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In this paper we present an algorithm that delays the necessary involvement of a variable in the
evaluation of an arithmetic expression until the latest possible moment, and at the same time it
identifies all possible operations in the expression that may proceed prior to the delayed variable.
A method is described for incorporating this algorithm into a scheme for recognising inter-statement
parallel processable code in computer programs. The method and the value of the technique are
illustrated through analysis of an example program.
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1. Introduction

Based on necessary conditions set forth by Bernstein (1966),
there have been three major systems written for the automatic
detection of inherent parallelism between statements in higher-
level languages. These systems include the FORTRAN
Parallel Task Recogniser of Ramamoorthy and Gonzalez
(19694, b), the UCLA FORTRAN analyser of Russell and
Baer (1970), and the ALGOL analyser of Bingham, Fisher and
Reigel (1967). Baer (1972) has pointed out, however, that these
systems have several shortcomings. One is that no attempt is
made to discover what Volansky (1970) calls ‘hidden parallel-
ism’. Volansky (1970) proposed a method for memory de-
allocation which would improve the recognition of parallel
processable code. His method could prove to be a valuable
technique, but as Baer (1972) indicated, there are several severe
drawbacks to Volansky’s method. The objections mainly in-
volve the inordinate amount of time and storage needed to
apply the technique.

The purpose of this paper is to present a technique for dis-
covering another type of hidden parallelism and demonstrate
its value. Comparing it to Volansky’s (1970) technique, the
method that will be described is economical and entirely
feasible. However, the benefits accrued by its application may
not be as great as that of Volansky’s, where for some example
programs a saving of up to 509, has been reported (Baer,
1972).

2. Problem and motivation

Given an arithmetic expression E and a set of variables D used
within E that are causing a serial ordering of the statement S
containing E and those statements 7 whose outputs include D,
it is desirable to have an algorithm which accepts E and D as
inputs and identifies all computations in E that may proceed
prior to the necessary involvement of the variables in D. The
algorithm should produce as output a set of temporary results
and a reduced expression E’. The temporary results represent
the operations in E which can be initiated before the necessary
involvement of the variables in D, and E’ is an equivalent
expression of E with temporary variables in place of the oper-
ations represented by the temporary results.

If E is replaced in S by E’, then the computations represented
by the temporary results can be initiated in parallel with the
operations in 7. The net result is a reduction in the total
computation time of the operations in the set T U {S}.

Consider, for example, the execution of the following two
serially ordered statements in a two processor multiprocessor
system.

(@ r= alb
(®) ¢ = 2.*3.14159*r
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Fig. 1 Two serially ordered statements treed with and without
variable delay

157

102 ‘2 #0100 Uo 159n6 Aq /610'sjeuno [piojxo” uliooy/:dny wouy pspeojumoq


http://comjnl.oxfordjournals.org/

Treating =, / and * as operations with each taking one time
unit to perform, then statements (a) and (b) have two and three
operations respectively; and since they are serially ordered
with each other, they have a total computation time of five
time units. This also means, for our purposes, that one of the
processors in the system is idle for five time units. If we apply
the desired algorithm mentioned above to the expression in (b)
we have the following results.

(@ r=a/b

@) t; =2.*3.14159

bB) c=t*r

Now, statements (@) and (b) are still serially ordered. However,
(@) and (b') may be executed in parallel, and the net effect is
that statements (a), (b") and (b) would have a total computation
time of four time units on the two processor system. This
represents a significant improvement, and one of the two
processors would be idle for only two time units.

As another illustration, consider the execution of the serially
ordered statements given in Fig. 1(a) on a parallel processor
system like the CDC 6600, the CDC 7600, or the IBM 360
Model 91. In these systems, a program’s instruction execution
rate is improved by simultaneously performing different
instructions on independent functional units at the same time.
For this example, we will use Lorin’s (1972) pseudo 6600
computer which has two fetch units (FU1 and FU2), one add
unit, one multiply unit. and one divide unit. The pseudo
machine’s timings and characteristics are derived from the
CDC 6600 (Control Data 6600 Reference Manual, 1969) and
basically are as follows. Instructions are spontaneously made

available from an instruction stack with no look-ahead feature,
and each has a one-cycle decode time. There is a one-cycle
stabilisation period (S) after an instruction is decoded and
before it is released to a functional unit. A memory reference
requires five cycles, and we will assume there are no memory
contention delays. After a functional unit develops a result,
there is a one-cycle interlock period () before the functional
unit becomes available. After an instruction is decoded, it is not
released for execution if the appropriate functional unit is not
available. With no instruction look-ahead feature, this will
delay the decoding of the next instruction until the needed
functional unit becomes free. Also, an instruction designating
a register as a result register is not released for execution if that
register is currently designated as a result register of some other
instruction being executed. Finally, it is assumed that a source
register (which is not a result register too) becomes available
one cycle after the activation of the instruction using it.

