ﬂ
J

PROBABILITY
EXAMPLES

ﬁ
\

John G. Truxal
Department of Technology and Society
State University of New York at Stony Brook



MONOGRAPH SERIES
OF THE
NEW LIBERAL ARTS PROGRAM

The New Liberal Arts (NLA) Program of the Alfred P. Sloan
Foundation has the goal of assisting in the introduction of quantitative reasoning
and concepts of modern technology within liberal education. The Program is
based on the conviction that college graduates should have been introduced to
both areas if they are to live in the social mainstream and participate in the
resolution of policy issues.

The New Liberal Arts (NLA) Program of the Alfred P. Sloan
Foundation has led to significant, new courses and course changes in many
colleges and universities. MIT Press and McGraw-Hill are jointly publishing an
NLA series of books. These monographs are planned to provide
teaching/learning materials for other educational developments.

1. John G. Truxal, Feedback/automation
2. Morton A. Tavel, Information Theory
3. John G. Truxal, Probability Examples

Copyright © 1989 Research Foundation of State University of New York,
Stony Brook, NY 11794, All rights reserved.

NLA Monograph Series

Co-Directors: John G. Truxal and Marian Visich, Jr.
Production Editor: Carol Galdi

Acknowledgment This material was developed as part of the New
Liberal Arts Program, with the monograph possible because of grants from the
Alfred P. Sloan Foundation and the Ford Motor Company Educational Fund.
The latter grant is for the preparation of teaching modules for basic undergraduate
courses.



Contents

INTOdUCHON oot ceeeteeeeaerenenenneseesessen s

PROBABILITY

Some Key Features of Probability  .........cceeeevvvvvvenveeeennnn.
Simple Probability .................... reteeeeeeteeieennneneraren
Equally Likely @ ..o, eerreseserieesrantreserees
Probability of Auto Accidents s
Birthand DeathRates  ....ccccevveviinnniieeecneeree e,
Expected Wail coooiiieiinecieice ettt
Problems per Hundred ......oooooiiiiiiienieceiineneeeee s
Sampling Example ...
Additional Problems on Probability .................. SOSPNR

DECISION PROBLEMS

A 1790 Decision Problem  ........ccceuveeeeiririiiioeceieeeeeeaeennns
Screening of a Population Using an Imperfect Diagnostic Test

PErtussis VACCINE  ..uuueieiiiivneeeeeieeeeeennnennnsseeseerenreressesens

Decision Problems Without Answers ~ .........cccuuuee..
Simpson's Paradox -- Drug Testing .........cccccvereueeereeeennnn.
Simpson's Paradox -- The Death Penalty  ......................
Ericsson Method  ......ccoueiviimererineciereeceie s ceeeseens
A Production Manager's Decision Problem ......................
Dynamic Programming  ........ccooeiuiiiiiiiiie e eeeeeer e

ACKNOWIEAZMENL  ....vuvvieeiieitcecece e eeeens

12
13
16
19
24
27
29

33
37

51
55
62
63
67
74
82

87



INTRODUCTION

There are four primary roads from Long Island westward into
Manhattan; the commuter must make a sequence of decisions about which road
to take. Overhead signs frequently inform the motorist about travel conditions
on the main arteries, so that "rational decisions can be made."

The motorist faces an horrendous problem. If the signs indicate, for
example, severe congestion ahead on Northern State Parkway, should he/she
switch to the Long Island Expressway? Thousands of other drivers are probably
making the switch, and the probability is high that the Expressway will shortly
be heavily congested.

We face such "decision problems in probabilistic situations”
continually. Should I fly ABC airlines when they announce a bomb threat?
Should I buy a sphygmomanometer to take my blood pressure frequently during
the day?

As so many of the national studies of U.S. education during the 1980s
have emphasized, a primary goal is to develop in students the ability to reason
quantitatively. This is especially important in situations governed by
probability, since in such cases human intuition is often wrong. Indeed, the
New York State Education Department requires significant exposure to
probability ideas each pre-college year (although this is far less demanding than
the Japanese high school requirement of a year of probability).

In recognition of this situation, the Sloan Foundation included
quantitative reasoning as one of the key goals of its New Liberal Arts Program.
Over the past five years, the Stony Brook center has published a monthly
newsletter, NLA News, with each issue including an example used in teaching
quantitative reasoning.

In this monograph, we have collected a number of these newsletter

examples and added mini-case studies which have proved successful in the college
classroom. These are divided into two broad categories:

(1) Probability -- basic concepts and simple examples
illustrating these ideas

(2) Decision Problems -- where the probabilistic concepts are
applied to realistic situations.

The instructor is free to duplicate these examples for his/her classroom use.



SOME KEY FEATURES OF PROBABILITY

The engineer or technologist uses probability in a variety of problems:
e.g., assessment of the guality of a manufacturing operation, evaluation of the
risk associated with a technological change, or determination of the best decision
when options are available. In many cases, only fundamental ideas of
probability are needed. The following list includes some of the most important
concepts.

(1) Definition of probability. When an experiment is repeated
many times, the probability of success is

Number of successes
Number of trials

Example Of 500 professional basketball games, the
home team won 275. Thus, the probability the home team
will win a particular game is

275

s00 °F 055 or 55%

This definition requires that we have a large number of trials -- how many to
ensure we are close to the actual probability is a basic question of statistics.

Second example The weatherman, after studying
weather maps, states the probability of rain tomorrow is 70%.
This means that if we considered 100 days when the weather
maps were similar to today's, it rained on about 70 of the next
days.

(2) Range of probability. Every probability has a value
from 0 to 1. Zero probability means success almost never occurs. A
probability of 1 (or 100%) is almost a certainty.




Example When a woman gives birth, the probability

she will have a boy is

% or 51%
(104 boys are born for every 100 girls.) The probability of a
girl is

% or 49%

The probability of a boy or a girl is 1 -- a certainty.

(3) Another definition. If we do an experiment and all possible
outcomes are equally likely, the probability of success is

Number of successful outcomes
Number of possible outcomes

Example I roll a pair of fair dice, one red (R) and the
other white (W). The number of possible outcomes is 36:

R1 Wi R2 w1 R3 W1 R4 W1 ---
R1 w2 R2 w2 R3 w2 R4 W2 ---
R1 W3 R2 W3 R3 W3 R4 W3
R1 W4 R2 W4 R3 w4 R4 W4
R1 W5 R2 W5 R3 W5 R4 W5
R1 W6 R2 W6 R3 W6 R4 W6

A total of four on the dice can happen in three equally likely
ways
R1 W3 R2 W2 R3 w1

so the probability of a four is




(4) Probability of failure, Suppose one or more outcomes
of an experiment are considered "failures,” with all others "successes.” If the
probability of failures is P, the probability of success is

1-P

Example A factory for making automobile engines
has a 15% failure rate: 15% of the engines made do not work
properly. Then we know immediately that 85% of the engines
are O.K.

If it costs $500 to manufacture an engine and an
additional $300 to repair a faulty engine, we can calculate the
average cost of an engine from this factory: For each 100
engines produced,

85 cost $500 15 cost $800

The average cost is the total cost divided by the number of
engines:

85 x 500 + 15 x 800
100

or $545

The cost of faulty products is high.

The average cost can be thought of as the weighted average of
the possible costs, each weighted (or multiplied) by its
probability:

85 15
Average cost = 500 x 100 * 800 x 100

(5) Probability of either of two events. If there are two
outcomes of an experiment, the probability of one or the other happening is
the sum of the separate probabilities.

P(aorb) = P(a)+P(b)

if the two ways of succeeding (a and b) are distinct, non-overlapping.




Example A couple wants two children. If for each
birth the probability of having a boy is 1/2, what is the
probability they will have at least one boy? There are four
equally likely outcomes:

BG BB GB GG

The probability of having one boy is

% or 50%

The probability of having two boys (BB) is

% or 25%
The probability of having at least one boy is
50% +25% or 15%

[We could obtain this answer by using (4) above, considering
two girls as a failure.]

(6) Calculation of probability from specific example.
finding the probability of a certain outcome is easy if we arbitrarily look at
a certain number of trials and then use the definition of (1) above.

Often

Example In the same example (5) above, we might
look at 100 couples. The first child will be

50 B

50 G

(We assume the two outcomes are equally likely.) Now of the
50 with B first, half or 25 will have a B second, the other half
a girl, so we have

25 BB
50 B

25 BG

25 GB
50 G

25 GG




Looking at the last column, we see 75 of our 100 couples will
have at least one boy, so the probability is

5
100 or 75%

() Probability of two successes in a row. If we run an
experiment two times in a row, the probability of two successes is just the
product of the two separate probabilities.

If the two experiments or trials are independent (that is, the
probability of the second success in no way depends on the first outcome),

P(a,thenb) = P(a) xP (b)

Example Our engine factory turns out 85% good
engines. Only 2/3 of the faulty engines can be repaired; the
other 1/3 must be discarded. Each engine manufactured costs
$500; repair work costs $300 whether it succeeds or not.
What is the average cost of a good engine coming from this

factory?
To answer this, again we imagine 100 engines being
made and use the approach of (6):
85 are O.K.
{2
1 3 or 10 are repaired
15 are faulty
, 1 or 5 are junked
L 3

Now that we have the probabilities, we can find the total cost:

100 engines x $500 per engine + 15 engines x $300/repair
or $54,500




We end up with 95 good engines, so the average cost is

% or  $574 per good engine

(® Odds. The odds of success means simply the probability of success
divided by the probability of failure.

Example Our engine factory produces 85% good
engines, 15% faulty engines. The odds of the next engine
being good are

o

.8
1

h

or 571 (or57t01)

e
»

Sporting and gambling events are often characterized by odds
(or other measures of probability such as the "point spread” in
football).

©) Value of intuition. In probability situations, intuition is often
of little value. This characteristic is emphasized in several of the following
examples in this section of the monograph.

Example of two poker hands:

Hand One Hand Two
A of spades 10 of hearts
A of hearts 9 of spades

A of diamonds 7 of clubs

A of clubs 4 of diamonds
K of spades 2 of hearts

Are the odds of being dealt the poker hand on the right better
than being dealt the one on the left?

7




Answer: NO -- the odds are the same for any specific five
cards. Indeed, the probability of either hand is 1/2598960, in
spite of our much greater psychological surprise upon being
dealt Hand One.

References

There are two excellent paperbacks introducing probability:
Derek Rowntree, Probability Without Tears, Charles Scribner's Sons,
New York, 1984,
Warren Weaver, Lady Luck (The Theory of Probability), Doubleday &
Co., Inc., Garden City, NY, 1963.

Then there is a wide selection of introductory textbooks.



The basic ideas of probability typically appear early in a course on quantitative
reasoning. 1 find that it is important to have a few simple class activities which
promote student confidence in their ability to handle the subject.

SIMPLE PROBABILITY

Before class, I cut three identical, one-inch squares of white paper. One
I color blue on both sides, one red on both sides, and the last blue on one side,
red on the other. Thus, I have three squares:

Blue-Blue Red-Red Blue-Red
A B c

I now hold these three in my hand, mix them up randomly, blindly
select one and hold it in my palm to show the class one side only. The side
visible to the class and me is Red.

I now argue that we obviously have either B or C, since we can see the
Red side. There are only two choices; clearly I am as likely to have picked B as
C. I would bet a dollar that the hidden side of the card in my hand is Red, and I
look for a student willing to bet a dollar it is Blue.

Is this a fair bet? We repeat the activity 12 times; each time I bet that
the hidden color is the same as the color showing. Will I probably end up about
even in money?

Answer. The bet gives me an awesome advantage. On the average, I will win
2/3 of the time -- for 12 plays, I expect to win 8 and lose 4, or end up $4 ahead.
These 2:1 odds are far more generous than a Las Vegas casino, where the odds
may be 55:45, in contrast to my 67:33.

The error in my argument comes from the fact that there are two ways I
can show a Red side from square B -- I can be showing either side of the square.
Thus, the Red side showing is equally likely to be

Sideaof square B
Side b of square B
Side b of square C

2/3 of the time the Red side showing will be from square B, and the other side
will also be Red.



The example illustrates beautifully the significance of the phrase
"equally likely" in one definition of probability (page 3):

When all outcomes of an experiment are
equally likely, the probability of success is
the number of ways success occurs divided
by the number of possible outcomes.

Other Forms

In an excellent module on Intuition in Statistical Analyses, Economics
Professor Alan S. Caniglia (Franklin & Marshall College) uses the example of
three identical cups (A, B, and C):

A containing two blue marbles
B containing two red marbles
C containing one red, one blue marble

He blindly picks a cup and one marble from that cup. The question is: What is
the color of the other marble in that cup?

Bertrand's Box Paradox depicts three boxes (A, B, and C), each with two
drawers:

A each drawer has a gold coin
B each drawer has a silver coin
C one drawer has a gold coin, one has silver

He selects a box at random, then a drawer randomly, and finds a gold coin. What
is the probability the other drawer in that box has a gold coin?

