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Abstract 

This paper examines a dynamical agent for conflict 
monitoring in cognitive functions acquired through 
evolutionary learning processes. Existence of conflict in the 
agent is established using reactive inhibition theory. Agent 
move hesitation correlates to peak violations of a stable state 
equation solved by the agent. As points of cognitive conflict, 
the peak violations are also associated to places of 
disagreement in source inputs to the agent’s control circuit. 
The control circuit is analyzed in search of an explicit 
conflict-monitoring mechanism. Analysis of the agent’s 
neural connections assigned by the genetic algorithm suggests 
distributed conflict management as opposed to a top-down 
monitoring mechanism. 
 
Keywords: cognitive conflict; evolutionary neural modeling. 

Introduction 
Conflict in distributed cognitive processing occurs when 
neural pathways associated with multiple stimuli intersect, 
and thus interfere with one other such that related task 
performance suffers  (Botvinick, Braver, Barch, Carter & 
Cohen, 2001). For example, consider a frog eyeing two 
flies. By targeting a single fly for capture, the frog may 
succeed if it manages the conflicting input from the second 
fly. The case to be avoided is an intermediate response in 
which the frog attacks a midpoint between the flies.  

To avoid such performance problems, Botvinick et al. 
(2001) hypothesized the existence of what they call a top-
down conflict-monitoring system where conflict is detected 
and control invoked to activate appropriate cognitive 
regulatory processes. To test the sufficiency of their 
hypothesis, they measured conflict in terms of a rising value 
of the Hopfield (1984) energy function in the response layer 
of a discrete interactive model of the Stroop task (Cohen & 
Hudson, 1994). Energy increased during incongruent trials 
suggesting that a potential monitoring mechanism could be 
activated by such a signal, and subsequently causes 
invocation of appropriate cognitive control elements.  

In discussing conflict monitoring, Botvinick et al. (2001) 
describe control as an active or passive mechanism, which is 
either on-line and modulated, or off-line based on conflict 
monitoring information. They modified the Cohen and 
Hudson (1984) Stroop model by adding recurrent links to 

task control nodes back from an inserted conflict-monitoring 
node. The feedback links strengthened involvement of the 
color-naming task unit, making response on incongruent 
trials faster. This correlates to experimentally observed 
response time improvement on incongruent trials in humans. 
They suggest that activation of the anterior cingulate cortex 
in humans is a result of conflict monitoring recruiting 
executive control to improve performance. 

Recent work by Beer (2003, 1996) proposed an artificial 
visual agent (VA) as an idealized model of a complete 
brain-body-environment system that exhibits minimally 
cognitive behavior. Unlike the connectionist modeling 
methodologies used by Botvinick et al. (2001) and others 
(Cohen, Dunbar & McClelland, 1990; Cohen et al., 1994), 
the VA is an embodied, situated and dynamical (ESD) agent 
operating in continuous time. ESD agents stress what Clark 
(1998) calls “the unexpected intimacy between the brain, 
body, and world”. As model systems, they emphasize the 
contextually bound nature of solutions to cognitive 
problems, and allow a tractable analysis of the type of 
cognitive processing going on in more complex systems.  

While VA is vastly different from a human, it is 
reasonable to investigate the nature of VA’s conflict 
monitoring, if any, in its cognitive control. The agent has 
been shown to demonstrate both memory and selective 
attention (Slocum, Downey, & Beer, 2000; Goldenberg, 
Garcowski, & Beer, 2004). Moreover, Ward and Ward 
(2004) found that VA exhibits reactive inhibition (Houghton 
& Tipper, 1994) such that greater inhibition is observed for 
more salient targets. VA offers an opportunity to analyze an 
evolved conflict management mechanism in a dynamical 
system established through artificial evolutionary processes 
using genetic algorithms. 