In Fig. 1(b), a tree is given for the operations specified in the
statements of Fig. 1(a). Since these statements are serially
ordered, the first one must be completed before the second one
is initiated. Therefore, the operations for the first statement
appear in levels 0-3 of the tree, and the operations for the
second one appear in levels 4-8. In Fig. 2, a chart is given
representing the execution of machine code that corresponds to
the tree in Fig. 1(b). Time units are laid out horizontally in
the chart, and a line segment in a time unit (for a given func-
tional unit) indicates that the functional unit is active during
that period. Parallel activity is indicated by multiple line seg-
ments within a given time unit. From Fig. 2 we see that a total
of 101 machine cycles are required to execute the two serially
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Fig. 2 Execution time chart for the tree in Fig. 1(b)

Loab x1,b  PLAI
FUI Xi=b S - Stablization period
LOAD X2,c SCAL CA - Compute address
Fu2 X2=c , I - Interlock period
s X2 Free  yy.y1/x2 1
DIV XI1,X2,X1| 2 * L
LOAD X3,d SCAL
Ful Bl X3 Free
“MPY  X1,X3,X1 s, ¥ I, X1=X1*X3
STRE X1,a s, CA L
FU1 asxl_,
LOAD X2,f 3, CA L
FUl _)(_2_=i1
LOAD X3,9 SCAL
FU2 X3=g |
LOAD X4,a S, CAL
FU1 X4=a
LOAD X5,x SCAL
EU2 X5=x_, X2=X2*X3
MPY  X2,X3,X2 S, i I,
ADD  X4,X5,X4 S, L1 X4=X4+X5 |
ADD  X2,X4,X2 S,  __¥1 xe=xe+xs
LOAD X1,w SCAL
Ful XEW, yp=x1ex2
ADD  X1,X2,X1 S, _-/.L
STRE Xl,e s, CAJL
FU1 e=Xl |
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Fig. 3 [Execution time chart for the tree in Fig. 1(c)

—

ordered statements.

If we apply the desired variable delaying algorithm mentioned
above to the expression in the second statement, we arrive at
the tree given in Fig. 1(c). In this tree, the operations

= f*g
t2=x+w
t3=t1+t2

have been moved up in time (correspondingly, down in the tree)
in comparison to the same operations in the tree of Fig. 1(b).
In Fig. 3, a chart is given representing the execution of machine
code that corresponds to the tree in Fig. 1(c). We see that a
total of 79 machine cycles are required to execute the code for
the revised statements. Hence, in this instance, the desired
variable delaying algorithm would result in a 229 savings of
machine cycles for our pseudo 6600.

3. Algorithm for variable delay

The algorithm described below accepts an arithmetic expres-
sion and a set of variables to be delayed as inputs. The expres-
sion is scanned from right to left and temporary results are
generated and an output string is produced. The output string
becomes a new input expression and is scanned in a like man-
ner, producing more temporary results and another output
string. This process is repeated until a string is scanned and no
temporary results are generated. The final output string is the
desired reduced expression, and the temporary results pro-
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duced represent operations that may proceed before the neces-
sary involvement of the delayed variables.