Clearly, it is easy to find many different forms of the same example.
Caniglia’s form has the advantage that we can then extend this to a fuller
discussion of conditional probability: we can, for example, visualize three cups:

A contains 1 Red and 99 Blue marbles
B contains 2 Blue
C contains 2 Red

10



I now blindly pick a cup and then a marble, which turns out to be Red.
The cup is either A or C, but the two are clearly not equally likely. If I pick cup
A, the probability of my then drawing a Red marble is 1/100 (this is the
conditional probability -- the probability the marble is Red if we are in cup A).
Thus, at the outset of the "game,” I will pick a Red marble from A with a
probability of

1,1 _ 1
3 100 ~ 300
Pick Pick
A Red
but a Red marble from C with a probability of
1 _ 1
3 * 1 =3
Pick Pick
C Red

If a second marble is picked from the same cup (without replacing the first red
marble), the probability the second marble picked will be Red is

A
3 _ 100
1 1 101
3 * 300

or very close to 1. Almost always, the Red marble picked first is from C; if so,
the second marble picked will be Red.

(This problem can also be explained with either the joint frequency
table or the probability tree.)

11



EQUALLY LIKELY

In a problem governed by probability, we have to be very careful if we
assume that all outcomes are equally likely. The pitfall can be illustrated by a
very simple classroom activity.

The instructor tells the students they are about to hold an important
lottery. Each student is to select a two-digit number from 00 through 99 and
write that number on a paper kept by the student. The instructor has already
picked a two-digit number; if anyone matches, he/she wins (and receives an
automatic A on the next quiz, or some such prize).

Before revealing the winning number, the instructor polls the students
to determine how often each digit was chosen. For example, for 9 first, each
student whose number contains a 9 raises his/her hand (if the number was 99,
both hands are raised).

In a class of 40 students (80 digits chosen), a typical distribution is

0 - 2 4 -1 7 -12
1 - 4 5 -9 8 -9
3 -12 6 -10 9 -1

Very few use 0; the digit 1 is chosen appreciably less than the average. The
digits are decidedly not equally likely,

MIT/Harvard Professor Chernov found the same phenomenon in a study
of the Massachusetts lottery. Each digit is equally likely in the winning
numbers. Few players chose 0. Consequently, if you won and had chosen a
number with zeros (and ones), you were much more likely to be a lone winner,
with a large pay-off.

Of course, once such an analysis is published in the newspapers, you
probably should stay away from 0 and 1.

12



PROBABILITY of AUTO ACCIDENTS

In a class of 80 college freshmen, how many are likely to die in
automobile accidents? How many will probably be injured seriously enough to
require major hospitalization?

We are really asking the question: Do auto accidents in the U.S.
constitute a serious national problem? Are auto accidents sufficiently common
that we as individuals should be concerned?

To answer this question, we need some data. Newspaper articles reveal
the following facts on automobile accidents:

(1) There are approximately 50,000 deaths/year.
(2) There are about 500,000 serious injuries each year.

(3) There are 3 fatalities for every 100 M (one hundred
million) miles driven.

(4) Alcohol is a significant factor in almost half (45%) of the
serious or fatal accidents -- hardly surprising since there
are over 10 M people in the U.S. with severe alcohol
problems,

Probability of dying

The information in either (1) or (3) above is enough to allow us to
estimate the probability an individual will die in an auto accident. If we use (1)
first, we reason as follows:

About 150 M people ride in cars frequently (i.e., we éxclude people
who ride never or very rarely). Thus, the probability of death in one year is

1
3,000

50,000
150,000,000 ™

One in every 3000 people riding frequendy in cars will be killed each year, A
college freshman will be riding in cars for about 60 more years, so the
probability he/she dies in an auto accident is

-3-% or 31(-) or 0.02

13



Clearly, this is a rough calculation: we have estimated the total number of U.S.
riders and the life expectancy.

Next, let's see what we can do with (3) above. Our average college
freshman is likely to be mobile throughout life and average 30,000 miles of
riding each year. In 60 years, he/she will ride

60x30,000 or 1.8M miles

Statement (3) says that there are three deaths for every 100 M vehicle rides.
Since on the average there are 1.8 passengers, (3) says there are three deaths for
180 M passenger miles, or one death per 60 M passenger miles. The probability
the freshman will die is then

13

M 1
oM orﬁ o 0.03

Comparison of two probabilities

In the light of the rough assumptions we made, it is remarkable the two
probabilities are so close: 0.02 and 0.03.

We might look at the sensitivity of each answer to the assumptions
made. In the first calculation, if we change the 150 M people who ride
frequently to 100 M (and this was just a crude estimate), the probability comes
out 0.03. In the second calculation, if we change the average mileage to 20,000,
we obtain the probability 0.02. So the two answers are really not very far apart
in view of the roughness of our assumptions.

The correct probability is probably around 0.02 and 0.03. We might
guess an intermediate value

1
0.025 or 6

14



Answers to questions

With this estimate of the probability of dying in an auto accident, we
can now return to the questions at the start of this unit. In a class of 80 college
freshmen, each has a probability of 1/40, so we can expect two will die in auto
accidents. Ten times as many, or 20, will be seriously injured.

These answers are, of course, rough estimates, We have not worried
about details: e.g., a few might be seriously injured twice, or the risk is greater
for males (especially young males) than for females, or the probability depends
on economic and educational levels. Our answers, nevertheless, indicate the
magnitude of the auto-accident problem: in any group of young adults, we can
expect 1/4 to be seriously injured and 1/40 to be killed.

Comment

The start of this unit gave us four data statements, we have used only
the first three. The relation of alcohol to auto accidents was not relevant.
Actually, in any problem we normally have much more data than are needed. An
important part of the solution is to select only those data that are useful.
Additional problem

You are driving down a four-lane highway (two lanes in each direction

and no center divider). What fraction of the cars coming toward you can you
expect to be driven by an individual with a severe alcohol problem?

Topics for further discussion might be:
- the recent abandonment of the 55-mph speed limit
- the on-going court battle over mandatory passive restraints

- the Massachusetts and Nebraska voters over-throwing the
mandatory seat belt law in the 1986 elections

- the fundamental question of the appropriate role of the federal
government in protection of citizens

15



BIRTH AND DEATH RATES

Nevada and Utah are neighbors and reasonably alike in many ways. The
topographies are similar; the types of industry closely match as the following
graphs show.

Services
74%

Services

Agriculture

Industry 1%
25%

Nevada Utah

We can compare the two states in a wide variety of ways by using
census data. Since we want to compare one state to the other, in each case we
use the ratio

Number for Nevada
Number for Utah
Area 1.3 (Nevada is 30% larger than Utah)
Population 0.6 (Nevada has 60% as many people as Utah, or
Nevada has 40% fewer people than Utah)
Birth rate 0.7 (For each 1,000 people, Nevada has only
70% as many births as Utah)
Per capita income 1.4
% of high school graduates 1.0
Average years of school 1.0
Male/female ratio 1.0
% people over 65 0.9
% people over 21 1.1
Median age 1.2

These numbers certainly give the impression that we have "sister” states.

There is one number missing above -- the death rate. Even though the
age distributions are similar, 40% more people die in Nevada each year for each
1,000 of population. Perhaps there is inadequate health care in Nevada. But
census data indicate

Hospital beds per person 1.2
Physicians per person 0.8
Motor vehicle death rate 1.2

$o in these three categories the states do not differ in a major way.

16



In fact, Nevada has a higher mortality rate at every age than Utah. The
following graph shows that at age 45 a woman in Nevada has 1.7 times the
probability of dying as a woman living in Utah.

1.8
- -
1.7 / \, Femate
{6 7
Death rate ¢ 5
in Nevada 4
Death rate '
in Utah 1.3
12
. -
10 N SN SRS U S SR D o

O 10 20 30 40 50 60 70 80 Age

Fig. 2 Increased chance of dying when you live in Nevada
rather than Utah. Vertically we plot the ratio

Number of deaths in N for everv 1000 people at this age
Number of deaths in U for every 1000 people at this age

The important feature of the graph is the ease with which information
is conveyed. Figure 2 is enormously more useful than a page full of numbers.

At a glance we can see the most dangerous age for females in Nevada is 45, for
males 43.

The question arises as to why the death rate is so much higher in one
state than the other. Certain factors are probably important:

(a) The population is much more stable in Utah than in
Nevada. 40% of the Utah population were born in that
state, less than 10% for Nevada.

(b) The death rate of U. S. males, age 45 10 54, is over twice
as great if the males are living alone rather than with a

wife. Utah has only 10% in this category, Nevada has
20%.

(¢) Nevada has 170% more violent crime than Utah.
(d) Nevada has 25 times as many liquor stores per capita.

(e) Cirrhosis of the liver and respiratory-system cancer are
much more prevalent in Nevada than in Utah.

(f) The Mormon religion forbids the use of alcohol and other
stimulants.

17



Students inevitably raise the question of whether the extensive underground
nuclear testing in Nevada affects the death rate. The question obviously can not
be answered definitively, but we can note that, if the test effects reach the
atmosphere, the prevailing winds are toward Utah.

Let's look at the characteristics of the graph. In particular, we note

that:
(1) The graph "stands alone" -- that is, a reader can
understand the graph without reading the accompanying
text,

(2) Along the horizontal axis, we show age, so we naturally
start from birth (0) and extend out to 80. One year is as
important as any other, so the scale is "linear" -- each ten
years covers the same length.

(3) The vertical scale shows the ratio of the two mortality
rates. When the graph was first made, I had data for each
five years from 0 to 80. All of these data were between 1
and 1.8, so I chose to let the vertical scale cover this same
range.

This is a decision which is open to criticism. I could plot the graph for
the male mortality ratio as shown in the following figure, where the vertical axis
goes from O to 1.6. The bottom portion of the plot is now really useless, and
the undulations in the ratio with age are not as easy to see. Also this figure does
not emphasize as dramatically how poorly Nevada compares to Utah.

16
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Fig. 3 Altemate plot for male mortality ratio.

* * %* ¥ *

This example is taken from the book Who Shall Live, by Victor Fuchs
(Basic Books, New York, 1974) -- an excellent treatment of the national health
care system by a brilliant economist. We have borrowed also from an adaptation
by Leon E. Clark, "Mortality American Style: A Tale of Two States,” May,
1976.
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EXPECTED WAIT

My son, Jim, decides to collect baseball cards. He soon becomes
discouraged by the large number of duplicates he is buying with his limited
amount of money. He comes to me for advice.

"Dad, I know there are 100 different cards. If the company making the
cards is honest and puts out an equal number of each card and packages them
randomly, how many can I expect to have to buy before I have the complete
set?"

How do I answer Jim?

This problem is a good example of the failure of human intuition in
analyzing probabilistic situations. Most students will guess 1,000 or 3,000 or
some such number; engineering students often guess in the millions (perhaps
they are accustomed to larger numbers).

The correct answer is 519.

Expected Wait

Before we tackle the problem, we need to understand one important
result of probability theory: Suppose the probability of success in an
experiment is a number we call p. I run this experiment over and over again,
until T have a success. On the average, success will occur in a number of trials
equal to 1/p.

As an example, look at the box describing the rolling of a single die
until a four is obtained. The probability p of a four is 1/6 (there are six equally
likely faces of the die, and a four on only one face).

Thus, on the average we will have to wait

Lo

1
D 6 * ¢

rolls for the four to appear. In the box, the average wait is 5.9 rolls --
surprisingly close to 6, since I really should have found 1,000 sequences to
estimate the average.

19



EXPERIMENT

Iroll a single die. Iroll again and continue until a four appears,
and I keep a record of each roll. The first sequence is

5-2-1-1-1-2-5-14

That is, the first roll is a five, then a two, and so on, until I finaily
roll a four on the ninth roll. The sequence then ends.

This game may be unexciting, but I play again and again. After ten
sequences, I have

Sequence Number of rolls
5-2-1-1-1-2-5-14 9
3.3-1-6-2-1-34 8
4 1*
5-5-24 4
5-1-4 3*
14 2*
5-2-2-5-3-2-1-6-2-6-6-5-4 13
22-5-5-22-6-3-54 10
4 1*
6-6-3-6-2-3-34 8

Iactually did this experiment and obtained the above results. All told,
I had to roll 59 times to get the 10 sequences. Thus, on the average,
each sequence is

22
) o 59rolls

Half the time (the five sequences with asterisks), I had a four in 4
rolls or less. Thus, if I bet you a doliar I would roll a four in 4 rolls
or less, we would have ended up even -- each of us winning 5 times.
(This experiment can easily be carried out on a computer, and we can
use many more than 59 runs.)

20




Solution of Our Problem

With this knowledge, we can return to the baseball-card problem. The
first card bought will certainly be new. For the second card, the probability it is
new is 99/100, so the expected waiting time or number of purchases is

L
397100 or 100/99.

Similarly, the successive expected numbers of purchases are

100 100 100 . 10 ... o4 100 100
10- * 99 T 98 97 * 7
Card 1 Card 2 Card 3 Card 4 Card 99  Card 100

Finding the sum of these 100 numbers is tedious, but a calculator
reveals the answer to be 519.

Other Applications

()] If I roll a single die, the probability of rolling a four is 1/6.
On the average I will need six rolls to obtain a four, by our above property.
Over how many rolls will the probability be at least 1/2 that I have a four? In
other words, if I start rolling and continue until I obtain a four, I might obtain
the sequences shown in the box. If I do this many times, half the time the
sequences will be less than what length?

This problem is different from the question of the average wait. Once

in a long while, I will have to roll the die 100 times before a four appears. Such
a very long sequence pulls the average up.

To solve this problem, it is easiest to find the probability of the first
four appearing on the first roll, second roll, etc.