This paper examines the VA for conflict monitoring in a 
dual-task scenario where the agent must select actions in the 
presence of stimuli suggesting conflicting responses. First, 
we demonstrate that the agent exhibits cognitive conflict. 
Periods of conflict are located using a stable-state equation, 
which the agent solves during processing. These conflict 
periods are equated with disagreements in the source inputs 
to the agent’s control circuits, which are examined for 
explicit conflict monitoring, as are the intra- and inter-layer 
network connections in the agent. 
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Methods 
Visual agents were evolved with the same connection 
architecture used in the selective-attention experiments of 
Slocum et al. (2000). As illustrated in Figure 1, our agent 
has 7 sensor rays of length 220 evenly spaced over a 

6/π degree visual angle. External input magnitude was 0 
to 10, inversely proportional to distance to an object. Seven 
sensor neurons (S1-S7) were connected bilaterally 
symmetric to eight hidden units (H1-H8) and two motor 
units (M1-M2). Units H1-H8 and M1-M2 were fully 
interconnected in bilaterally symmetric, recurrent fashion. 
Units H1-H8 were also connected bilaterally symmetric to 
M1-M2, which in turn were recurrently connected back to 
H1-H8 in bilaterally symmetric fashion (see Figure 1A). 
Agent diameter was 30 units and target diameter was 22 
units. 

 
 

Figure 1. (A) Network layers and connections of 
the controlled visual agent (CVA). The top unfilled 
box indicates the seven-node sensor layer, which has 
no intra-layer connections. The middle box 
represents the eight-node hidden unit layer, and the 
lower box illustrates the two-node motor layer. The 
filled boxes indicate that each unit is connected to 
every other unit within the layer using bilaterally 
symmetric weights. Arrows between layers represent 
bilaterally symmetric connections. (B) The agent 
moves left and right underneath the falling targets 
(T1 & T2). T2 is out-of-view (OOV). The rightmost 
and the two leftmost sensor rays detect nothing. All 
other rays intersect T1. An agent viewer and 
associated data files are available at 
http://www.psychology.bangor.ac.uk/ward. 

 
The 102 network parameters were encoded for genetic 

algorithm (GA) search using GAlib (Wall, 1999). See 
Appendix A. Simulated Continuous-Time, Recurrent Neural 
Networks (CTRNNs) were based on a derivative of the 
CTRNN Grid Neural Simulator (Gallagher, 2000). 

The agent was required to catch targets T1 and T2 falling 
simultaneously. T2 serves as a distracting, interfering 

stimulus during T1 processing. The experimental factors 
include: (1) the side on which T1 and T2 appear relative to 
the agent—Left/Right, (2) the spatial separations between 
T1 & T2—24 or 48 (designated Near and Far), (3) the 
temporal (velocity) separation between T1 & T2—4 and 3, 
or 5 and 2 (designated Near and Far). The Left/Right, 
Near/Far designations of T1 and T2 dictate 16 two-target 
trials centered about the agent’s horizontal start position 200 
(T1 start positions are 188, 212 and T2 start positions are 
140, 164, 188, 212, 236 and 260). A range of T2 saliency 
exists between Near/Near and Near/Far trials, and between 
Far/Near and Far/Far trials. The 16 trials with only T1 or T2 
were also presented while the agent was evolved. Figure 1B 
illustrates the agent processing a Far space/Near time trial 
where T2 is OOV during and after T1 catch. 

The 16 two-target trials systematically cover the spread of 
the sensor array, but better generalization was achieved 
when the 16 trials were increased to 48 by shifting all start 
positions left by –8, and right by +8 (increasing total T1/T2 
start positions to 6 and 18 respectively). The single T1 or T2 
trials were offset in a similar manner to create a total of 48 
T1 trials and 48 T2 trials. Thus, a total of 192 targets were 
processed and the objective function minimized the average 
agent miss distance ( md ) from the target at impact. 

The factorial design avoids unwanted facilitation of 
catching T1. In trial design, it is important that the agent’s 
perception of T1 (or T2) not be informative about T2 (or 
T1) in the environment. For example, T1 catch average 
increased from 7 (with T2 present) to 22 (with T2 absent) in 
our replication of the Slocum et al. (2000) selective 
attention experiment. Also, the factorial trial structure 
includes the object passing (OP) and passing object (PO) 
problems described by Slocum et al. (2000). The T1-T2 Far 
spatial separation in combination with the T1-T2 Near 
temporal separation creates Far/Near trials where T2 goes 
out-of-view (OOV) not only when the agent is in the final 
stages of catching T1, but after T1 impact when T1 is 
removed from the environment (exhibiting OP). On Far 
Space trials, T2 can lie outside of T1 placing T1 between it 
and the agent. The VA must move past T1 to see T2 in this 
circumstance (exhibiting PO). 