The algorithm assumes that the input expression is composed
of single character scalar variable names and the operations
listed in Table 1. Table 1 also gives each operator’s precedence.
A list of variables used in the algorithm along with a description
of their meaning is given in Table 2. A scan operation is a
procedure for assigning values from the input string to three
variables used in the algorithm—LSCOP, ITEM and RSCOP.
When a scan operation is performed, RSCOP is assigned the
current value of LSCOP and the next two symbols in the input
string from right to left are read. The first symbol is assigned
to ITEM and the second symbol is assigned to LSCOP. The
third word of STACKS enabled the handling of expressions
containing parenthesis. Each time a step up in precedence
occurs as a result of a scan operation, the current output string
address is stored in the third word of the top entry in the
STACKS (if there is one). Then if this entry in the STACKS
must be unstacked into the output string, it is added using the
address in its third word. If an entry in STACKS must be
unstacked into the output string and its third word does not
contain a saved output string address, it is added adjacent to
the last entry made into the output string. Also, whenever a
left and right parenthesis are separated only by an operand
in the output string, they are both deleted. The algorithm for
variable delay in an expression is as follows.
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Step 1. Set K and OLDK to zero and put a FENCE at the

start of the input expression.

Set LSCOP to ‘+’, out J to zero, and prepare to scan
a new input string.

Step 2.

Step 3. Perform a scan operation and

1. if a right parenthesis is to be assigned to ITEM, then if J is
not zero, store the current output string address in STACKS
(J, 3). Increase J by one and set STACKS (J, 2) to a right
parenthesis. Also add a right parenthesis to the output
string. Perform a new scan operation by setting ITEM to
LSCOP, LSCOP to the next symbol in the input string, and
RSCOPtoa‘+’. IfITEM will be assigned a right parenthesis
as a result of the new scan operation, then repeat Step 3.1;
otherwise go to Step 4.

2.if a left parenthesis is to be assigned to ITEM, then add
STACKS(J, 1) and STACKS(J, 2) to the output string using
the address in STACKS(J, 3), decreasing J by one, as long as
STACKS(J, 2) is not a right parenthesis. When it is a right
parenthesis, decrease J by one and the last symbol entered in
the output string is a unary operator. If it is a ‘+°, write a
left parenthesis over it, then scan the next symbol in the
input string into LSCOP and go to Step 8. Ifitisa ‘—’, add
a left parenthesis to the output string and set a switch to
indicate that a unary minus is in the output string. Then
scan the next symbol in the input string into LSCOP and go
to Step 8.

3.if a FENCE is to be assigned to ITEM, then empty the
STACKS into the output string. The last symbol entered into
the output string is a unary operator. If it is a ‘+°, overwrite
it with a FENCE and go to Step 9. If it is a ‘—’, add a
FENCE to the output string and set a switch to indicate that
a unary minus is in the output string and go to Step 9.

Step 4. If ITEM contains a variable to be delayed, then

1.if LSCOP and RSCOP equal ‘**’, then if STACKS(/, 2)
equals “**, add STACKS(J, 1) and STACKS(J, 2) to the
output string and decrease J by one, otherwise just add ITEM
and LSCOP to the output string and go to Step 3.

2.if LSCOP is greater than or equal in precedence to RSCOP,
add ITEM and LSCOP to the output string and go to Step 3.

3.if LSCOP is less in precedence than RSCOP and J is not
zero, add STACKS(/, 1) and STACKS(J, 2) to the output
string (decreasing J by one) as long as the precedence of
STACKS(J, 2) is equal to that of RSCOP. Then add ITEM
to the output string and go to Step 8. When J equals zero,
add ITEM to the output string and go to Step 8.

Step 5. If LSCOP is greater in precedence than RSCOP, then
if J is not zero set STACKS(J, 3) to the current output
string address, otherwise, increase J by one and set
STACKS(J, 1) to ITEM and STACKS(/, 2) to LSCOP
and go to Step 3.

Step 6. If J equals zero, then

1. if LSCOP is less in precedence than RSCOP, add ITEM to
the output string and go to Step 8.

2. if LSCOP and RSCOP equal ‘**’; add ITEM and LSCOP
to the output string and go to Step 3.

3. If LSCOP equals RSCOP in precedence, increase J by one
and set STACKS(J,1) to ITEM and STACKS(J,2) to
LSCOP and go to Step 3.

Step 1. If J is not equal to zero, then

1. if RSCOP is equal in precedence to STACKS(J, 2), then
increase K by one and
(@) if LSCOP equals ‘—’ and STACKS(J, 2) equal ‘+’,
generate
T, = STACKS(J, 1) — ITEM

and set LSCOP to ‘+°.
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Table 1 Allowable operators and their precedences

OPERATORS PRECEDENCES
Parenthesis (,) 1
Fence |— 1
Add, Subtract +, — 2
Multiply, Divide *, / 3
Exponentation ** 4

Table 2 Algorithm variables and their meanings

VARIABLE MEANING AND USE

FENCE A unique symbol marking the start of the
expression.