21



First four on Probability Cumulative

First roll 1/6 or 0.167
5 1
Second roll *g X g or 0.139 167 + .139 = 306
. 5 5§ 1
Third roll s§X6Xs " 0.116 306 + .116 = 422
Fourth roll %x §6‘ X %x % or 0.096 422 + 096 = 518

* Here we are finding the probability that a four appears first on precisely the
second roll. The first roll must be any other number (probability of 5/6); the
second roll must be a four (probability of 1/6); hence, the answer is

Sx L oor 0139
6 6

Thus, the probability the first four appears on the fourth roll or earlier is 0.518 -
- more than 1/2. More than half the time I will have a four by the fourth roll.
If T am.betting with you, I should wager that a four will appear by at least the
fourth roll. The 50% probability is passed about 2/3 of the way to the average
(by four rather than the average of six rolls).

Actually one of the first probability calculations was made in the 17th
century when the question arose: should I bet that a 6-6 appears in the first 24
rolls of a pair of dice? (The answer is no -- the probability is a little less than
1/2.)

)} The mean time between fires (MTBF) for a residential house in
this country is 100 years. Thus, the probability a house will burn down (or
suffer major damage from a fire) in the next tear is 1/100. (Such data are the
basis for fire insurance premiums.) There is a 50% chance my house will burn
in how many years? (The answer is about 2/3 of the average or 65 years.)

€)] Problem (2) gives an average for the U.S.; there are certain
houses at unusually high risk. For example, there are sections of Brooklyn
where the MTBF is five years. This means that about half of these homes will
burn in the next three years. What are the principal reasons for such a low
MTBE?

The existence of such high-risk housing means that the risk for my
house is actually less than the average. Simple calculations show that I really
should not buy fire insurance; it would be better on the average to take the risk.
Such a probability calculation is not useful, however, since I must buy
insurance because the loss of the uninsured house would be a catastrophe. This
interpretation brings us into a complex economic issue: To compare real costs,
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we must consider the utility of money rather than money itself. I can spare the
money for insurance, but not the money to replace my home.

Proof: Expected Wait is 1/p

To prove that the expected wait is 1/p, we proceed to list the probabilities of
success in trial 1, then 2, then 3, etc.:

One trial P
Two trials (1-p)p [failure first, then success]
Three trials (1-p)%p

etc.

The average number of trials is the fraction (p) occurring in one trial
times 1, plus the fraction in two trials times 2, and so on:

px1+p)px2+(-pypx3+...

Average wait
pll+21-p)+3Ap2+40pP+..1]

The infinite series inside the bracket has the sum 1/p2. We can look this up in a
reference book or, if we have introductory calculus, we can note that the
bracketed term is the derivative of

1-{1+(-p)+ (1Ap)2+...)

1
= Tap

since the term in braces is just the geometric series.
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PROBLEMS per HUNDRED

Auto manufacturers describe their problems with reliability or warranty
costs in terms of "Problems Per Hundred:" for every 100 new cars sold, how
many significant problems will there be in the first six months? Each car may
have more than one problem, so the PPH may be greater than 100.

Three manufacturers have the following results, in each case for a
particular product:

Manufacturer PPH
A 80
B 120
C 360

Let us assume that I know these data. I am about to buy a new car and
[ must pick from A, B, and C. The above data, however, are not what I really
would like to know. I am anxious to buy a car which gives me no problems
during the first six months.

If I buy one of the A cars, what is the probability I have no significant
problem in the first six months? Is this significantly different from the
probability if I buy a car from B or C?

Solution

I would very much like to have more information: e.g., if a car has one
problem, is it very likely to have more than one? In other terms, what are the
relative frequencies of one problem, two problems, three problems, etc.?
Maybe, in B’s line, one car is a real lemon with 120 problems, and the other 99
cars are problem-free.

Unfortunately, no other data are available, and we have to do the best
we can with what we have.

We might visualize a model or analog for this problem. There are 100
bins, each representing a car. For manufacturer A, we have 80 marbles, each
representing a problem. The first marble is dropped and randomly falls into one
bin. The second marble follows in the same way to one bin picked at random.
After 80 marbles fall, what is the probability that a specific bin (say no. 72,
corresponding to my car) has no marbles?

Let's consider the marbles dropping one at a time. The first marble
falls. The probability it is not in bin 72 (my car) is 99/100 because there are 99
other bins. Thus, the probability bin 72 has no marbles after one drop is

0.99
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The second marble falls independently of the first -- hence the probability it lands
in bin 72 is 1/100, anywhere else 99/100. Thus, after two drops, the probability
my bin 72 has no marbles is

(0.99)2

If we continue this reasoning for 80 drops, the probability my bin 72 has no
marbles is

0.99)30
A calculator reveals this value is
0.45

Thus, there is a 45% chance that the A car I buy will have no problems at ail --
almost half the buyers experience no problems.

The procedure is exactly the same for finding the probability when I
purchase a B or C car. For a B car, 120 marbles must drop. The probability my
bin 72 has no marbles after 120 independent drops is

(0.99)120 which is 0.30

Similarly, a C car has 360 problems, so the probability my C car has no
problems in six months is

(0.99)360 which is 0.027
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Now if I am primarily interested in buying a car with no problems, I
can compare the A, B, C possibilities. My three probabilities are

45% 30% 2.7%

Clearly, buying car C, I am almost sure to have a problem in the first six
months. Whether there is a significant preference between A and B is not as
clear, particularly if A is more expensive to purchase and/or to maintain.

Is the model valid?

For study of what happens if I buy an A car, I have used a model: 80
marbles dropping randomly into 100 bins to simulate allocation of the 80
problems among 100 cars. Is this model appropriate?

Intuitively I suspect that there is a reasonable upper limit on the
number of problems with any one car. When I buy a car, I may have one, two,
three, etc. problems, but it is very unlikely that I will have six. Does the model
give a very low probability for six problems with my car?

To solve this, let's look at the A car and find the probability the first six marbles
end up in bin 72, none of the others ends up there

1.6 99 174
() G
To end up with six marbles in my bin 72, however, the first can be any of 80,
the next any of the remaining 79, and so forth. Thus, there are
80x79x78x77x76x75
different ways we can pick the sequence of six marbles to fall into bin 72. But
all marbles are the same, so the order is inconsequential. Of all these
combinations in the last number, 6 x 5 x 4 x 3 x 2 x 1 simply represent the

reordering of the six ending up in bin 72.

We now can calculate the probability six marbles end up in my bin

16 99474 (80x79x78x71x76x75
() (o)~ (BFLALXEIR)

A calculator reveals this product is about 0.0002

Thus, about one car in 5000 will have six problems. This is a very
small probability which seems reasonable. Perhaps the model is O.K. (If you
have studied probability, you will recognize that we are simply using the
binomial distribution.)
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SAMPLING EXAMPLE

I have two similar, opaque bags. Into one I place 14 red and 6 white
poker chips -- we call this the red bag. Into the second bag I place 14 white and
6 red chips -- this is the white bag.

I ask you to take the two bags outside the room, leave one there, and
return the other to me. Do I now hold the red or white bag?

I draw one chip from the bag, look at the color, then return this chip
and shake the bag. I repeat this sampling and replacement until I have ten
samples.

Suppose seven of those samples are red and three are white. What is
the probability that this is the red bag?

The most popular guess is 0.7, probably because 70% of the samples I
drew were red. A few people insist the probability is 1/2 (the same as when you
brought one bag into the room).

The correct answer is 0.97 or almost one. We can state that this is the
red bag with a high degree of confidence. Ten samples are enough. This
surprising result illustrates the same principles validating political polling:
when the samples are randomly chosen, very few samples are needed to obtain an
accurate picture.

Proof

The probability of drawing 7 red, 3 white in the sequence RRRRRR
R W W W from the red bag is

0.7)7 (0.3)3
There are

10x9x 8

1x2x3 or 120

ways to arrange three white chips in 10 places -- hence, 120 different ways we
can draw seven red and three white. Thus, the probability of drawing seven red
and three white from the red bag is

120 (0.7)7 (0.3)3

27



The probability of drawing seven red and three white from the white bag
is, similarly,

120 (0.3)7 (0.7)3

Thus, the probability the bag is red is

120 0.7) (0.3)°
120 07 (037 + 120 ©.7)° (©.3)

Algebraically, we can rewrite this as

—1?)—:;—4— or 097
1+ (-6?7
Indeed, we can set up the table:
Number of red chips in 10 samples Probability bag is red

5 0.5

6 0.84

7 0.97

8 0.994

9 0.999
10 0.9998

Sensitivity

The system is quite sensitive to the parameters. For example, if we
change the number of red chips in the red bag from 14 to 15 (and the white bag
correspondingly), the probability the bag is red if we draw six red chips changes
from

084 to 09

The topic of sampling to find probabilities in decision analysis is
discussed in highly understandable and captivating terms in the book, Howard
Raiffa, Decision Analysis, Addison-Wesley, Reading, Ma, 1968.
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ADDITIONAL PROBLEMS ON PROBABILITY

Problem 1 The game of Keno is very popular in Las Vegas casinos and
commonly goes on continuously so that customers can gamble while they leave
the roulette table to eat. As you sit at lunch, a runner comes by to accept your
money and a Keno card you have marked. Each card lists numbers from 1
through 80; you can pick one or several numbers. Then, just as in a lottery, the
casino selects randomly 20 numbers. There is an enormous variety of possible
bets (you might pick 9 numbers, then be paid a given amount if six are among
the 20 chosen). Two simpler bets are

(1) "Mark 1 number.” You choose one number, are paid $3 if
it is among the 20 randomly selected for this game.

(2) "Mark 2 numbers.” You choose two numbers, are paid
$12 if both are among the 20.

In each case, what is the expected payoff? Which of the two bets is
better from your standpoint? How do your chances compare with roulette, where
the expected return to the bettors may be 94 cents per dollar, or with blackjack,
where in some casinos the expert bettor actually has a slight edge on the casino?

Problem 2 The following shows one page from a 1939 novel. The
astonishing characteristic of this book is that it contains no E, normally the
most common letter in written English.

The relative frequency of the 26 letters used in English is given by the
table below. In 1000 letters, we expect to find each letter the following number
of times:

E 132 R 68 L 34 G 20 vV o9
T 104 I 63 F 29 Y 20 K 4
A 82 S 61 C 27 P 20 X1
O 80 H 53 M 25 W 19 J 1
N 71 D 38 U 24 B 14 Q1

Z 1
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XXIX

Gadsby was walking back from a visit down in
Branton Hills' manufacturing district on a Saturday night. A
busy day's traffic had had its noisy run; and with not many
folks in sight, His Honor got along without having to stop to
grasp a hand, or talk; for a Mayor out of City Hall is a shining
mark for any politician. And so, coming to Broadway, a
booming bass drum and sounds of singing, told of a small
Salvation Army unit carrying on amidst Broadway's night
shopping crowds. Gadsby, walking toward that group, saw a
young girl, back towards him, just finishing a long, soulful
oration, saying: --

" ... and I can say this to you, for I know what I am
talking about; for I was brought up in a pool of liquor!!"

As that army group was starting to march on, with
this girl turning towards Gadsby, his Honor had to gasp,
astonishingly: --

"Why! Mary Antor!!"
"Oh! If it isn't Mayor Gadsby! I don't run across you

much, now-a-days. How is Lady Gadsby holding up during
this awful war?"

(@  Show that the probability of one page with 780 letters having no
E is approximately 1/1048 -~ that is 1/10 . . . with 48 zeros in the denominator.
This number is so near zero that we would be dumbfounded to find such a page
(unless, of course, there has been an author with such a goal).

(b) Using the letter frequencies given above, determine the
percentage of time a typist uses the left hand (if we consider only the 26 letters).
The QWERTY keyboard common on typewriters is very mismatched to the
capabilities of the human being. The keyboard was designed this way in the last
century to avoid successive letters catching or interfering (in those machines,
each letter moved up to hit a carbon ribbon over the paper and thereby make a
mark on the paper).

Problem 3 Death rates are measured in deaths per thousand people per year
in the population. Some typical figures for various parts of the United States
are
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District of Columbia 13.9 New York 10.1
Florida 11.5 Mississippi 9.3
Maine 10.2 California 7.7

(@  What conclusions can be drawn from these data? What additional
information would be desired before statements could be made about the relative
attractiveness of these areas if one is interested in minimizing the risk of death?

() The gravediggers of New York City (population about 7.5
million) go on strike for three weeks, and bodies accumulate in undertaking
establishments. Estimate the number of corpses awaiting interment at the end of
the strike.

Problem 4 A couple of years ago, one California legislator gave a speech in
which he argued essentially as follows. "95% of the serious auto accidents in
this state last year involved only 2% of the drivers. Let's take away the licenses
of this small minority, and we'll cut the accident rate dramatically." What is
wrong with this policy?

Problem 5 In New York State, with almost 18 M people, there are 280,000
home break-ins or robberies per year.

(@  What is the probability my home will be broken into in the next
year?

(b)  What factors might change thus probability significantly?

() Ilive in a development of 100 homes. If we are average N. Y.
residents, how many home robberies can we expect in 20 years?

(d How many years will pass before the total probability of my
house being robbed is 50%?

(¢)  Paris is the worst city in the developed world for home break-ins
with 27/1000 each year. Los Angeles is second with 26. New York City has
24, Tokyo 5, and the U. 8. 15. What factors might cause this wide range?

Problem 6 You are car-pooling to Stony Brook. One morning, one of your
friends bets $10 against your $5 that in the next 20 license plates you see, there
will be at least one in which the last two digits are the same. Are you making a
good bet? (Actually, your friend should offer $36 to your $5 to have an even
bet.)

