detector [17].
The main issue associated with the envelop detector is the
tradeoff between its speed and accuracy. Increasing its bias
current results in a faster transient response, while decreasing it
improves the accuracy of the output voltage. The total parasitic
capacitance at the output node is represented by .

and cells used in Fig. 10 are implemented based
on the simple three-current mirrors OTA’s [15], and their ratio
is determined by the stability factor . A total
capacitance of 2 pF is used to implement .
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Fig. 8. Basic amplitude response of the (a) conventional control loop in Fig. 4(a), of the (b) control loop in Fig. 4(b), and of the (c) proposed control loop of Fig. 5.

Fig. 9. Power consumption of G cell and settling time as a function of F .

IV. TEST CHIP MEASUREMENT RESULTS

A test chip has been fabricated in the TSMC 0.35- m CMOS
process available through, and thanks to, MOSIS. The chip
micro photograph is shown in Fig. 12. The entire oscillator and
the control loop, along with additional on-chip buffers, occupy
an area of 0.038 mm and 0.008 mm , respectively. All the
measurements described in this section include the effect of
the on-chip buffers with a measured attenuation of 20 dB at
2.2 GHz (for 50- termination). The oscillator operates from a
single 2.8-V supply voltage, and consumes 8-mA current. The

Fig. 10. Fully differential implementation of the proposed LCF loop.

oscillator operates from a minimum power supply voltage of
1.8 up to 2.8 V.

Fig. 13 shows the measured phase noise for an oscillation fre-
quency of 2.3 GHz under the stable condition of . The
phase noise at an offset frequency of 1 MHz from the carrier
is 125 dBc/Hz. Note the feedback factor in Fig. 5 can be
changed using in Fig. 10. Reducing to a value smaller
than the critical value in (8) makes the LCF unstable. To verify
this statement, Fig. 14 shows the measured phase noise of the
unstable LCF loop, i.e., . Due to the instability of the
loop, the control voltage is changing and it modulates the
amplitude and frequency of oscillation which results in the de-
terioration of the phase noise performance.
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Fig. 11. Schematic of the envelop detector.

Fig. 12. Chip microphotograph.

Fig. 13. Measured phase noise of the VCO at 2.3 GHz under stable LCF loop
condition, i.e., F = 2.

The robust and stable step response of the proposed scheme is
verified through measurement and this result is shown in Fig. 15.
This figure shows the transient behavior of the control voltage

for a reference amplitude step from 2.8 to 2.2 V. The result
shows a very close match with the behavioral model depicted in
Fig. 8(c).

Fig. 16 shows the measured oscillation frequency range
versus the tuning voltage vf as a function of the power supply.
The results show the frequency range is fairly independent of
the supply voltage and can vary from 2 to 2.5 GHz.

Fig. 14. Measured phase noise of the VCO at 2.3 GHz under unstable LCF
loop condition, i.e., F = 0.

Fig. 15. Measured ac transient response of the feedback loop for F = 2 (dc
level= 1:8 V and A is a pulse wave with frequency of 20 MHz).

Fig. 16. Oscillation frequencies versus varactor control voltage as a function
of the power supply.

The oscillation amplitudes for four different reference volt-
ages are measured and the results are shown in Fig. 17. By ap-
plying different reference amplitudes the control voltage in
Fig. 10 changes. Under this condition, the variation of the os-
cillation amplitude versus is plotted in Fig. 18. The output
amplitude shows a monotonic behavior with respect to the bias
voltage of the tail current [6]. Fig. 18 also shows the HD3 of the
output amplitude, as well as the measured phase noise at 1-MHz
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Fig. 17. Measured oscillation amplitude for reference voltage of 2.5 V.