ITEM An operand produced by a scan operation.

J Index for STACKS.

K Temporary result counter.

LSCOP  Left operator produced by a scan operation.

OLDK Count of temporaries previously generated.

RSCOP  Right operator produced by a scan operation.

STACKS A triple word stack for holding operands,

operators and output string addresses.

(b) if LSCOP and STACKS(J, 2) equal ‘—°, generate
T, = ITEM + STACKS(J, 1)
(c) if LSCOP equals ‘/’ and STACKS(J, 2) equal ‘*’, generate
T, = STACKS(J, 1)/ITEM

and set LSCOP to ‘*’.
(d) if LSCOP and STACKS(J, 2) equal ‘/’, generate
T, = ITEM * STACKS(/, 1)
(e) otherwise, generate a temporary result of the form
T, = ITEM STACKS(J, 2) STACKS(/, 1)
In any of the cases above after the T} is generated, decrease
J by one, add the T to the output string and go to Step 8.

2. if LSCOP and RSCOP equal ‘**’, add ITEM and LSCOP to
the output string and go to Step 3.

3. if LSCOP and RSCOP are equal in precedence, increase J by
one and set STACKS(J, 1) to ITEM and STACKS(J, 2) to
LSCOP and go to Step 3.

4. if RSCOP is not equal in precedence to STACKS(J, 2), add
ITEM to the output string and go to Step 8.

Step 8. If LSCOP is not the FENCE or a left parenthesis, add
LSCOP to the output string and go to Step 3.
Otherwise,

1. if LSCOP is the FENCE, then

(a) if J is zero, add LSCOP to the output string and go to
Step 9.

(b) if Jis not zero, unstack STACKS(J, 1) and STACKS(J, 2)
until J is zero. Then add LSCOP to the output string and
go to Step 9.

2.if LSCOP is a left parenthesis, then add STACKS(J, 1) anp

STACKS(J, 2) using the address in STACKS(/, 3) to the

output string (decreasing J by one) as long as STACKS(/, 2)

is not equal to a right parenthesis. When STACKS(J, 2)

equals a right parenthesis, simply decrease J by one and add a

left parenthesis to the output string. Scan the next symbol in

the input string into LSCOP and go to Step 8.

Step 9.

1. If K is greater than OLDK and the switch indicating whether
or not a unary minus is in the output string is off, then set
OLDK to K and go to Step 2. If the unary minus switch
is on and K is greater than OLDK, turn the switch off and
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Table 3 Results of one pass of the algorithma + b + c*d + e

LSCOP ITEM RSCOP J STACKS(J, 1) STACKS(J,2) TEMPS OUTPUT STRING
+ 0 0 0 0 0 0
+ e + 1 e + 0
* d C+ 2 d * 0
e +
+ C * l e + T 1 = (4 * d + Tl
+ b + 1 e + +b+ T,
|— a + 0 0 0 T,=a+e |—T,+b+T,

1 23 456 7 8 9 1011121314
1 01 000O0O0OO0OUOOOOODO
2 001 0O0O0O0O1O0O0OOO0OODO0
3 00011°O0O0UO0O0OUO0OO0OO0OO0TDO0
4 00 0O0O0OOT1O0UOO0OOO0OODO
5 0 00O0O0O11O0O0O0OUO0OO0OO0O0O0
6 0 000OOT1O0O0O0OOO0OO0OTPO
7 00 0O0O0OOO0OOOOOOU O1
8 000O00O0O0OOT11O0UO0O0TPO
9 000O0O0O0OO0OO0OO0OOTI1T1T1F®O
10 0 00O0O0OO0OOO0OO0OOOOTITO
11 0 00O0O0O0O0OO0OO0OO0OOOOTITO
12 0 00O0OO0OOOOOOOOTI1O0
13 0000 OOOOOUOOO0OU 01
14 0 00O0O0OOO0OOOOOOODO
Fig. 4 PPTG and its connectivity matrix for the parallel processable

program

invoke the unary minus handler. On its return, set OLDK to
K and go to Step 2.

2. If K equals OLDK and the unary minus indicator switch is
off, the output string contains the desired reduced expression.
If this switch is on, turn it off and invoke the unary minus
handler. On its return, go to Step 9.