Problem 7 Zipf's law. "Ulysses," the remarkable novel by James
Joyce, contains 260,430 words including 29,899 different words -- an
astonishing indication of Joyce's working vocabulary (a bright college graduate
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may use 12,000 words). An interesting feature of the novel is that the 20 most
common words appear the following number of times:

the 14877 in 4884 with 2506 you 1894
of 7786 he 4001 it 2350 her 1775
and 7170 his 3326 was 2125 him 1460
a 6396 that 3082 on 2095 is 1346
to 4907 I 2653 for 1972 all 1311

First, it is startling that anyone would spend the hundreds of hours needed to find
such detailed information in the days before the computer age. Second, the
common words are all short -- we have to go to #41 to find "their" of five
letters, to #92 to find "little", the first with six letters.

Beyond these two trivial observations, Zipf noticed that:

Let N be the number of times the most common words appear. Then
the second most common appears about N/2 times, the third N/3 times, and so
on -- the rth most common, about N/r times.

Surprisingly, Zipf's law works fairly well for other novels or the front page of
The New York Times. Zipf postulated that such a language structure
corresponds to writing with a minimum effort,

Zipf's law is an example of finding a probability model from one case,
then testing the validity, and finally trying to explain why the law holds. After
the law was presented, others tried to apply it to different areas -- e.g., the
population of cities of the U. S. -- even though there's no reason for cities to
obey this relation (but they come close).

(@  What is the probability of the word "the" in Ulysses?"

(b)  Take the front page of any convenient newspaper and measure the
probability of "the" in that text.
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A 1790 DECISION PROBLEM

Smallpox Inoculation

As the father of a five-year old child in England in 1790, you are faced
with a difficult decision. Smallpox is a major disease, each year affecting one
out of eight people who have not had it previously, and killing one eighth of
those who contract it. The disease seems to be most threatening to children
from ages five to ten.

The government has authorized inoculation as a "preventive” measure.
In this process, a physician scrapes fluid from the pustules of someone with
smallpox. This fluid is then rubbed into an arm wound of a healthy child to
cause a hopefully mild case of smallpox. This crude immunization process,
widely practiced in Europe and America (after it originated in Greece a century
earlier), has official government approval. Should your child be inoculated and
run the risk of having a severe case of smallpox?

The decision is particularly difficult because you are just beginning to
worry less now that your child has survived to the age of five. Half of the
children die by the age of four, mostly from influenza, whooping cough, and
pneumonia. Life expectancy at birth was 28, but at age five a child could expect
to live to age 45. Just when you thought health problems were improving,
you're faced with this question of inoculation.

Anxious for a better basis for making this very personal decision, you
consult the writings of the most learned scientists of the time. During the last
40 years, there has been a major argument among some of these men about the
desirability of inoculations and the associated probability theory.

(1) Daniel Bernoulli (1700-1782) made the first mathematical study of
the risks and benefits of inoculation. Unfortunately, he had very soft data.
Previously several physicians had done small epidemiological studies, but the
cause of death was often not known. Working with the available data (one
susceptible person in eight contracts the disease each year, and of those who
contract one in eight dies), Bemnoulli calculated

Mean life of a child aged 5 41 years, 3 months

Mean life of a susceptible child aged 5 39 years, 4 months

Mean life of an inoculated child aged 5 43 years, 9 months
Benefit of inoculation 4 years, 5 months
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In these calculations, Bernoulli made two assumptions. First, he said
the susceptibility of people to smallpox is constant from age five onward.
Actually, a child is most likely to acquire the disease before age ten. Second, he
assumed one child in every 200 would die within a month from the smallpox
resulting from the inoculation.

Even if you accept Bernoulli's work, your decision is not obvious.
You have a five-year-old child. If you order him infected with smallpox, you
will probably extend the child's life expectancy by more than four years. But
there's one chance in 200 the child will die within a few weeks, and a similar
chance of serious scarring.

Bernoulli himself argued that inoculation was clearly the only
responsible decision a parent could make. After reading Bernoulli, however, you
found a later paper on the same topic.

(2 Jean le Rond d’Alembert (1717-1783) wrote a series of studies
pointing out the weaknesses of the analyses by both the pro-inoculation and
anti-inoculation groups. He invited all mathematicians except Bernoulli to
comment on his studies.

d'Alembert first pointed out the softness of the data underlying the
Bemoulli benefit calculation. The mortality from inoculation was especially
questionable. When a doctor inoculated and the patient died, the doctor frequently
argued that the patient already had smallpox or died from other causes. Usually,
people were inoculated with no attempt at follow-up (so the medical society in
Constantinople reported 10,000 inoculations and zero deaths). In one of the few
careful studies, Dr. Zabdiel Boylston in Boston reported six deaths from 244
inoculations of young children. To obtain better data, d'Alembert proposed that
criminals sentenced to death be given to doctors for experimentation.

d'Alembert also emphasized the great differences between the risk
analysis done for the state and that for the parent. The government can accept
the risk of dying from the inoculation for the sake of the greater average life
expectancy. You, however, may logically wonder whether extending life by 4.4
years 40 years hence is that important a benefit for your child compared to the
risk of dying within days.

While d'Alembert ends up favoring inoculation, he argues vehemently
that the decision should be left to the individual. d'Alembert's cautions leave
you leaning away from inoculation. Having read his criticism of Bernoulli,
however, it's only fair you read criticisms of d'Alembert, so you continue your
study.
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(3) Benis Diderot (1713-1784), a mathematician and commentator on
literature, science, art, and drama, attacked d'Alembert’s understanding of basic
probability ideas, then went on to criticize him severely for his paper on
inoculation.

Diderot argues against d'Alembert's concem for the right of the parent to
make an individual decision. He claims the state has the right to require personal
risk and sacrifice just as it does in war.

Now you really are confused. These distinguished mathematicians and
scientists seem to disagrée violently. Fortunately, you find a recent article by
Laplace, the "Newton of France."

(4) Pierre Simon Laplace (1749-1827), a professor of mathematics
who developed the calculus of probabilities, emphasized the importance of
statistical measurements. After studying the inoculation problem, he became a
warm supporter of inoculations and again calculated the expected gain in life
expectancy. Unfortunately, he made a fundamental error.

To find the increase in expected life from elimination of smallpox, he
used public health data. He considered each age group separately. For example,
for 1000 people aged 20, suppose for one year

40 die from smallpox
100 will die in all
60 die from other diseases

Laplace assumed most of the 40 above would be saved by inoculation;
he overlooked the fact that several of these would die from other diseases.

You now have all the information known and must make your decision.

Historical Epilog

In 1796, the English medical student, Edward Jenner, first vaccinated for
smallpox. He found that people gained immunity from smallpox if they were
purposely given cowpox -- a mild disease common among cows, a disease in
which there were only very localized pustules. In modern times, physicians have
used the vacinia virus (closely related to cowpox) -- hence the name vaccination.
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Jenner's excellent results were published before 1800. Fifteen years
later, vaccination was available throughout Europe, but the original inoculations
continued. In 1840, the British Parliament finally forbade inoculations.

None of the probability studies in the 18th century considered two
important effects of inoculation:

(1) The inoculation also transmitted other diseases (syphilis turned out
to be a major problem and the reason Parliament acted). The omission of this
aspect was not surprising, since physicians had a strong conviction that the
human body could have only one disease at a time. Indeed, the prestigious
Commissioners of the Paris Faculty of Medicine made the strong statement,
"germs of two different diseases rarely exist together in the same body without
one destroying the other."

(2) No mathematician considered the possible growth of the smallpox
epidemic through the inoculation program. The inoculated person infects others.
Today, our epidemic models show how faster initial spread of the disease can
result in a much more serious epidemic. It is remarkable-that this feature was
not even mentioned by the scientists -- another commentary about the extreme
difficulty of thinking in the unfamiliar terms of probabilities.

By 1971, smallpox was so rare that the U.S. stopped the routine
vaccination of children and travelers (more children were killed in auto accidents
on the way to a doctor for vaccination than were saved by the procedure). In
1979, the World Health Organization announced that smallpox was a disease of
the past -- an awesome accomplishment of technology considering that in 1800
essentially everyone caught the disease during their lifetime.

Ref. I Todhunter, "History of the Theory of Probability,” MacMillan and
Company, London, 1865.

The smallpox vaccination story is discussed at greater length in the
NLA monograph, Vaccines, by Newton Copp.
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SCREENING OF A POPULATION USING AN
IMPERFECT DIAGNOSTIC TEST

Detecting drug-users among college and professional athletes, pilots and
other airline workers, government employees, teachers, and many other groups
has become a topic of national concern. Although there are important political,
economic, and civil liberties issues involved in any mandatory testing program,
we ignore these in order to focus on one quantitative aspect of mass screening.

Let us consider a large population in which the prevalence of the
condition to be detected is one percent. Each member of this population is
subjected to a diagnostic test designed to detect the condition. For definiteness,
we can consider a urine test to detect the presence of certain drugs. (Other
possibilities are various blood tests for the detection of infections or functional
disorders, x-ray tests for the detection of abnormal growths, skin tests for the
detection of allergic reactions, efc.).

Were such diagnostic tests perfect, all would be simple. Those persons
with positive test results would be sure to have the condition, those with
negative test results would be sure not to have the condition. Such a situation
would be characterized by the following joint frequency table in which each
person in the population (assumed to be of size 10,000 for this example) is
classified in two ways: (1) has the condition (is one of the one percent or 100
persons who are drug users) or is free of the condition (is one of the 99 percent
or 9,900 persons who are not drug users), determining the rows of the table, and
(2) tests positive (urine sample judged as showing presence of drugs) or tests
negative (urine sample judged free of drugs), determining the columns of the
table.

Test Result
Test Positive | Test Negative || Row Total
State | Has Condition 100 0 100
;)\Ifat are | Free of Condition 0 9,900 9,900
Column Total 100 9,900 10,000
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Note the two cells with entries of zero, a consequence of the fact that
for a perfect test, there are neither false negatives nor false positives among those
tested. For such a test, a person receiving notification of a positive test result
has good reason to be worried: he or she is certain to have the condition.

Note also how entries in the joint frequency table are determined as
soon as one specifies the total population size. For example, if the size is 100
instead of 10,000 then the joint frequency table for a perfect diagnostic test
becomes:

Test Result
Test Positive | Test Negative || Row Total
State | Has Condition 1 0 1
of "
Nature Free of Condition 0 99 99
Column Total 1 99 100

Unfortunately, almost all diagnostic tests are imperfect. Someone who
has the condition (is a drug user) can go undetected and yield a negative test
result (urine sample incorrectly judged free of the drugs), a false negative. Also,
someone who is free of the condition (is not a drug-user) can somehow yield a
positive test result (urine sample incorrectly judged as showing the presence of
drugs), a false positive. For an imperfect diagnostic test, the false-negative and
false-positive rates are not both zero. Equivalently, the true-negative and true-
positive rates are not both 100 percent. Some technical jargon is often
introduced as a measure of the quality of a test:

The true-negative rate of a test is called its
specificity; the true-positive rate of a test is
called its sensitivity.

A highly specific test (i.e., a test with specificity near 100 percent) is
very good at screening out persons who do not have the condition. A highly
sensitive test (i.e., a test with sensitivity near 100 percent) is very good at
detecting persons who have the condition. Tests with low specificity produce a
high proportion of false positives; tests with low sensitivity produce a high
proportion of false negatives. Sensitivity and specificity of a test are
independent measures of quality -- they need not both be high or both low; either
can be high and the other low. Sensitivity applies to persons with the condition
to be detected; specificity to those without the condition.
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To continue, let us assume that the (imperfect) test we are
administering to the population has specificity 98 percent and sensitivity 90
percent. Put differently, the false-positive rate is two percent and the false-
negative rate is ten percent. Recall that we are also supposing that the
prevalence of the condition in the entire population is one percent. Now we are
able to state the problem:

You are a member of this population and the
(imperfect) diagnostic test is taken by you.
You subsequently are informed that your test
result is positive. How worried should you
be about having the condition? Put
differently but equivalently, what proportion
of all those persons in the population who
have positive test results actually have the
condition, i.e., are true positives rather than
false positives?

As we have already noted, were the test perfect you would have good
cause for worry. For in that case, all or 100 percent of those persons in the
population who have positive test results would actually have the condition.
But our test is not perfect; false positives are possible. If you happen to be one
of the false positives, you have no need to worry. (We are worrying here only
about whether we do or do not have the condition, not about what the
undesirable consequences might be of a positive test result even if it turns out to
be a false positive.)

We proceed by constructing a joint frequency table, making use of our

assumed data to determine the entries in its various cells. For ease in referring to
the cells, each is numbered.

Test Result

Test Positive | Test Negative Row Total

State | pasCondition [V 90 2) Falsi(y?yﬁve 3 100
of —
Nature | Free of Condition 4)Fa15'1=9§°smve 5 9702 9 9900

Column Total  |? 288 8 9,712 9 10,000
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Let us start with cell number 9 by assuming a population of 10,000
persons. We know that one percent of this population has the condition. Thus,
the entry in cell number 3 is one percent of 10,000 or 100. It follows
immediately that the other 9,900 persons in the population belong in cell
number 6. Since the false-positive rate is two percent, we know that of all
9,900 persons free of the condition, two percent or 198 yield false-positive tests.
Hence, 198 is the entry in cell number 4. Since the entries in cell numbers 4
and 5 must total 9,900, a subtraction produces the entry in cell number 5. We
also know the false-negative rate is 10 percent. That is, of the 100 persons with
the condition, ten percent or 10 persons yield negative tests and so appear in cell
number 2. The remaining 90 persons yield true-positive tests and so are recorded
in cell number 1. The ehtries in cells number 7 and 8 are obtained by adding to
get column totals: 90 + 198 = 288 in cell number 7 and 10 + 9,702 = 9,712 in
cell number 8. Finally, we are encouraged by checking that the entries in cell
numbers 7 and 8 do indeed, as required, sum to 10,000. This completes the joint
frequency table for our imperfect diagnostic test.