Evolved Agents 
Under the above conditions, GA found agents that scored an 
average md of 0.096 to 0.16 units on the 192 targets. The 
best controlled visual agent (CVA) had an average catch 
accuracy of 99.7%. Catch accuracy is a measure of 
agent/target overlap defined by Slocum et al. (2000) as: (VA 
radius + target radius - md )/(VA radius + target radius). 
For the two-target trials used during evolution, CVA scored 
99.2% on T1 and 99.8% on T2, and 99.8% on both T1 and 
T2 single target trials.  

Generalization Testing  
How well did CVA perform using random target start 
positions and speeds? On 500 random two-target trials with 
T1 and T2 positions uniformly sampled from ranges [180, 
212] and [132, 268], and speeds uniformly sampled from 
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ranges [4, 5] and [2, 3] respectively, CVA had an average 
T1 catch accuracy of 95.2%. CVA never failed to catch T1, 
but on 36 trials, it did not catch T2 (moved away instead of 
toward T2 after catching T1). CVA had an average T2 catch 
accuracy of 89% (missed T2 md  was capped at 26 units, 
the summed radii of the agent and target).  

On 83 of the random trials, following T1 catch, T2 was 
OOV after T1 was removed from the environment. CVA 
scored 85.8% catching the OOV T2. When T2 was in-view 
after T1 removal, CVA scored 89.6% (moved away on 27 
trials). Performance was close to perfect on the 1000-single 
target test trials corresponding to the 500 test trials. CVA 
scored 99.7% on T1 only trials, and 99.9% on T2 only trials. 

Overall performance on the combined 1500 trials was 
95.9%. Adding a uniformly distributed noise from [-1, 1] 
with mean of zero to each sensor input at every timeslice did 
not substantially alter overall performance. 

Selective processing 
CVA performance on T1 suggests that it is able to suppress 
interference from T2 and selectively process T1 (Ward & 
Ward, 2004). In all T1 and T2 spatial and temporal 
separation conditions, catch accuracy of T1 on random trials 
was better than 94%. The agent successfully managed 
interference from T2. However, the agent missed T1 on the 
T2 side on Near/Near test trials. In two-target trials, T1 
catch accuracy was always higher than that of T2. 

Verifying the Existence of Conflict  
Identification of conflict periods in CVA using Hopfield’s 
continuous-time energy function (Hopfield, 1984) was 
rejected since CVA weights are not symmetric. As an 
alternative, we examined the peak violations of a stable-
state equation the agent solves while catching targets.  

The agent’s final behavior is determined at the motor units 
by integrating the non-linear inputs from the sensor neurons, 
hidden units and recurrent motor connections. Re-writing 
the non-linear CTRNN state equations given in Beer (1996) 
yields the following left and right ( RL , ) motor neuron 
state equations. 

(1) 
RRLRRR

LLRLLL

SHMMyy

SHMMyy

++⋅+⋅=+⋅

++⋅+⋅=+⋅

βατ

βατ
'

'

 

 
The time constant ,τ  self-weight α  and cross-weight β  

are assumed to be the same for both motor neurons; Ly  and 

Ry  are the state values and '
Ly  and '

Ry are time-based 

derivatives. We define ))(( θσ += LL ygM  and 

))(( θσ += RR ygM , where Xe
X −+

=
1

1)(σ . The 

gain g  and the bias term θ  are the same for each motor 

neuron.  LH =∑
j

jjLaw  and RH =∑
j

jjR aw  are the 

summed, weighted inputs to each motor from the hidden 
units.  LS  and RS  are similarly defined for the sensor 

neurons, where jLw  and jRw  are the weights from neuron 

j to RL ,  and ))(( jjjj yga θσ +=  is the activation 

of neuron j  feeding input to the motor neurons. Each 

ja has gain and bias terms jg  and jθ . 
CVA calculates a horizontal move velocity each Euler-

integration step defined as: 
 
(2)  cMMV RL /)( −= ,  
 
where LM  and RM  are in the interval [0,1], and c  is a 
constant. Beer (1996) selected 2.0=c so that 

0.5/0.1 =c units per time step is the max velocity of 
the agent.  0<V  moves the agent left, 0>V  moves 
the agent right. If 0=V the agent remains motionless 
and RL MM = . The CVA catch behavior is observed as a 
sequence of moves back and forth underneath a target T ,  
using any difference in motor outputs to cause movement 
until T  impacts.  