The unary minus handler mentioned in Step 9 of the algorithm
locates unary minus operators in the output string and attempts
to generate a T, using one of them. Its general logic is to scan
the output string for a unary minus. When one is found, the
code to the right of the unary is scanned left to right in an
attempt to locate an operand which the unary can be applied to.
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3

If one is found, K is increased by one and a T}, is generated of
the form:
T, = —operand

The output string is adjusted by deleting the unary minus, and
the operand used is replaced by the T;. Then a return occurs.
If the operand found is itself a 7), where K is greater' than
OLDK, it is not considered since we want the algorithm to
generate only parallel processable temporaries in a given pass.

If the unary cannot be applied, the scan is resumed in search
of another unary minus. If one is not found, a return occurs.

In Table 3, results are presented for the algorithm’s application
to the example expression E=a + b + c*d + e for one
pass, where b is the variable being delayed. Notice that all
temporary results generated for a particular pass of the
algorithm are independent of one another, and can therefore
be executed in parallel. This is a desirable by-product of the
algorithm.

The algorithm has been coded in FORTRAN and the pro-
gram has been tested using numerous examples. The desired
results were produced in each case. A copy of the program is
available upon request from the author.

4. Method for using the variable delay algorithm

The most widely publicised technique for global recognition of
parallel processable code in computer programs is that of
Ramamoorthy and Gonzalez (19694, b). Basically, their method
is as follows. A FORTRAN source program is input, and a
sequential graph model of the program is developed. A reduced
graph is formed by loop reduction and then based on inter-
statement data dependencies and any essential ordering among
the statements, the reduced program graph is transformed into
a parallel graph model. From this graph, all parallel process-
able tasks in the program and the sequence in which they must
be executed is derived. An example parallel program task graph
(PPTG) and its connectivity matrix for a hypothetical program
are given in Fig. 4.

To incorporate the variable delay algorithm into
Ramamoorthy and Gonzalez’s scheme, some additional
information about the source program must be gathered.
During the first phase of their method as the source program is
read in and program tasks are identified (a statement corres-
ponds to a task), a list L of tasks numbers should be constructed
so that if k € L, then program task #, contains an arithmetic
expression composed of two or more operations.

For program task z; let I; and 0; denote the input/output sets
respectively of ¢;. Furthermore, it is assumed that task numbers
correspond to graph node numbers such that row i and column
iin a connectivity matrix correspond to task ;.

After Ramamoorthy and Gonzalez’s technique has been
applied and the parallel program task graph (PPTG) has been
derived for each loop in the program and the reduced program
itself, then the following steps are necessary to apply the variable
delay method. Let PPTG* denote the transitive closure of
PPTG (there will be a PPTG* for each loop in the program as
well as the reduced program). PPTG* can be formed from
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1 23 456 7 89 1011121314
1 0111111111 111:1
2 0011111111 1111
3 00011 1100O0O0O0O0°1
4 000O0OOT1UWO0OO0OO0OTGOOO1
5 000O0OO0OT1T1O0O0O0OO0TQO0OO?1
6 000O0O0O0O1UO0O0OO0OTO0OOQO0OTQOT1
7 000O0O0OOOOOOOOUO1
8 000O0O0OO0OO0OOT1TT1T1T1T11
9 000O0O0OO0O0OO0OOOT1T1TI1'1
10 000O0O0OOO0OOOOOOTI1
11 000O0O0OOO0OOOOOTI11
12 00 0O0O0O0OO0OOOOOOTI1
13 000O0O0OOO0OOOOOOUO1
14 000O0O0O0OO0OO0OOOOOOO
(@)
1 23 456 7 89 1011121314
1 01 00O0O0OO0OOOOOOOO
2 00100O0OO0O1O0O0OO0OO0OO
3 000110O0O0OO0O0O0OO0OO0OO0OTP O
4 000O0O0OOT1O0O0OO0OO0OOODO
5 000O0O01O0O0OOO0OOOODPO
6 000O0O0OOT1O0O0OO0OO0OO0OODO
7 000O0O0OOO0OOOOOOUO1
8 000O0O0OO0OO0OO11O0UO0O0TP O
9 000O0O0OOO0O0OOOT1TT1TO0OTPO
10 000O0O0OOO0O0OOOOOTI1O
11 000O0OOOOOOOOTIDO
12 000O0O0OOO0OOOOOOTI1IO
13 0 00O0O0OOOOOOOUO0OO1
14 000O0OOOOOOOOOODO
®
Fig. 5 PPTG* and the matrix A for the example parallel processable
program

PPTG using Warshall’s (1962) algorithm. PPTG* for the
example PPTG of Fig. 4 is given in Fig. 5(a).