Now we turn to the problem of determining the proportion of all
positive test results that are actually true positives. There are 288 positive test
results all together (cell number 7). Of these, 90 are associated with persons
having the condition (cell number 1). Hence, the answer to our problem is the
ratio 90/288 or approximately 0.31. Somewhat fewer than one-third of all those
receiving notices of positive test results actually have the condition. About two
of every three persons receiving notices of positive test results are free of the
condition, have received false alarms, and have no need to worry at all.

Mass screening of populations, whether to detect drug use or some
disease or abnormality, is a public policy option worthy of careful analysis.
Costs and benefits need to be considered. We have presented some simple
concepts (sensitivity and specificity) that serve to measure the quality of a
diagnostic test and have illustrated how one can use joint frequency tables to
analyze some consequences of mass screening.

Finally, it is only fair to mention that we have intentionally suppressed
the mathematical foundations underpinning the use of joint frequency tables in
problems of the sort posed here. Basic probability theory, particularly Bayes'
formula, is implicit in the method. For further reading and explanation, the
following reference can be consuited:

Weinstein, Milton C. and Fineberg, Harvey V., Clinical Decision
Analysis, W. B. Saunders Co., Philadelphia, 1980, especially Chapter Four
("The Use of Diagnostic Information to Revise Probabilities™), pp. 75-130.
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Exercises

1. (From Weinstein and Fineberg, Clinical Decision Analysis, page 95.)

"Physical abuse of children by their parents is a serious public health
problem. The potential damage caused by allowing a case of child abuse to go
undetected is great, but the costs of falsely accusing a parent are also high. As
the pediatrician responsible for a school health program, should you institute a
screening program of physical examinations to detect abused children? Clearly
your response will depend to a large extent on the fraction of children with
positive test results who are actually being abused. '

"The experience of school officials indicates that a careful physical
examination will detect 95 percent of battered children (i.c., a false-negative rate
of 5 percent), with a false-positive rate of only 10 percent. The best information
suggests that 3 percent of school children in an average American city are being
abused by their parents.”

Suppose a child is examined and found positive, i.e., is diagnosed as
having been abused. How likely is it that such a child is, in fact, abused?

2. In the example worked out in the text, the prevalence of the condition
to be detected in the population was assumed to be one percent. Suppose instead
that it is an even more rare condition, say with prevalence 0.1 percent.
Assuming a diagnostic test with specificity 98 percent and sensitivity 90
percent, as in our example, construct a new joint frequency table and determine
the proportion of all those with positive test results who actually have the
condition. (Before starting your work, what do you think will be the effect of
lowering the prevalence of the condition? Should it cause those receiving notice
of the positive test results to worry less or worry more about actually having the
condition?)

3. "When AIDS Tests Are Wrong," an editorial from the September 5,

1987 issue of The New York Times, is reprinted below. In analyzing the
Army's test procedure, the editorial writer assumes among women blood donors a
prevalence of AIDS of 1 in 10,000, a test sensitivity of 100 percent (i.e., a false
negative rate of 0 percent), a false positive rate of 0.005 percent, and concludes
that a third of all positive test results will be false positives. Verify.
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When AIDS Tests Are Wrong

What should an enlightened society do about a health test that can do as
much harm as good? The blood tests now used to screen for exposure to the
AIDS virus are highly accurate. But in any widespread testing program, the tests
are likely to give as many false positives as true.

No senior policy maker in the Administration seems to understand that
paradox, or the terrible price of pressing ahead with widespread testing. For
every true case detected, as many other people may be falsely branded, exposing
them to discrimination and loss of jobs and housing.

AIDS tests haveiproved very effective so far, especially in screening
blood donations and keeping the blood supply free of virus. But when even a
highly accurate test is applied to a population at low risk for AIDS, the number
of true positives is so small that it doesn't differ much from the number of false
positives. The false positives can thus amount to a significant, even
overwhelming, share of the total number found.

AIDS testing is now done in two stages. The first test, called ELISA,
can give up to 7 percent false positives. To compensate for errors or sloppiness,
this test is usually done twice. But false positives can still occur. The blood
contains proteins that happen to mimic the antibodies to the AIDS virus or
otherwise confuse the test reagents.

A blood sample that still tests positive is then retested with the
Western blot test. The change of it giving false positive readings on both tests
is very much less. The Army, which tests thousands of recruits each year with
carefully standardized equipment, has probably lowered the joint false positive
rate to 0.005 percent, or 1 in 20,000. By the standards of most medical tests,
that’s a fine achievement. For screening high-risk populations like gay men or
addicts, the false positives are a tiny fraction of the true positives identified by
the test.

But consider what happens when the Army’s test is applied to a
population at low risk. Assume, as is typical of women blood donors, that only
1in 10,000 carries the AIDS virus. Thus among 100,600 women, 10 have the
virus and 99,990 don’t. The Army's AIDS test procedure, assuming it is
perfectly sensitive, will pick up all 10 virus carriers. But among the 99,990
uninfected women, the 1-in-20,000 false positive rate will indicate 5 are carriers.
Thus of a total of 15 positive results, a third will be false.

These estimates, published recently in the New England Journal of
Medicine, were developed by Klemens Meyer and Stephen Pauker of the New
England Medical Center. They note that in any test procedure less accurate than
the Army’s, the ratio of false to true positives rises alarmingly. If the joint false
positive rate rises to only 1 in 1,000, 10 people will be wrongly identified as
AIDS carriers for every one true infection found.
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These figures must give serious pause to people who advocate AIDS
testing among low-risk populations, like marriage license applicants or hospital
patients in low-risk areas. Such a policy puts government in the position of
urging or compelling citizens to be tested, when wrongly informing many who
test positive that they are infected. The certain harm thus done outweighs the
uncertain benefit of identifying a few more AIDS carriers.

No honorable government can bear such a moral burden. If low-risk
populations must be tested, the false positive rate must be pushed far lower.

Until that occurs, the Administration needs to quench its ambitions for wider
AIDS testing.

Copyright © 1987 by Thé New York Times Co. Reprinted by permission.
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Professors Andrew Zanella and Newton Copp (Claremont McKenna
College) have developed two contrasting case studies -- the following on
pertussis vaccine and one on the biological effects of ionizing radiation. Both of
these technologies provide benefits in our society but not without also imposing
some risks; yet a common perception is that nuclear power is "bad” and vaccines
are "good". As others have reported, the acceptability of a risk depends upon
whether the technology is perceived to be a necessity or a luxury.

PERTUSSIS VACCINE: A DECISION PROBLEM

Pertussis and Its Prevention

The bacterium Bordatella pertussis causes a severe respiratory infection
characterized by persistent violent coughing (hence the term "whooping cough™).
Complications can develop and include convulsions, brain disorders (categorized
under the general term "encephalopathy™), and retardation of development.
People are at greatest risk both of acquiring the disease and developing the worst
outcomes when they are between the ages of 1 and 5 years.

Prior to 1949, the number of cases of pertussis in the U. S. exceeded
200,000 per year with about 7,000 of these proving fatal. The first vaccine
against pertussis was produced and distributed in 1949. This vaccine is made
from entire, dead pertussis bacteria and is typically administered in five doses per
person (3 doses before the age of one year and 2 more doses by the age of five
years).

Pertussis vaccine is one of the components in "DPT" (diphtheria, pertussis,
tetanus) injections commonly required of children in the U. S. before admission
to school. Pertussis vaccine has thus been a significant component of a
nationwide vaccination program that has resulted in decreased incidence of
pertussis; the number of pertussis cases has averaged about 1,800 per year over
the last 10 years with approximately 10 fatalities each year. (See reference 3.)

Pertussis vaccine has been associated with a variety of unfortunate side
effects, although the cause-effect link between the vaccine and alleged serious
side effects remains controversial. Single doses may produce minor reactions in
recipients, such as fever and "excessive somnolence”. These minor reactions
rarely persist for more than 48 hours after administration of the dose. More
severe reactions can occur and include convulsions, "collapse”, and prolonged
high-pitched crying. As disturbing as these more severe reactions are, however,
they do not lead to permanent disabilities. The third and most serious class of
reputed reactions to pertussis vaccine includes encephalopathy leading to
permanent brain damage or death. (Reports that pertussis vaccine causes sudden
infant death syndrome (i.e., SIDS) are false. See citation in reference 2.)



Objections to Pertussis Vaccine

Public reaction to the side effects of pertussis vaccine led to sharp decreases
in public acceptance of the vaccine in England, Sweden and Japan in the late
1970's. An organization of parents (Dissatisfied Parents Together) is currently
raising questions about the application of pertussis vaccine in the U. S. and how
victims should be compensated. The increasing number of lawsuits for
compensation of pertussis vaccine-related injuries, from one in 1978 to 73 in
1984 and 219 in 1985, illustrates increasing public concern about the risks
associated with this vaccine.

Questions
1. Would you choose pertussis vaccine for your children?

2. If you were a pediatrician, would you administer pertussis
vaccine to your patients?

3. Should the state or federal government require vaccination
against pertussis for admission to school?

4. If you were the CEO of a major pharmaceutical firm that
makes vaccines, would you direct your firm's efforts to the
manufacture and distribution of a new pertussis vaccine?

Data

Most published evaluations of the risks associated with pertussis
vaccine rely on estimates of the number of side effects because of difficulties in
making accurate counts of vaccine-related injuries; the worst outcomes are rare
and the reporting of less severe effects is inconsistent. (See reference 1 for an
experimental survey of pertussis vaccine and its side effects.) The following data
have been established according to published estimates of risk (e.g., references 1,
2 and 4). These data can be used to determine risks per vaccinee that is 5 years
old or younger.

Assume
The total population of children 5 years old or younger in the U. S. is

nine million. 90% of children aged 5 years or younger have received the vaccine.
The vaccine fails to confer immunity against pertussis 10% of the time.
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[ Vaccinated
B Not Vaccinated

CASES OF PERTUSSIS IN
CHILDREN AGE 5 OR LESS

Problem: Population not vaccinated
lies mostly in people separated
from- health care system; cases
likely to be under-reported,
perhaps by factor of 10.

43737

Population 0.9 x M
or 8.1 M vaccinated

160
R Severe Complications
From Pertussin

40
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2.5

. 1.25

High-Pitch Convulsion  Temp. Chronic Death Temp. Chronic Death
Crying Enceph. Enceph. Enceph. Enceph.
VACCINE-EFFECTS DATA FOR 9 MILLION CDC REPORTS 1983

CHILDREN THROUGH AGE 5 (90% VACCINATED;
10% OF VACCINATED NOT IMMUNE)
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A Decision Tree

In order to expose steps in the reasoning process, we construct a decision
tree (page 49) from the data provided above. To decide whether to take the
vaccine, it is helpful to consider the risk per vaccinee, rather than the more
commonly reported risk per dose. This is reasonable in the case of severe
reactions because the vaccination series is usually stopped after evidence of one
severe reaction. Risks and probabilities needed for the decision tree are calculated
first.

Risk of Chronic Brain Damage from Pertussis Vaccine

A total of 67,395 serious adverse effects are expected when 90% of the
five-year old or younger cohort receives pertussis vaccine. The risk of
experiencing some adverse effect is thus

8.1 M

67,395 se.rious advefse effects 67395 or 8320 per million
8.1 M children vaccinated

Of the 67,395 cases of serious adverse effect from the vaccine, 131
result in chronic brain damage. The risk of experiencing this particular side
effect among those people who show at least one adverse reaction is thus

131 cases of chronic enceph. L3l o+ 1944 per million
67,395 total serious effects

The total risk of vaccine-associated chronic brain damage for a person at
the decision node of the tree is

or 16 per million

Total probability of this outcome 8320 1944
is product of two probabilities on path } IM X 1M

This estimate of risk would be less by approximately a factor of ten if
the incidence of chronic brain damage was assumed to be 1:510,000 vaccines (see
reference 1) rather than 1:310,000 doses (see reference 2) as assumed here.,

Risk of Chronic Brain Damage from Pertussis in Non-vaccinated
Children

In 1983, 1786 (of a total of 2463) pertussis cases occurred in people not
vaccinated for pertussis. Because 78% of the pertussis cases in that period
occurred in children five years old or younger, the actual number of cases in the
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cohort of interest was 1393 (1786 x .78). The probability that a non-vaccinated
child will contract pertussis (under 1983 conditions of vaccination) is thus

1393 cases in non-vaccinated population 1393 or e
0.1 x 9M or 0.9M children not vaccinated} 0o M O 1548 per million

Two of the children with pertussis in 1983 developed chronic brain
damage. Without trying to decide whether these cases involved vaccinated or
non-vaccinated children, the risk of chronic brain damage from pertussis becomes

2 children had chronic enceph. 1_92?3. or 1041 per million
1921 cases of pertussis in children

The total risk of chronic brain damage from pertussis in non-vaccinated
children thus becomes

[y

54
1

R

x 1 1m'Zpermillion

<
=

Total probability of the outcome
is product of two probabilities on path }

Discussion

Inspection of the completed decision tree leads to a very interesting
discussion. Regardless of a person's decision, the risk of chronic brain damage is
low. The risk of brain damage, however, seems to be 8 times greater for people
who elect the vaccine than for people who do not elect the vaccine. This leads
some students to recommend avoidance of the vaccine. Other students look at
the maximum penalty, death, and see that the risk of death is lower for people
who take the vaccine. Which strategy is better?