Fig. 18. Measured oscillation amplitude ( ), phase noise (�) and HD3 ( )
versus the control voltage of the tail current source (v in Fig. 7).

offset from the carrier frequency, as a function of the control
voltage . At lower control voltages, the oscillation amplitude
is lower and the phase noise is relatively poor, but the HD3 is
higher primarily due to the smaller voltage swing across the LC
tank. At very high values of the control voltage, the tail current
transistor (Mtail) moves to the triode region and this leads to
larger noise sources in the tank. The increased noise in the tank
degrades both phase noise and the HD3. The optimum point in
this figure, in terms of the lowest phase noise value, occurs at
a bias voltage around 2 V. At this bias, the variation of the os-
cillation frequency with respect to the tail current fluctuations
is minimum. Table I summarizes the measured peformance of
the amplitude controlled VCO under stable LCF loop condition
( ).

V. CONCLUSION

An LCF loop architecture capable of regulating the oscilla-
tion amplitude of LC resonators has been presented. The pro-
posed architecture yields a simple, but stable LCF loop with an

TABLE I
VCO PERFORMANCE SUMMARY

easy practical stability requirement. This requirement can be op-
timized to maintain a proper transient response with acceptable
power consumption. The root of instability problems in con-
trolling the amplitude of LC VCOs through LCF in previous
publications is shown. Comparisons of the transient tests to the
numerical solutions of the nonlinear equations describing the
proposed feedback system have verified its theoretical charac-
terization. Measurement results of the TSMC 0.35- m CMOS
implementation show an expected transient response for fast
switching of the reference amplitude. The LCF loop, with re-
spect to the VCO, has overheads of 1.3% and 24% on the area
and power consumption, respectively.

APPENDIX

TRANSFER FUNCTION OF THE PROPOSED LCF LOOP

With regard to the selective properties of the resonant cir-
cuit of the oscillator, i.e., the first-order harmonic component
markedly predominates over the other harmonics, we assume
the solution in the form , where
is the waveform of the envelope with the steady-state amplitude
of . Substituting in (2) and leaving out all
the components other than the fundamental frequency, yields the
following coefficients for sine and cosine terms, which must be
identically zero

(A1)

(A2)

The steady-state oscillation amplitude can be obtained from
(A2) by setting . Thus, it can be shown that

. However, the transient behavior of be-
fore reaching the steady state can be analyzed by solving (A2)
for

(A3)

where .
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For oscillation amplitude close to the stable amplitude
, the term in (A3) approaches zero and thus, the

corresponding exponential term in (A3) can be approximated
by its first-order Taylor expansion

(A4)

Note that is a function of and , and since is
controlled by (see Fig. 5), in the frequency domain is
a function of and . Therefore, in the frequency domain,
(A4) can be expressed as

(A5)

The dependence of on in (A5) depends on the implemen-
tation of the oscillator, but for small-signal analysis we may as-
sume they are linearly dependent [13].

(A6)

To investigate the small-signal behavior of the LCF loop in
Fig. 5, the envelope detector’s output, , is assumed to
always be a delayed version of . The justification of this as-
sumption will be presented momentarily. Thus, the output of the
envelope detector in frequency domain can be expressed as

(A7)

where is the time constant of the envelope detector.
Note that in the amplitude control loop in Fig. 5, can

be expressed as . Thus,
using (A5) and (A6), the frequency response of the LCF loop
can be found as

(A8)

where is the time constant of the integrator in Fig. 5.
Based on the results obtained in Section III-B, the assump-

tion used to derive (A7) can be justified. Assuming a critically
damped response, using (7) and (A8), the closed-loop poles of
the loss-control feedback in Fig. 5 can be expressed as

(A9)

To ensure that the envelope detector is faster than the closed-
loop feedback, the frequency of amplitude variation, up to the
closed-loop poles, should be smaller than the pole associated

with the envelope detector, i.e., , in which
. The subsequent result of this inequality is

(A10)

In practical implementations of the integrator and the envelope
detector, and for typical values of (few picofarads) and

(hundreds of nanofarads), the inequality (A10) is easily
satisfied.
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