For each k €L, identify the set P, of task numbers that
correspond to the tasks which are predecessors of #,. Py is
formed very simply using the appropriate PPTG*. It is the set
of row indexes of PPTG* so that j e P, implies PPTG j = 1.
For example, suppose task #,; in Fig. 4 contains an arithmetic
expression of two or more operations. Then from PPTG*
given in Fig. 5(a) we have

P, ={1,2,8,9,10,11, 12} .

For each k € L, also identify the set P; of task numbers that
correspond to the tasks that are immediate predecessors of 7.
A task t;, which is not an unconditional branch vertex, is
considered to be an immediate predecessor of ¢, if PPTG;, = 1
and there does not exist a task ¢; such that PPTG;; = 1 and
PPTG;, = 1. P; is formed using a technique developed by
Stevens (1971) for removing redundant arcs from a graph. Let

A = PPTG* n ~(PPTG*)?,
then Pj is formed using the matrix A. It is the set of row indexes
of A4 such that j e P; implies 4;, = 1. In Fig. 5(b), the matrix 4
for the example PPTG* is given, and from it, for task #,,, we
have
P, ={10,11,12}.

Before proceeding further it should be noted that if there
exists je P, such that task ¢; is a decision vertex, then the
attempt to apply the variable delay algorithm to the expression
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in task 7, should be abandoned. Since #; is a decision vertex, this
implies that 7, is a conditional successor of ;. Hence, any
computations removed from #, would still have to wait on the
completion of task ¢; before they could be initiated. Thus
nothing would be gained by the application of the variable
delay algorithm. However, this restriction does not hold if the
scheme of processing successors of conditionals in parallel is
being used. In this scheme, the various paths emanating from a
decision vertex are worked on in parallel with the decision
vertex. When its successor path is finally determined, the work
done on the other paths up to that point is abandoned and
processing continues along the successor path.

Suppose P; has m, elements. Let

my
U= v 0,
i=1
where p; € P} for each i. The variables that should be delayed
in the expression in task ¢, are the elements of the set D, where
D=UnlI.
Therefore, the set D and the expression F in task #, would be
passed to the variable delay algorithm. All computations in E
that can proceed prior to the necessary involvement of the
variables in D would be identified. If these computations are
collected into a new task ¢#;, and if we replace E in #, by E’, the
reduced expression generated by the variable delay algorithm,
then #; can be initiated in parallel with any or all of the tasks
represented in P;.

The predecessors of ¢, in the graph are the tasks in the set Py,

where

P, =P, —P.

(‘=" denotes relative compliment). The only successor task of
t; is t, itself. Notice that if no temporary results are generated
by the variable delay algorithm, then we have no new task
t;. The implication here is that the variable delay method can-
not improve the parallel processability of the program as far
as task #, is concerned.

Assuming there are some temporary results generated by the
algorithm, then #; must be added to the appropriate PPTG by
adding an additional row and column to the connectivity
matrix representing the PPTG. This will yield an augmented
connectivity matrix A(PPTG). If we let k' denote the task
number corresponding to #;, then set A(PPTG),, = 1 and
set A(PPTG);;- = 1 for each j e P}. Elsewhere in the k’th row
and column of A(PPTG) there is a zero.

After each task ,, k € L, has been processed by the method just
described, the technique of ‘precedence partitions’
(Ramamoorthy and Gonzalez, 19694, b) can be applied to the
final A(PPTG) which will yield the parallel processable tasks
for the program and the sequence in which they must be ex-
ecuted. Therefore, the variable delay method can be incor-
porated into Ramamoorthy and Gonzalez’s technique very
easily. PPTG* and the matrix 4 need be formed only once and
are used to process each task represented in L. Also, the only
additional information needed about the source program from
that already collected by their technique is what tasks contain
expressions of two or more operations. There is no problem in
adding additional rows and columns to PPTG to form an
augmented matrix. Hence, unlike Volansky’s (1970) method for
discovering hidden parallelism, the variable delay method is
comparatively simple to employ.