This question also leads to discussion of what is meant by one strategy
being "better” than another. Then there is the question of the estimates on
which the risk calculations are based. Published estimates of vaccine-caused
chronic brain damage differ by at least a factor of ten. The more pessimistic
estimate has been used here. Changing to a more optimistic estimate changes
the risk factor and the students' decisions.

A second issue concerns the effect on risk estimates of assuming 90%

compliance with the vaccine program. In inner city areas, compliance has been
estimated to be as low as 35%. How does this change the risk calculations?
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DECISION QUTCOMES PROBABILITIES
5108
6
0.07/10
1041/106
Death 0310°
4154/108
Yes Cryin 5399/10°
648965/108
[
Conwsions 2857/10
343393/108
8
Tem Ei 45/10
8320/108 54807106
Chronic Enceph. 16/10°
1944/108
]
Death 2/10
237/106
120/10°
R 8
Pertussis 210
1548/108
71108
NoPerussis __998279/10°

For the sake of simpilicity, only severe outcomes of pertussis and vaccination
are shown. A complete decision tree would inciude all possible outcomes.
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Other sources of uncertainty exist. Officials at the CDC estimate, for
example, that the number of pertussis cases reported to them may be only 10-
15% of the actual figure because of a lack of uniform diagnostic procedures for
pertussis and inconsistent reporting of pertussis to the CDC by physicians. The
number of adverse reactions to the vaccine is also difficult to estimate both
because of a delay between receiving a vaccine dose and the onset of the effect
and because a symptom reputed to be caused by the vaccine may have been the
result of a condition in existence prior to vaccination; publicity of the risks of
pertussis vaccine has undoubtedly increased attribution of symptoms to the
vaccine.
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NON-ZERO SUM SITUATIONS

We frequently encounter problems with two characteristics:

(I) Non-zero sum. In a two-party competition, what one
person gains may not equal the losses for the other.
Indeed, in many cases, both parties may gain from a
strategy change.

(2) Counter-intuitive. The best solution leads to results
opposite to our intuitive expectation.

Both these features often arise in systems controlled by government policy; then
it is obviously important to do enough modeling and system analysis to be able
to anticipate such characteristics. Many engineers believe that Jay Forrester's
principal contribution in the 1960's was to point out these important features
through detailed computer models of a business, an urban region, and the global
system.

An example illustrates a way to introduce these ideas within an
introductory course in modeling and problem-solving.

aN

e CREAM

Problem of Ice-Cream Vendors

Each of two men has an ice cream wagon which he brings each
morning to a mile-long beach. During the day, customers or sun-bathers are
distributed uniformly along the beach. When a vacationer wants ice cream, he
goes to the nearest vendor, since there is no real difference between the two.
Because the desire for ice cream varies widely, the percentage of people buying
ice cream falls off as the distance from the nearest vendor increases.

When the first vendor arrives in the mormning, where should he locate?
‘Where should the second man then settle with his wagon? We assume that there
is no cooperation between the two: each man doesn't trust the other, and each
acts solely to maximize his own sales.

A little thought shows that the two vendors should locate next to one
another exactly in the middle of the beach (Fig. 1). If A, the first to arrive,
makes any other choice, B will then settle just on the side of A toward the
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longer expanse of beach (Fig. 2). If A picks the middle and B locates anywhere
but beside him, A will be serving more than half the customers (Fig. 3).

Waler /N N M\ N e —

B|lA
————— 1 mile ————

Beach

Fig. 1 Optimum location of ice cream wagons A and B in a
strictly competitive situation.

Water /NN N\ —e
Bl A

44— lnie —— P
Beach

Fig. 2 Final location if A selects any point other than the
center, B then optimizes.

Water /N NS M —e
B A

4————— | mile —— —Pp
Beach

Fig. 3 Final location if A chooses the middle and B makes a
non-optimum choice.
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The game or problem leads to a ridiculous solution, and certainly one
which does not give the best possible service to the customers or profit to the
two competitors. From the standpoint of both parties, the optimum solution is
shown in Fig. 4. Each vendor is in the middle of "his" half of the beach. The
customers have shorter distances for ice cream on the average, yet each vendor
serves half the people.

Water /™ NN e
B A

4———— 1 mile ————oo—Pp
Beach

Fig. 4 Solution best for the customers and the competitors.

Why is the solution of Fig. 4 so difficult to achieve in a competitive
situation? It requires honest cooperation between the two competing forces -- a
cooperation which has to be based on mutual trust. When A arrives in the
morning, he takes his possibly bad position in confidence that B will not try to
take advantage of his trust. During the day, both resist the temptation to move
gradually toward the center of the beach. This is a non-zero-sum situation: both
benefit by disdaining what looks like an advantageous possibility.

Other Examples

This rather trivial example has counterparts in the real world. One of
the most obvious is the fierce competition among airlines for passengers on the
lucrative New York-Los Angeles trip. In an attempt to attract a large fraction of
the customers by having flights at convenient times, each airline runs more
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flights than necessary (on the average, less than half the seats are filled) and the
three schedules tend to be startlingly similar -- with three flights taking off
almost concurrently, then a gap of several hours before the next three.

Part of the problem here has been the federal anti-trust laws and the
concept that the public is best protected by complete competition among firms.
It is only in the past few years that the government has allowed the three airlines
to talk together in an attempt to agree on schedules which would improve both
service and profits.

In a broader sense, non-zero-sum decisions dominate our society, as G.
Hardin has pointed out in his classic article on the tragedy of the commons.*
An extreme example illustrates the point. There are two men, each pays $10 per
month for rubbish collection from his home. From a selfish standpoint, each
would benefit if he simply threw the day's rubbish out the car window while
driving to work in the morning. The damage to the environment would be
negligible, each man would save $10 monthly, and the quality of life in the area
would not deteriorate in any real way if just the two of them followed this
practice.

The problem is obvious. If everyone, or even a significant fraction of
the populace, acts in this same selfish way, we all will shortly be surrounded by
rubbish. In order to find a social optimum -- a decision or strategy which results
in the best total picture -- we each must make decisions which are far from
optimum for ourselves.

As we consider different socio-technological problems, we find again
and again this non-zero-sum characteristic. The total system only works if the
individual is willing or can be forced to relegate personal benefit to a secondary
position compared to the total, social welfare. Just as in the ice-cream-vendor
problem, success depends on individual trust and confidence in others. Whether
the concern is obeying traffic regulations or conserving energy, we must design
total systems in which the individual is willing to make decisions which are
obviously not the best for him/her personally.

*The term was used because he illustrated the concept with the example of a
community with a limited grazing acreage (a commons) and each man unwilling
to limit his small use of that commons for his cattle. (Garrett Hardin, "The
Tragedy of the Commons”, Science, Dec. 13, 1968, pg. 1243-1248.)

54



DECISION PROBLEMS WITHOUT ANSWERS

There is a betting game which is so contrary to human intuition that
anyone familiar with the game is almost guaranteed large, quick winnings.

The game

If T flip a coin three successive times, there are eight possible
outcomes: heads, heads, heads; heads, tails, heads; etc.

HHH HITH THH TIH HHT HIT THT TIT

They are all equally likely, so each has a probability of 1 in 8 or 1/8. If we
carry out the three flips 8000 times and carefully record what happens, we will
find HHH appears about 1000 times, TTH about 1000 times, and so on.

To play our game, you and I will each select a triplet, then flip a coin
until one of the triplets appears. If my triplet appears first, I win. For example,
if you select HTH, I might pick HHT. We would then start flipping and
recording the results; as soon as either your HTH or my HHT appears, we have a
winner and the game is over. As we flip, we might (as an example) obtain the
sequence

H T T T T|H T H

Then we stop; you have won (the last three are your HTH).

I'll let you select your triplet first, since I thought up this game. The
astonishing feature is that I can always play with at least 2:1 odds in my favor if
I use the following strategy:

If you select a triplet, xx-  (thatis, the first two the same)
@

L I pick yxx  (the last two the same as your first
two, the first different)

If you select a triplet, Xy- (the first two different)
®

1 pick xxy (the last two the same as your first
two, my first the same as my
second)

Thus, if you choose HTH, we are in Case (b) above -- your first two are
different. Then I select HHT, and I will win 2/3 of the time.
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You become suspicious and pick HHT: then I simply choose THH and
now win 3/4 of the time. You then select THH, I pick TTH and win 2/3 of the
time. No matter what you choose, I can win with overwhelming odds (2:1 or
higher odds are very unusual in gambling, where casinos operate with an edge of
only a few percent.)

After a while you want me to pick first. Then we can alternate the first
choice; if you don't know the strategy, I'll win half the time when I choose first,
2/3 or more of the time when you choose first -- still fantastic odds for me.

Non-Transitive feature

The remarkable feature of this game is the non-transitive characteristic:
in simple terms, no matter what you select, I can then pick something better.

If we use the symbol
A->B

to mean A loses to B (that is, if you pick A, I should pick B), we can show this
non-transitive feature by the following diagram

HHH

2 €

/‘\

THT = TTH HHT (— HTH

NS

395

No matter which triplet you select, there is an arrow leading away toward the
triplet I should pick.

Investment example

I have $50,000 to invest; I will need the money in five years, when I
plan to buy a house. There are three different ways I can invest: real estate,
stocks, or certificates of deposit.
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Unfortunately, economists are unable to tell me what is going to
happen to the economy over the next few years. They do estimate that, if I
invest in real estate, there are roughly three possibilities:

I may earn $40,000 if prices continue to rise.
I may earn O -- just receive my money back.
I may lose $10,000 if prices have peaked.

Furthermore, they tell me that the best guess is that these three possibilities are
equally probable: each has a probability of 1/3.

The economists analyze the other kinds of investments in the same
way, and I have the following table from which I have to make a decision:

Real estate Stocks Certificates
40,000 30,000 15,000 In each column,
0 20,000 10,000 probability of each
-10,000 -20,000 5,000 outcome is 1/3

Notice that this is the best information I have on which to base a decision. 1
ask: if these data are correct, what is the best decision?

Best expected earnings

I might decide to invest to receive the largest possible, expected
earnings. This term, expected value, has a precise meaning. If I buy stocks,

- there is one chance in three of earning 30,000
- one chance in three of earning 20,000
- one chance in three of losing 20,000

Hence, with stocks I can expect (on the average, 1 will receive)

-:};- (30,000) + % (20,000) + .é_ (-20,000)

or $10,000. Notice I will never earn $10,000 (I earn 30,000 or 20,000, or lose
20,000), but, considering all possible outcomes, my expected return is $10,000.
(The average here is calculated as described on page 4.)

When I find the expected earnings for each option (real estate, stocks,

and certificates), the answer is always the same: $10,000. Consequently, there
is no way to choose one on the basis of how much I can expect to earn.
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Best future satisfaction

Since I can't choose on the basis of expected earnings, let me try a
different approach. Five years from now when I cash in my investment, I will
know which of the three possibilities for real estate (for example) has actually
happened. If I bad bought real estate and stocks have done better over the five
years, I will be very unhappy. I will choose today that investment which five
years from now is most likely to have been the best choice.

To decide how to do this, I first simplify the problem: I compare real
estate to stocks. (Later I'll compare the winner to certificates.) Three different
things may happen to real estate in five years (+40,000; 0; -10,000). Each of
these may be accompanied by each of the three things that might happen to
stocks (+30,000; +20,000; -20,000). Hence, five years from now, there are nine
different, possible comparisons which I will be making -- each equally likely:

Real estate | 40 40 401 06 0 |0 -10 -10 |-10
Stocks 30 20 201 30 20 |-20 30 20 |-20

In five of the nine situations (those boxed), real estate will have been a
better investment than stocks. Clearly, real estate is in this sense better than
stocks: with a fairly high probability of 5/9, I will be happy five years from
now that I bought real estate. So I eliminate stocks as an option.

Now I compare real estate to certificates:

Certificates 15 |15 15 10 |10 10 5
Real estate 40 0 -10] 401 0O -101 40

5
-10

(== 2V |

Six of nine pairs of outcomes favor certificates. Obviously, I should invest in
certificates.

Certificates beat real estate which beats stocks.

Clearly, certificates are better than stocks -- I wonder how much. So
again, I make a comparison of just those two:

Stocks 30 30 30 20 20 20| -20 -20 -20
Certificates | 15 10 5 15 10 51 15 10 5
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Alas! Stocks are much better than certificates.

Comments

The above problem is a system which is given the name "non-
transitive.” A is better than B, B is better than C, but C is better than A. This
kind of situation boggles the mind.

‘We are comfortable saying:

Jack is heavier than Bill.
Pete is heavier than Jack.
Therefore, Pete is certainly heavier than Bill.

This is a transitive (and logical) situation. But to say

A is better than B is better than C is better than A goes against
human intuition.