To isolate )( RL MM −  in (2), subtract equations (1) to 
get the following “difference” equation, where the time 
constant τ  is assumed to be 1.0, and LLL SHI +=  and 

RRR SHI += . 
 

(3)     
)()(

)()( ''

RLRL

RLRL

IIMMk
yyyy
−+−

=−+−
 

 
Equation (3) has the form of a single neuron state equation 

RL yyz −=  with a self-connection weight 
0)( ≠−= βαk  and an activation function whose output 

)( RL MM −  is in the interval [-1,1]. The terms on the 
right-hand side (RHS) govern the state update for z  to 
determine a new output value for )( RL MM − . 

As CVA catches a target the network dynamics relax into 
a stable state, such that '

Ly and '
Ry  in (3) become zero. 

Thus, as an optimization problem, the agent moves to solve:  
 

(4)      0])([)( =−+−−− RLRLRL IIMMkyy   
 
at the T  catch point. Peak violations of equation (4) are its 
largest absolute differences from zero. From a goal 
perspective, CVA should be less "happy" when its position 
corresponds to a peak violation of equation (4).  Do these 
peak violations of equation (4) indicate cognitive conflict? 
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Peak Violations are Conflict Periods 
According to the reactive inhibition model (Houghton & 
Tipper, 1994), inhibition should be applied most strongly 
during periods of greatest conflict. Hence, we make the 
following argument. (a) Reactive inhibition predicts that 
more salient T2s require greater inhibition. We have 
previously observed direct evidence of inhibition in VA 
(Ward & Ward, 2004), noticeable as a period of hesitation 
following the catch of T1. When T2 must be inhibited to 
accurately catch T1, CVA is slow to move towards T2 after 
catching T1. (b) If sensory input from T2 is removed for 
some period in the trial, less inhibition of T2 should result, 
and reduce hesitation. (c) The effects of removing T2 from 
the sensor inputs should be evident at the time of maximum 
interference from T2. Finally, (d) the largest peak should 
predict a conflict point at which removing T2 from the input 
has greatest impact on hesitation after catching T1. 

To test these hypotheses, 1000 random trials were 
selected, identical in every way except for T2 speed. In this 
experiment, T1 and T2 were both on the left of CVA, with a 
spatial separation of 24 (Near). T1 speed was fixed at 4.5, 
and to establish a range of T2 saliency, T2 speed was 
chosen randomly from [2, 3.5]. Under these conditions, 
CVA’s average hesitation was 34.78 timeslices after 
catching T1 (shown in Figure 2 as a dashed line). Four 
periods of removing T2 input were implemented around the 
timeslice of the greatest peak violation of equation (4). 
These include peak-15 to peak; peak to peak+15; peak+15 
to peak+30; and peak-15 to peak+15.  

 

-15 0 15 30 
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34 

36 

Relative time from peak constraint violation 
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 Figure 2. 
 

Figure 2 shows the average hesitation after T1 catch for 
each removal of T2 input; the onset and duration of T2 input 
elimination are indicated by the width of the shaded bars. 
The height of each bar extends one standard error above and 
below the mean (n=1000). Removing T2 input before the 
peak reduces hesitation, and suggests that inhibition of T2 
develops during the period leading up to the peak. 

Hesitation was significantly less for the two T2 input 
removals before the peak compared to that of the control 

condition. The removals after the peak were marginally 
different from the control condition. This test suggests that 
peak violations of equation (4) mark conflict points within 
CVA.  

Source Competition Conflict 
If an input source on the RHS of equation (3) differentially 
activates one motor unit over another, we understand that 
source as acting to move the agent in a particular direction. 
Given this, we observe competition between input sources 
as illustrated in Figure 3.  The sensor bias is a plot at each 
timeslice of RL SS − , the hidden bias is RL HH −  and 

the motor bias is a plot of )( RL MMk − . 
The bias lines illustrate the activity of the source inputs to 

the motors during the T1 catch portion of a two-target, 
random trial. T1 starts just right of CVA at 203, speed 4.15, 
and T2 is Far left at 156, speed 2.2. Figure 3 shows the miss 
distance, or separation between CVA and T1 as it 
progresses to catch T1 at impact.  

 
Figure 3. Y-axis miss distance: positive numbers for 
T1 right of CVA, negative for left. Y-axis bias: 
positive-going lines indicate the bias to move CVA 
right; negative-going, to the left. Motor source input 
disagreements are labeled at maximum differences.  