5. Example application of the variable delay method

Using the variable delay algorithm and the method described
for incorporating it into Ramamoorthy and Gonzalez’s
(1969a, b) technique, an example program will be analysed.
This will illustrate the method of variable delay, and demon-
strate how the technique can be beneficial by recognising
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1 FUNCTION CHEBY(A, B, M,F)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 CHEBY, A, B, F

2 SUM = 0.
3 DO1I=1,M
4 Z1 = DCOS(FLOAT(2*(I — 1) + 1)*3.1415927/
FLOAT(*2M))
5 X1 = (Z1*(B — A) + B + A)/2.
6 1 SUM = SUM + F(X1)*DSQRT(. — Z1*Z1)
7 CHEBY = (B — A)*3.1415927*SUM/FLOAT(2*M)
8 RETURN
END
(@
3 L
() «
Ok
(@ °
® (©

Fig. 6 Example program for the variable delay method

additional parallel processable code in computer programs.

To illustrate the application of the variable delay method, a
FORTRAN function subprogram CHEBY for computing the
value of the integral of F(X) * D(X) between the integration
limits 4 and B using the M-point Gauss-Chebyshev quadrature
formula will be used. The complete function CHEBY as it
appears in Carnahan, Luther and Wilkes (1969) is given in
Fig. 6(a).

The parallel program task graphs which resulted from apply-
ing Ramamoorthy and Gonzalez’s technique are given in Fig.
6(b) and (c) for the reduced program and the single DO-loop
in the program respectively. The nodal numbers in the two
graphs correspond to the executable statement numbers
assigned to the executable statements in the program. The
integer beside each node in the graphs represents the total
number of operations (either implied or specified) to be per-
formed in the statement corresponding to that node. Function
references are treated as single operations. The total number of
sequential operations to be performed in a graph is defined as

p
> m; where p is the number of precedence partitions for the

i=1
graph (Ramamoorthy and Gonzalez, 19694, b) and m; is the
number of operations to be performed at node » in precedence
partition i and node » has the maximum number of operations
of all the nodes in precedence partition i. Hence, the total
number of sequential operations to be performed in the graph
of Fig. 6(b) is 41, and for the graph in Fig. 6(c) there are 26
total sequential operations.

Applying the variable delay method detailed in the previous
sections, we arrive at the two augmented parallel program task
graphs given in Fig. 7(e) and (b). Again, the integer beside each
node represents the total number of operations to be performed
at that node. The new and revised tasks that resulted from
applying the variable delay algorithm are given in Table 4. In
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(@) (®)
Precedence Partitions Precedence Partitions
{1, 2} {3,4'}

{3,7} {4,5}
{7} {5,6'}
{8} {6}
© @

Fig. 7 Augmented parallel program task graphs and their precedence
partitions for the example program

Fig. 7(c) and (d) the precedence partitions indicating what
tasks in each augmented graph can be processed in parallel
and the sequence in which they must be executed are given.
Notice that the total number of sequential operations to be
performed in the graph of Fig. 7(a) is 35 and that of Fig. 7(b) is
25. Comparing the total number of sequential operations, we
see that the variable delay method reduced this number by 159
for the graph in Fig. 6(b), and by 49 for the graph in Fig. 6(c).
This represents a significant improvement in the parallel proces-
sable code exposed by just using Ramamoorthy and Gonzalez’s
technique alone. Equating the total number of sequential
operations to be performed with the time required to execute
the program represented by a graph, this would also represent a
significant decrease in program execution time. Also, the 4%
savings for the loop only represents that for one iteration.

Table 4 Results of the variable delay method on function

CHEBY
NEW TASK
NUMBERS TEMPORARY RESULTS REVISED OLD TASK
4 T41 = 2*M Z1 = DCOS(FLOAT

T42 = FLOAT(T41)
T43 = 3.1415927/T42

(%I — 1) + 1)*T43)

5 T51=B - A X1 = (ZI*T51 + T52)/2.
T52 =B + A

6 T61 = Z1*Z1 1SUM = SUM + F
T62 = 1.—T61 (X1)*T63
T63 = DSQRT(T62)

7 T71 = 2*M CHEBY = SUM*T75
T2=B - A

T73 = FLOAT(T71)
T74 = T72*3.1415927
T75 = T74/T73
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Since the loop is executed M times, the saving becomes even
more significant.