Both of the examples above (game and investment) are probabilistic:
the future can not be predicted; we can only assign probabilities to each of the
possible outcomes. The possibility of non-transitive behavior deeply troubles
the political analyst, who recognizes that the future can only be described in
terms of probabilities, but who argues that quantitative analysis can help guide
better decision-making. Many of the decisions faced by political leaders (or by
individuals) are described by non-transitive systems -- so that, no matter what
decision is made, we could have done better.

This same kind of curious, non-transitive behavior was first noticed in
the 18th century by the Marquis de Condorcet, who observed that, if there are
three political candidates (A, B, C), voters may prefer B to A, C to B, but A to
C -- the "paradox of voting."

We find non-transitive, decision problems in games, system analysis,
political science, sociology, and economics.

Optional Postscript
In the above discussion we have simply stated (and not proven) the

probabilities of various outcomes. For example, in the coin-triplet game, we
stated that TTH would win over THT two thirds of the time.
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There are two ways we might prove this statement. First, we can
simply play the game many times (probably on a computer to save time). In
3000 games, we will find that TTH wins about 2000 times.

We can also prove the statement mathematically. We first draw a
diagram to show the various ways to reach both TTH and THT. From the start,
we may flip a tail (moving us to T with a probability of 1/2; D means we have
gone through one flip). We might also flip a head, which returns us to the start
since we have not made progress toward either TTH or THT.

12D

Start 12D T

If we are at T, the next flip can give us either TH or TT for the last two
flips:

12D 12D

Start 12D

-

12D



Following this same line of reasoning, we complete the diagram:

- —0
12D 122D THT
12D 12D
Start 12 D T
12D
T
0
12D THH
12D

This diagram describes the game; when we begin at the start node, we eventually
end up at either THT or TTH.

‘What are the relative chances of reaching THT or TTH. In both cases,
we must reach the T node. Once we are at T, there is a probability of 1/2 of
moving to TT. If we reach TT, however, we inevitably reach TTH eventually.
Hence, from T there is a probability of 1/2 of reaching TTH.

From T, however, we have only a probability of 1/4 of reaching THT
(1/4 of the time we will end up back at the start with two heads in a row).
Thus, from T

P of reaching TTH is 1/2
P of reaching THT is 1/4

Two thirds of the time, TTH wins; one third of the time, THT.
Similarly, we can prove the odds stated earlier for all pairs of choices in
the triplet game.

(Walter Penney, "Penney-Ante," Journal of Recreational Mathematics, 1969, p.
241.)
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SIMPSON'S PARADOX

Drug Testing

There are two drugs (called A and B) to be evaluated, and the Food and

Drug Administration (FDA) asks Harvard and Stanford medical Schools to carry
out the tests. Harvard reports the results

Number of people tested Number helped % helped

Drug A 200 50 25%
Drug B 10 5 50%

So Harvard reports to the FDA that drug B is twice as effective as drug A.
At Stanford there are also 210 patients available, with the following
results
Number of people tested Number helped % helped

Drug A 10 1 10%

Drug B 200 40 20%
So Stanford likewise reports that drug B is twice as effective as drug A. The
FDA then lists drug B as recommended, drug A as not recommended.

A staff member at FDA is preparing a presentation to a Congressional
Committee to explain why Drug B is recommended. To simplify the report,
he/she combines the results from the two schools. To his/her dismay, he/she
comes out with

Number of people tested Number helped

Drug A 210 51

Drug B 210 45

and notices that the not-recommended drug A is obviously better!

62



SIMPSON'S PARADOX

The Death Penalty

In 1978, Warren McClesky, a black man, was convicted of killing a white
police officer and was sentenced to death in Georgia. In an appeal before the U. S.
Supreme Court, lawyers for McClesky argued that the imposition of the death
penalty in Georgia was racially biased. They presented statistical models showing
that defendants accused of murdering whites in Georgia were four times more likely
to be sentenced to death than were defendants accused of murdering blacks and
argued that race-of-the-victim discrimination played a key role in the decision to
sentence McClesky to death.

The Supreme Court, in a 5-4 decision, allowed McClesky's sentence to
stand. A full discussion of the legal and statistical issues involved in the case
would require hundreds of pages of text. Indeed, many of these issues are the
subject of continuing debate. For a more detailed summary, references are available
from the author. The purpose of this article is to examine the major statistical
issue of the case and to consider a widespread phenomenon known as Simpson's
paradox.

There is a pattern in the Georgia data that can be found in the death
penalty data from several states. I will focus on data from Florida that make the
point clearly. These data, taken from a Stanford Law Review article by Samuel
Gross and Robert Mauro (Gross and Mauro, 1984), cover homicides in Florida
during 1976-1980 in which the victim did not know the suspect. There were 724
such cases in which the suspect was either white or black and the victim was either
white or black (cases involving other racial groups are excluded from this analysis).
Of these cases, 71 (9.8%) resulted in the suspect being sentenced to death. Table 1
provides a breakdown by race of the suspect.

Table 1
Death Sentence?
Yes No Total % Yes
Race of Suspect White 39 308 347 11.2%
Black 32 345 377 8.5%
Total 71 653 724 9.8%
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Note that white suspects are more likely to be sentenced to death (11.2%) than are
black suspects (8.5%).

The racial factor that has the greater effect on the disposition of these
cases is not the suspect's race, but the victim's race. Consider a breakdown of the
cases in Table 1 into two parts: cases involving white victims and cases involving
black victims. Of the 724 cases in Table 1, 468 involve white victims. In 318 of
these cases the suspect was white, while in 150 cases the suspect was black. Black
suspects were more likely to be sentenced to death than were white suspects when
the victim was white -- see Table 2.

Table 2: White Victims

Death Sentence?
Yes No Total % Yes
Race of Suspect White 39 279 318 12.3%
Black 29 121 150 19.3%
Total 68 400 468 14.5%

Now consider the 256 cases involving black victims. These are
summarized in Table 3. Black suspects were more likely to be sentenced to death
than were white suspects when the victim was black.

Table 3: Black Victims

Death Sentence?
Yes No Total % Yes
Race of Suspect ‘White 0 29 29 0.0%
Black 3 224 227 1.3%
Total 3 253 256 12%



Comparing these three tables we see an example of Simpson's paradox:
blacks are more likely (than whites) to be sentenced to death when the victim is
white and blacks are more likely to be sentenced to death when the victim is black.
These are the only two settings present and, thus, we might think that blacks
would be more likely to be sentenced to death overall (combining the two
settings). However, this is not so. Table 1 shows that blacks are less likely to be
sentenced to death in the aggregate. (Note that combining the numbers in Tables 2
and 3 yields Table 1 -- no cases have been added or deleted.)

Compare the "% Yes" values in the tables. In Tables 2 and 3, the
percentage is higher for black suspects than for white suspects, but this inequality
is reversed when the data are combined into Table 1! How can this be?

The two "% Yes" values for black suspects are 19.3% and 1.3%, which
are greater than the "% Yes" values for white suspects of 12.3% and 0%. If we
took simple averages, the aggregate percentage for blacks would exceed that for
whites. But we do not take simple averages. Most of the black suspects were
accused of killing blacks, while the overwhelming majority of white suspects were
accused of killing whites. Moreover, the death penalty was imposed far more often
when the victim was white than when the victim was black. These two factors --
(1) whites tend to murder whites while blacks tend to murder blacks and (2) cases
with white victims are more likely to result in a death sentence than are cases with
black victims -- combine to produce Simpson's paradox. We would say that white
suspects are more likely to be sentenced to death than are black suspects if we
ignore victim’s race, but blacks are more likely to be sentenced to death if we
control for victim's race.

ACT Scores

Average ACT composite scores went down between 1987 and 1988
among students who completed a core curriculum (at least four years of English
and at least three years each of mathematics, natural sciences, and social sciences)
and among students who did not complete a core curriculum, but the overall
average went up -- see Table 4.

Table 4: ACT Composite Averages

1987 1988 Change

Completed Core Curriculum Yes  21.2 21.1 -0.1
No 17.3 171 -0.2

All 18.7 18.8 +0.1
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Income Tax

Likewise, it is possible to reduce the income tax rate in every tax bracket
while increasing total income tax revenues. As inflation pushes more and more
persons into the higher tax brackets, revenues go up even as tax rates go down.
(Congress has already figured out how this works.)

Jeff Witmer

Associate Professor of Mathematics
Oberlin College

Oberlin, OH 44074
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DECISION TREE FOR ERICSSON METHOD

While many people love to gamble, they also grasp at any opportunity
to change the odds in their favor. Thus, it is not surprising that many married
couples are ready to spend money in an attempt to change the odds on the sex of
a planned child.

A variety of methods have been advertised to increase your chances of
having a boy or a girl. Some of these methods merely try to influence the time
of conception during the period the woman is fertile (one method is based on late
conception favoring a boy, another on early conception -- so there isn't even
agreement on this factor). Other methods place the father's sperm in a centrifuge
to separate them by weight. None of these methods is generally accepted as
scientifically and medically sound.

One of the methods most widely advertised has been the Ericsson
method (based on centrifuging the sperm), which a few years ago claimed to
promise 80% success if the parents want a boy, but admitted no influence on the
probabilities if the parents want a girl. Consequently, the procedure is used only
if the couple desires a boy.

Suppose that the Ericsson method did work as advertised (or that in the
near future we find a method with these results). Let us look at a group of fertile
couples, each of which plans to have precisely two children. These couples
conform to our cultural preferences and are especially anxious to have at least
one boy, although they would like one child of each sex. (Many couples want
the first child to be a boy, since they think the oldest child often has a higher IQ
and a better chance for career success.) Our couple learns about the Ericsson
method and also that it is only 80% effective in realizing a boy when that is
desired. So to increase the odds that at least one child will be a boy, they decide
to use the Ericsson procedure on the first child. Is this a sensible decision?

Decision Tree

In order to answer this question, we decide to construct a decision tree in
the following steps:

(1) The first decision the couple must make is whether to use the

Ericsson Method for the first child. To indicate a decision is required, we draw a
square box, with the departing arrows labelled to show the options.
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Use

No use

Fig. 1 Initial Decision.

(2) At each of the circles in Fig. 1, we know the resulting
probabilities for a girl and a boy as the first child (that is, Gy or By). If the
Ericsson Method is used, the probability of B is 8/10.

Fig. 2 Results of initial decision with probabilities shown.

(3) Now we turn to the second decision. If we are at By, we certainly
do not use the Ericsson Method. In this case, the decision is obvious (we show
the square decision box filled in). When we add the second decision, the tree now
has the form:
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By No use

Bq No use
Fig. 3 Both decisions are in the tree.

(4) Next we show all the possible outcomes. There are four possible
outcomes: Bi Bj (two boys), B; Ga, G B, and G; Gy. The tree in Fig. 4
seems to indicate seven outcomes, but three identical pairs occur. The tree
diagram is less messy and easier to interpret if we avoid lines crossing one
another.

B1 No use 12 By B2

— o
12 BiG2

0Gy B2
060Gy G2

Bq No use 1R

Fig.4 Outcomes are included.

(5) Finally we have to pick values for each of the four possible
outcomes. Usually in decision analysis, we pick
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100 for the most favorable outcome (here By Go)
0  for the least favorable outcome (G Gp)

The value of zero does not mean that two girls are of no value to the couple, but
only that this is the least desirable outcome.

The choices of values for By B2 and G; B3 is difficult and commonly
subjective. In Fig. 5, we show the values 50 and 60, respectively, but any
particular couple might select very different numbers.

100
50

Fig. 5 Decision tree complete with values included.

Solution or optimization

With the decision tree now complete, we can find the optimum first and
second decisions. We look first at the second decision (we often work
optimization problems back-to-front -- from the last decision steadily back
toward the first),
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60

60

Fig. 6

The no-use option gives a value

(0) +% (60) - 30

o=

The Use option gives a value

2 60+
& 60 +2 (0) - 48

So we clearly should decide on Use, and if we do this, the

48 8/10

o G{ B2 60

GGy 0

Fig. 7
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value of the G1 node is 48.

Then we can work back to the first decision. The value of the B; node
is

1
-;— (50) + = (100) = 75

Thus, the value of the Use option in the first decision is

£ 75 + L (48). 696

The value of the No Use option in the first decision is

148y, L. (75) = 615
2( )+2()

and our best strategy is:

Use EM for first Child
If By, do not use EM for second
If G, use EM for second

To complete the study, we now need to investigate how the:

(1)  Optimum strategy changes if our values in (5) change

(2) Optimum strategy changes if the probabilities with the EM
change (what if the advertising literature is wrong)

(3)  Gains expected from the use of the EM compare to the costs and
risks (e.g., the expected value would be 52.5 if the couple had
never heard of the EM. Is the increase to a maximum of 69.6
significant?)

A decision-tree problem
Another well-known problem is the Truel problem, used in an advanced
management program. "Truel” is a word coined to describe a three-sided duel.

Three competitors (A, B, and C) are at the apices of an equilateral riangle. Each
has a pistol with two bullets.
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They all know that they are very different in the quality of
marksmanship:

C hits whatever he aims at with certainty (a probability of 1)
B has only 8/10 probability of hitting a target
A hits only 6/10 of the time

To make the truel fair, A shoots one bullet first, then B (if he is still alive), then
C, then A, B, and C their second bullets, in order.

There is one other condition: The only success lies in being the sole
survivor. If two players survive, the value to each is the same as when all three
survive. Thus, if all three are alive when C shoots C (his second bullet), he
does not choose one of the others to kill; he simply shoots in another direction.