 
Up until time 200 all the sources hold the agent relatively 

still. Shortly afterwards, the sensor biases CVA to move 
rightwards, underneath T1. The sensors tend to keep CVA 
aligned under the center of perceptual mass. The motor 
layer initiates a leftward bias toward T2, but this switches to 
a rightward bias around time 300 when the hidden units also 
become involved. Notice also that the hidden unit bias and 
motor bias curves are always in opposition. 

At time 350 the hidden layer initiates a large leftward bias 
so that the agent moves away from T1 and closer to T2. The 
largest source competition (A) occurs between the hidden 
inputs and the recurrent motor bias after time 368 when 
CVA is located farthest from T1. The hidden units push 
CVA left to consider T2 while conflicting motor bias 
signals a right turn toward T1. The time of the peak 
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violation of equation (4) corresponds to the maximum 
disagreement of the hidden layer with the motor bias at (A). 

Around time 400, CVA appears to pause between the 
attraction of T1 and T2. This is observed as a flattening of 
the separation curve. Afterwards, CVA moves sharply right 
toward T1 using the rightward sensor bias while the 
opposing hidden and motor bias competition relaxes.  

At time 433 another source competition (B) appears when 
both sensor and hidden inputs signal a move right in 
opposition to the left turn signal from the motor bias. CVA 
later turns at 441 and moves left to again locate T2. A 
smaller source competition (C) occurs around time 467 as 
CVA turns back toward T1. It’s resolved at 478. The last 
significant input competition (D) occurs at 492 as T2 passes 
OOV when CVA is in the final stages of catching T1. The 
rightward hidden unit bias overcomes the leftward motor 
bias to push the agent under and slightly past T1. Points B, 
C and D in the Figure 3 also correspond to peak violations 
of equation  (4). 

Analysis of Control Circuit Activations 
Now that cognitive conflict is confirmed in the agent, what 
form of conflict control can we observe in its control 
circuit? The agent controls movement by regulating input to 
the motors [see RHS of equation (3)]. Is the agent 
monitoring for conflict in the sense of Botvinick et al. 
(2001) to activate conflict control? Since conflict is 
observed at turning points, we examine what activations 
occur as CVA changes directions to resolve conflict.  

Without loss of generality, assume the agent is moving left 
with 0)( >− RL MMk , i.e. 0)( <− RL MM  and 

0<k . This is the case with conflict (A) illustrated in 
Figure 3 at time 368.  Immediately before time 368, the 
agent has 0<− RL II , so the agent’s leftward movement 

agrees with the greatest input RI .  
Conflict initiates at time 368 when the RHS of equation 

(3) becomes positive, i.e. 0<− RL II  but 

0)()( >−+− RLRL IIMMk . In this scenario, the 

motor bias term )( RL MMk −  serves as a control “fence” 

on the input difference RL II −  to affect a possible, but not 
guaranteed change in the agent’s move direction (depending 
on future changes to LI and RI ). The agent acts to make a 

right turn away from the greater source RI .  Based on 
absolute state values, it may take additional state updates to 
actually reverse the agent’s direction.  

At time 369, however, the input difference flips such that 
0>− RL II  is true. The conflict continues because the 

agent’s movement left is in disagreement with the now 
greater input source LI . The conflict over move direction is 
‘resolved’ after four state updates at time 373 when the 
difference between LM  and RM  comes back into 

directional agreement with the difference between LI  and 

RI  (i.e., when the agent changes direction and turns right 
toward T1).  

The change to a positive update to the state of z  from 
time 369 to 373 occurred as hidden unit H7 deactivated 
(activation fell from 0.95 to 0.01). All other hidden unit 
activations went unchanged during conflict period (A). 
Analysis of the other conflict points in Figure 3 shows that 
it is not always H7 that’s deactivated. No hidden unit 
activation changes occur during conflicts (B) and (D). 
During conflict (C), hidden unit H8 was deactivated to 0.01 
while the other units remained unchanged. This evidence 
suggests some means of distributed conflict management. 

Role of Feedback Links in Conflict Monitoring 
Botvinick et al. (2001) describe conflict monitoring as 
activating executive control to bring its regulatory power 
on-line, or to modulate it. To model this effect they 
implemented recurrent feedback links from the inserted 
conflict-monitoring unit back to the model control units.  
Similarly, CVA has feedback links from the motors to the 
hidden units (see Figure 1A), so we investigated what affect 
these links have on movement control. Consider Table 1, 
which shows how GA partitioned the neural units in CVA, 
and how GA weighted the intra- and inter-layer connections 
in the control circuit. 