6. Conclusions

An algorithm for variable delay in an arithmetic expression has
been presented, and its use in a scheme for recognising parallel
processable code in computer programs has been described.
The implications of the variable delay method and its apparent
value of discovering hidden parallelism have been illustrated
through analysis of an example program.
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The algorithm in its present form will not handle expressions
that contain array or function references. However, only minor
modifications are necessary to incorporate this feature. This
and the value of the method will be the object of further
research in this area.
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Book reviews

Computational Methods in Ordinary Differential Equations, by J. D.
Lambert, 1972; 278 pages. (John Wiley and Sons Ltd., £5-50)

The title is slightly misleading, as the book is almost entirely con-
cerned with initial-value problems; there are just five pages at the end
concerned with the boundary-value case. Dr. Lambert takes a middle
road between the rocky highlands of abstract numerical analysis
and the muddy ground of routine computation, where the algorithms
grow. As he states in his preface, few theorems are stated and even
fewer are proved, but there is a great deal of careful analysis, and
references are given where necessary.

A large part of the book is concerned with a careful discussion of
linear multi-step methods, both from the theoretical and the prac-
tical standpoint. This section contains an admirably thorough treat-
ment of the various types of instability which may arise. There
follows a chapter dealing with Runge-Kutta methods, leading on to
discussions of hybrid formulae and extrapolation methods. The
whole of this part of the book deals only with the solution of a
single first-order differential equation.

Chapter 8 then extends the methods to deal with systems of simul-
taneous equations, and in particular to stiff systems. This chapter
gives the impression of being rather hurried, especially by compari-
son with the detailed arguments of the earlier part. Here the author
does not seem to n:e to give sufficient weight to the practical problems
which arise. In practice a single equation does not appear very often.
Systems of two or three equations are more usual, and twenty or
more are all too common. The very practical problem of imple-
menting an implicit method for such a system is dismissed rather
briefly in this chapter. The discussion of stiff systems is also rather
brief, but this is a field which is still being vigorously tilled, and Dr.
Lambert mentions a number of recent advances.

The publication of this book follows closely on the appearance of
C. W. Gear’s Numerical Initial Value Problems in Ordinary Differen-
tial Equations.* The two books cover so closely the same ground that
a review will involve a comparison, which is worth making explicit.
Both bring the reader up to date with recent work; both have good
bibliographies, and it is interesting that each of them has a substantial
number of references which do not appear in the other. Gear gives

164

a much more formal treatment, in the form of lemmas, theorems and
proofs, where Lambert gives a discussion with references. At the
other end of the spectrum, Gear gives some complete FORTRAN
programs, and thus tries to cater for the practical user of algorithms
as well as the pure numerical analyst. Lambert, however, keeps to
the middle road, and seems to me much more successful in providing
the practical man with the explanation and information which he
needs. In particular, Lambert gives more than just a survey of the
vast collection of methods, with their derivation. When he believes
that Method A is better than Method B, he is quite ready to say so.

D. F. MAYERs (Oxford)
*Reviewed in this Journal (Volume 15, number 2, May 1972, page
155).

Computer Science: Projects and Study Problems, by Alexandra I.
Forsythe, Elliott I. Organick, and Robert P. Plummer, 1973;
292 pages. (John Wiley and Sons Ltd., £2-85)

This book is a companion to the main texts and language supple-
ments of a series that has developed over the last few years. This
latest offering contains the specification of thirteen programming
projects with hints and background discussion. These are of varying
complexity and between them offer a thorough grounding in the
practice of the programming art. In addition there are a large number
of smaller exercises with examples and discussion on more detailed
topics.

The major flaw in this otherwise valuable collection is the continual
cross-referencing to the main texts—this being most pronounced in
the study problems which are linked by chapter and section. This
makes it less useful to those who are not hooked on the series, which
is a pity. Rather worse, it gives those who are hooked one more
excuse for not looking at the world outside. Most parents will be
familiar with the problems of weaning their children away from the
Famous Five, and I greatly fear that Alexandra I. Forsythe (who
seems the most plausible candidate) is set to become the Enid
Blyton of the programming schools.

C. M. REeEeVEs (Leeds)
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