() Which player would you like to be: A or B or C? Most people
tend to pick B, some select C, and a few A. Actually the only rational choice is
A, '

(b) Construct the decision tree and determine each player's optimum

strategy. Assign values to the outcomes and find the expected value for each
player if everyone plays optimally.

This example is often cited as an analog of three companies in
competition,

Detailed notes on the problem and its solution are available from the
author of this monograph.
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A PRODUCTION MANAGER'S DECISION PROBLEM

ABC Manufacturing Company fabricates a sensitive metal part that is
assembled into the finished product elsewhere. Tolerances are agreed upon in the
contract signed by ABC, but problems with varying quality of raw materials,
machine stability, and inevitable human error can lead to flawed parts. Were it
merely a matter of proper dimensions for the fabricated part, it would be a simple
matter for ABC to check each part before shipment to the customer. But the part
must also meet certain standards with respect to less easily measured features,
such as quality of welds and uniformity of heat transmission from one end of the
part to the other.

Under current conditions, 20 percent of all parts produced by ABC are
unsatisfactory for one reason or another. Such a flawed part, if shipped to a
customer, will be discovered only after it is used in the assembly. The entire
assembly will have to be broken down, leaving an unhappy customer.
Recognizing this, ABC's contract provides for a generous cash payment to the
customer, not only to compensate for extra costs and related expenses, but also
to indicate ABC's concem and goodwill. Moreover, at no additional charge (i.e.,
beyond the cost of the original part), ABC supplies the customer with a
replacement part from a small inventory of parts that are sure to be satisfactory
in all respects. The total cost to ABC of these consequences of shipping a
defective part is estimated to be $400.

The manager could decide to make a careful inspection of each part
before shipment in order to eliminate flawed parts and thus guarantee that any
part delivered to a customer will be satisfactory. Such an inspection costs $100
per part.

Instead of such an inspection, there is an alternative test, relatively easy
and inexpensive, that can be carried out on each part. This test costs only $20
per part. It is, however, far from a perfect diagnostic test. In fact, the test
correctly diagnoses the part only 80 percent of the time; it is wrong 10 percent
of the time; it is inconclusive and gives no verdict about the part’s condition the
remaining 10 percent of the time it is used.

‘What should the manager do?

The first task is to structure the problem by constructing a suitable
decision tree. In Fig. 1, the left-most square #1 represents a decision node from
which three paths emerge, one for each of the three possible actions to be taken:
to deliver the manufactured part (without inspection or testing), to inspect it
first, or to test it first.

Let us follow each of these path in turn. After delivery, chance
determines whether the customer receives a flawed or satisfactory part. Note the
circle #9 representing the chance node with the two possible consequences used
as labels for the paths emanating from this node. At the terminal point of each
path we write the total cost in dollars corresponding to that path (Fig. 2).
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Fig. 1 First decision

Part bad
0.2

0.8

Part good

Fig.2 Outcomes if decision is Deliver

Test

Part bad
0.2

Deliver

0.8

Part good
Inspect - 100

Fig. 3 Outcomes if decision is to Deliver or Inspect
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If we choose the Inspect path at decision node #1, then we know all is
well, and have only to write the cost of the inspection, $100, at the end of the
path (Fig. 3).

Let us now follow the Test option at decision node #1. Chance then
determines the outcome of the test, as is indicated by the three possible paths at
chance node #2. If the test says the item is flawed, then we face another
decision: to Deliver or to Inspect. These options are indicated by the two paths
emerging at decision node #3 (Fig. 4). If we follow the Deliver option, then at
chance node #6 we show the two possible outcomes: the item turns out to be
flawed or it turns out to be satisfactory. The total cost of $420 is placed at the
end of the topmost path in the decision tree since the test costs $20 and delivery
of a flawed item costs an additional $400.

In this way, we continue and complete the decision tree (Fig. 5).
We have yet to determine the probabilities of the outcomes at each of

the chance nodes in the tree. To do this, we construct the following joint
frequency table:

Test Result
Says Bad Says Nothing Says Good Row Total
Bad
Nature of
Product
Good
Column Total 100

We start by assuming 100 items (shown above in the lower right
comer). Since the production process yields 20% flawed items, we can fill in the
rightmost column

Test Result
Says Bad Says Nothing Says Good Row Total
Bad 20
Nature of
Product
Good 80
Column Total 100
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Part bad

420

Test says good

Deliver
.

\
-}

0.8
Good

Inspect

400

Fig. 4 Three possible results of the test

Test
-
Test says good
Del>iver r
0.8
Good
Inspect

Fig. 5 Complete decision tree before probabilities evaluated
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Of the 20 flawed items, the test correctly diagnosis 80% or 16, gives no
indication for 10% or 2, and gives a false positive for 10% or 2.

Nature of
Product

We have assumed the percentages of the test are the same when the part

Test Result
Says Bad Says Nothing Says Good Row Total
Bad 16 2 2 20
Good 80
Column Total 100

is good, so we can complete the second row of numbers:

Nature of
Product

Test Result
Says Bad Says Nothing Says Good Row Total
Bad 16 2 2 20
Good 8 8 64 80
Column Total 100

Finally, we can complete the table simply by adding the columns:

Nature of
Product

From the joint frequency table we are able to determine all the
probabilities required for the decision tree, as demonstrated in the following

listing:

Test Result
Says Bad Says Nothing Says Good Row Total
Bad 16 2 2 20
Good 8 8 64 80
Column Total 24 10 66 100
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Event Probability

Test says product is flawed. 24/100 = 24
Test gives no verdict. 10/100 = .10
Test says product is not flawed. 66/100 = .66
Product is flawed, given that the test says

product is flawed. 16/24 = 273
Product is flawed, given that the test gives

no verdict. 210 = 1/5
Product is flawed, given that the test says

product is okay. 2/66 = 1/33
Product is flawed. 20/100 = .20

Now that the decision tree is complete, we can turn to the determination
of the production manager's best strategy. What does "best” mean? Let us
determine for each possible strategy, the corresponding expected (or average or
mean) cost. The best strategy will be the one with the smallest expected cost.
We move backward from right to left in the tree. For example, at chance node
#6 we compute the expected cost as the weighted average of the two possible
costs, each weighted by the probability with which it occurs:

420 (2/3) + 20(1/3) = 287, approx.

This expected cost appears in the oval above chance node #6. Backing up to
decision node #3, we compare the choice of Deliver with that of Inspect by
comparing their expected costs, $287 and $120. The smaller value is preferred
and we now know that if we ever arrive at decision node #3, the better decision is
Inspect. The two short lines blocking the Deliver path indicate that this path is
not to be followed. Continuing in this way, we obtain the various expected
costs shown in ovals above chance nodes #7, #8, and #9. At both decision
nodes #4 and #5, the better choice is seen to be the Deliver path. At chance node
#2, the expected cost is then determined as follows:

120 (24) + 100 (.10) + 32 (.66) = 59.92,

rounded to 60 and placed in the oval at chance node #2. Moving backward to
decision node #1, we compare Test {mean cost $60), Deliver (mean cost $80),
and Inspect (mean cost $100). The preferred choice is Test. In this way,
following the so-called "averaging out and folding back" technique, we identify
the manager’s optimal strategy:

Test each item. If the test says the item is flawed, then
inspect. But if the test gives no verdict or says the item is not
flawed, then deliver the item (without inspection). The
expected cost of using this optimal strategy is $60 per item.
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The path corresponding to this optimal strategy is outlined by heavier lines in
the decision tree of Fig. 6.

TEST SAYS
BAD

.24

TEST NON-
TEST L\ [NDICATIVE
\&/ 10

Va

TEST SAYS
GOOD

20

66 | 32/33
INSPECT
£ 120
BY BAZD 400
L DELIVER 20
i i
co0_
INSPECT 100

Fig. 6 Production Manager's Decision Tree
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The following books on decision analysis are among many available for
further study. They contain numerous types of applied problems, from
medicine, business, and other fields, involving decision-making under
uncertainty. All are introductory and intended for beginners. The required
mathematical ideas and techniques from probability theory (to measure uncertain
events) and from utility theory (to measure personal preferences and attitudes
toward risk) are included in these texts.

Behn, Robert D. and Vaupel, James W., Quick Analysis for Busy Decision
Makers, Basic Books, New York, 1982.

Holloway, Charles A., Decision Making Under Uncertainty: Models and
Choices, Prentice-Hall, Englewood Cliffs, 1979.

Raiffa, Howard, Decision Analysis (Introductory Lectures on Choices Under
Uncertainty), Addison-Wesley, Reading, 1968.

Weinstein, Milton C. and Fineberg, Harvey V., Clinical Decision Analysis, W.
B. Saunders, Philadelphia, 1980.
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DYNAMIC PROGRAMMING

Problem

In a central city, a serious accident occurs at location B. The nearest
ambulance is located at point A. Since survival rates depend critically on the
speed in receiving medical help, we want to find the minimum-time route from
AtoB.

Fortunately, the city has sensors in the pavement on each block and
continually measures the traffic flow to estimate the time needed to travel each
block. For example, travel from C to B takes 10 units of time.

N M C B End
7 g 10
5 3 7 11
0
T Y I e — >
North 9 10 5 9  East
Pr—x—T1 ¢
8 7 10 7
Start A F

How should we route the ambulance? What is the minimum-time
path? (This routing scheme is used for ambulances in Tokyo.)

Approach

In many optimization problems like this, the critical step is finding the
right approach. A problem may be horrendously difficult with the wrong
approach, almost trivial with the right approach.

In this example, the wrong approach is simply to list all possible
routes from A to B, find the total time for each, and finally look through the list
of total times to find the smallest.

Actually in the simple example above, this is not too bad. There are
only 20 possible routes (A D E F G HB is one, A D E I G H B another, and so
on). If we had an example more complex than this, however, the number of
routes rises sharply: a grid 20 blocks by 20 blocks has 137,846,528,820
different routes.

A much better approach involves a technique called dynamic
programming. There are two ideas involved:
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(1) We work from the end backward (back-to-front).

(2) Once we have found the best route from any point (say J) to B, we
will always follow that route if we reach that point. This
characteristic has the fancy name, principle of optimality.

Dynamic Programming Solution

For the specific grid shown above, let's find the optimum route. Using
dynamic programming, we proceed as follows:

(1) We start from B and work backward. From C, the best (and only)
route is to the east and time is 10. We add the heavy line shown below with the
time,

(2) From H, we can only go north and time is 11.

10
11

Start A

(3) From J, we have two choices: north for 7 to C, then 10 to B; or
east for 7 to H, then 11 more to 18 to B. Obviously, if we are at J, we should
go north.

C B End
10
7 11
H
J 7
Start A
Optimum path from point J to B
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(4) We turn to the next ring (M G L I K in that sequence). From M to
B there is no choice, and time is 18; from G to B time is 20.

(5) We now find the optimum path from L. We can go north to M (3
+ 18) or east to J (9 + 17), so clearly north is better. Similarly, we find that
from I we should move north,

M C B M c B
8 10 10
3 7 11 7 11
9 7 H 7 H
L J J
5 9
12
I G
A A
Optimum path from Optimum path from
point L to B. point I to B.

(6) We complete this ring by solving at K.

M C B End
8 10

3 7 11
9 7 H

L J

10 5

3

K 1z |©

Start A
Optimum path from
point K to B.
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@) We solve in sequence at N, F, O, E, P, D, and finally A.

N M C B End
25y [By J0

s A,

o)
LTy T 3|7 1

Start Al Y i
N M c B End
7 3 T0
5 3 7 11
6 9 7 H
T 7
9 10 5 9
8 8 12
X T G
7 10 7
Start A F

& D 9 E 6

The optimum path from A to B.
The total travel requires 44 units
of time.

Features of Solution

The solution takes appreciably more time to write than to do. There are
15 intersections where a decision must be made, but in six of these we have no
choice (the three on the top and three on the right side). So there are really only
nine decisions to be made: 3 x 3 for a three block by three block grid, so a grid
20 blocks on a side would require only 400 decisions.

Furthermore, each of these decisions is binary: a choice between two
options, north or east. In each case, we choose the smaller of two numbers -- a
trivial task. Thus, the solution of the original problem reduces to nine simple
choices in our example.
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This is the dominating feature of dynamic programming: the reduction
of a problem involving a sequence of interdependent, complex decisions into a
sequence of simple decisions.

Other Applications of Dynamic Programming

We can illustrate dynamic programming with a variety of other
applications:

(1) With the same grid used above, we might seek the route requiring
the maximum time (for the unethical taxi driver with a passenger obviously
unfamiliar with the city).

(2 A power company wants to install a feeder cable from the
generating station (A) to a new factory (B). The numbers on each block
represent the cost of using that particular block.

(3 In a trip to the moon, the guidance/navigation system on the
vehicle determines where the vehicle is. Dynamic programming allows
determination of the strategy to reach an ultimate destination with a minimum
consumption of fuel.

Origin of Dynamic Programming

While the two elements of dynamic programming (back-to-front
approach and principle of optimality) were described in economics studies early
in this century, Richard Bellman (then at the Rand Corporation and later at the
University of Southern California) developed the modern theory in the 1950s.
He applied the optimization approach to an enormous variety of problems,
ranging from the guidance of space vehicles to the controlled release of drugs in
medicine.

Expanded notes on dynamic programming (including additional
examples, references, and material on Richard Bellman) are available from the
author of this monograph.
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