In the leftmost column, the neural units termed Groupings 
(S-sensors, H-hidden units, M-motors) are given along with 
their associated movement bias (L-left, R-right). Entries in 
the table indicate the connection relationships (I-inhibitory, 
E-excitatory) between Groupings. For simplicity, the middle 
sensor (S4) is grouped with both left/right sensor groups.   

To read the table, consider the first row. When sensors S1-
S4 are activating, they tend to move the agent left by 
exciting H5-H8 and M2 whose activation also moves the 
agent left. However, S1-S4 inhibits H1-H4 and M1 because 
activation of these units tends to move the agent right. 

 
Table 1:  CVA Neural Structuring by 

the Genetic Algorithm. 
 

Groupings H1-H4 H5-H8 M1 M2 
S1-S4 (L) I E I E 
S4-S7 (R) E I E I 
H1-H4 (R) E I E I 
H5-H8 (L) I E I E 
M1 (R) I E I I 
M2 (L) E I I I 

 
With only feed forward links, the sensor Groupings appear 

to have a “reactionary” structure. That is, they excite or 
inhibit the hidden units and motors based only on their 
desired movement direction. However, the hidden unit 
groups have a “competitive” structure. The groupings are 
self-exciting and mutually inhibitory. Like the sensors, they 
also excite or inhibit the motors based on desired movement 
direction.  
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Most interesting is the motor activation effect, which 
inhibits both motors. This tends to stop movement! 
Moreover, motor activation inhibits the same-direction 
hidden-unit group, but excites the opposite-direction 
hidden-unit group. This inter-layer competition seems 
strange, but it acts to turn the agent in the opposite direction. 
For example, in Figure 3 around time 300 when the hidden 
units H5-H8 are acting to move the agent left by activating 
M2, M2 is activating to shut down H5-H8 and excite the 
opposite group H1-H4 to turn the agent around. 

If the motor links to the hidden units are lesioned, and the 
same 500 random two-target trials described earlier are 
processed, T1 catch accuracy falls to 93.6% from 95.2%. 
This modest change indicates that CVA still manages T2 
distraction to successfully select and catch T1. However, 
cutting the motor feedback links devastates T2 catch 
accuracy. It dropped from 89% with these links active to 
61.3% without them. An explanation of this phenomenon is 
outside the scope of this paper. 

The bias of the feedback links is almost identical to the 
motor bias curve as shown in Figure 3. In other words, 
during peak conflict, the feedback links from the motors act 
to shut down movement in the conflicting direction. This 
could be viewed as an invocation of conflict control if the 
activations were brought on-line at that point from an off-
line state. However, the feedback signal is persistent and 
grows, or falls in strength in tandem with the motor bias 
value, which we have already examined and believe not to 
be a mechanism of top-down conflict monitoring, but one of 
distributed conflict management. 

Conclusion 
Beer’s VA is a robust model capable of demonstrating 
selective attention, memory, and inhibition. Its dynamical 
underpinnings predict conflict points as peak violations of a 
steady state equation associated with its behavioral goal to 
catch targets. According to reactive inhibition theory, these 
peaks correlate with agent hesitation after catching a target, 
and can be understood as points of conflict. These conflicts 
are associated with disagreement in inputs to the agent’s 
move control circuit. Analysis of this circuit reveals no 
explicit conflict monitoring in the agent, such as the 
mechanism proposed Botvinick et al. (2001). Instead, our 
results suggest that the competitive groupings in VA’s 
hidden layer provide a distributed conflict management 
mechanism, and give insight into its evolved motor control. 

Appendix A 
The GAlib parameters were set as follows. The algorithm 
used was GASteadyState with a population sizes from 25 to 
300, replacement percentage of 50-75%, cross over 
probability of 96%, and mutation probability of 10%. The 
GARealGenome (real-valued vector genome) was used with 
allele sets for the 102 network parameters in the following 
ranges: weights [-10, 10], time constants [1, 2], sensor ray 
biases [-10, 10], hidden unit and motor biases [-5, 5], gains 
[1, 5] and motor gains were set to 1.0. The default random 
number generator in GAlib was used. 
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