L9: Principal components analysis

The curse of dimensionality

Dimensionality reduction

Feature selection vs. feature extraction
Signal representation vs. signal classification
Principal components analysis
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The curse of dimensionality

The curse of dimensionality
— A term coined by Bellman in 1961

— Refers to the problems associated with multivariate data analysis as
the dimensionality increases

Consider a 3-class pattern recognition problem

— A simple approach would be to
e Divide the feature space into uniform bins
* Compute the ratio of examples for each class at each bin and,
* For a new example, choose the predominant class in its bin
— In our toy problem we decide to start with one single feature and
divide the real line into 3 segments
I e
X1
— After doing this, we notice that there exists too much overlap among
the classes, so we decide to incorporate a second feature to try and
improve separability
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We decide to preserve the granularity of each axis, which
raises the number of bins from 3 (in 1D) to 3% = 9 (in 2D)

— At this point we need to make a decision: do we maintain the density

of examples per bin or do we keep the number of examples had for
the one-dimensional case?

— Choosing to maintain the density increases the number of examples
from 9 (in 1D) to 27 (in 2D)

— Choosing to maintain the number of examples results in a 2D scatter
plot that is very sparse
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Moving to three features makes the
problem worse o

— The number of bins grows to 33 = 27

— For the same density of examples the
number of needed examples becomes 81 a —

— For the same number of examples,
the 3D scatter plot is almost empty X3

Obviously, our approach to divide the sample space into
equally spaced bins was quite inefficient

— There are other approaches that are much less susceptible to the
curse of dimensionality, but the problem still exists

How do we beat the curse of dimensionality?
— By incorporating prior knowledge

— By providing increasing smoothness of the target function
— By reducing the dimensionality
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What does the curse of dimensionality mean, in practice?

— For a given sample size, there is a maximum number of features above
which the performance of our classifier will degrade rather than
improve

— In most cases, the additional information that is lost by discarding
some features is (more than) compensated by a more accurate
mapping in the lower-dimensional space

performance

>
dimensionality
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Additional implications
— Exponential growth in the #examples required to maintain a given
sampling density

* For a density of N examples/bin and D dimensions, the total number of
examples is NP

— Exponential growth in the complexity of the target function (a density
estimate) with increasing dimensionality

* “A function defined in high-dimensional space is likely to be much more
complex than a function defined in a lower-dimensional space, and those
complications are harder to discern” —J. Friedman

* This means that, in order to learn it well, a more complex target function
requires denser sample points!

— What to doif it ain’t Gaussian?

* For 1D a large number of density functions can be found in textbooks, but for
high-dimensions only the multivariate Gaussian density is available.

* Moreover, for large D the Gaussian can only be handled in a simplified form!

— Humans have an extraordinary capacity to discern patterns and clusters in
1D, 2D and 3D, but these capabilities break down for D > 4
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Dimensionality reduction

Two approaches are available to reduce dimensionality

— Feature extraction: creating a subset of new features by combinations
of the existing features

— Feature selection: choosing a subset of all the features

X1 IV X1 IS X1
X xl1 X V1 X
2 . X, 2 . v, _ 2
x.
LX)\ M- LX) M- LX)

The problem of feature extraction can be stated as

— Given a feature space x; € R" find a mappingy = f(x):RY - RM
with M < N such that the transformed feature vector
y € R preserves (most of) the information or structure in RY

— An optimal mapping y = f(x) is one that does not increase P|error]

— This is, a Bayes decision rule applied to the initial space RY and to the
reduced space R yield the same classification rate
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Linear dimensionality reduction

— In general, the optimal mapping y = f(x) will be a non-linear function
* However, there is no systematic way to generate non-linear transforms
* The selection of a particular subset of transforms is problem dependent

— For these reasons, feature extraction is commonly based on linear
transforms, of the formy = Wx

_xl_ ) ) _xl_
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N o Wm1 MN |

L Xy L Xy

* NOTE: When the mapping is a non-linear function, the reduced space is
called a manifold

— We will focus on linear feature extraction for now, and revisit non-
linear technigues when we cover multi-layer perceptrons, manifold
learning, and kernel methods
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Signal representation versus classification

Finding the mapping y = f(x) is guided by an objective
function that we seek to maximize (or minimize)

— Depending on the criteria used by the objective function, feature
extraction techniques are grouped into two categories:

* Signal representation: The goal of the feature extraction mapping is to
represent the samples accurately in a lower-dimensional space

* Classification: The goal of the feature extraction mapping is to enhance
the class-discriminatory information in the lower-dimensional space
— Within the realm of linear feature

extraction, two techniques are
commonly used

Feature 2

* Principal components analysis (PCA):
uses a signal representation criterion

e Linear discriminant analysis (LDA):
uses a signal classification criterion

y

Feature 1
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Principal components analysis (PCA)

PCA seeks preserve as much of the randomness (variance) in
the high-dimensional space as possible
— Let x € RY be represented as a linear combination of orthonormal
basis vectors [@4|@5] ... ox] as
0;i #j
_ vN T _ %
X = Li=1YiPi where P Pj = {1’1 = j
— Suppose we want to represent x with only M (M < N) basis vectors
— We can do this by replacing the components [Vp;41, ... Yy]! with some
pre-selected constants b;
X(M) = Ii\ilyl'fpl Zl “m+1Di9i
— The representation error is then
Ax(M) =x—x(M) =
Y1y — (Biayioi + Xy biwi) =
{V=M+1()’i — b)) ;
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We can measure this representation error by the mean-squared
magnitude of Ax

Our goal is to find the basis vectors ¢; and constants b; that minimize
this mean-square error

e*(M) = E[|Ax(M)|*] =
E[ZIiV=M+1Z§y=M+1(yi - bi)(Yj - bj)‘PiTQOj] =
IiV=M+1E[(3’i — b;)?]
To find the optimal values of b; we compute the partial derivative of
the objective function and equate it to zero

o5 Bl = b)?] = =2(Elyi] = b) = 0
= b; = E|y]

Therefore, we will replace the discarded dimensions by their expected
value, which is an intuitive result
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— The MSE can then be written as

E2(M) = XLy Elvi — ElyiD?] =
=3 M+1E[(x<pl Elxp D" (xp; — E[x@;])] =
= {VM+1</)1 E[(x — E[xD(x — E[xD"]¢; =
Zl M+1§0 xQDL

— We seek the solution that minimizes this expression, subject to the
orthonormality constraint, which we incorporate into the expression
using a set of Lagrange multipliers A;

E2(M) = XN 107 Zx0i + X1 (1 — o 9;)
— Computing the partial derivative with respect to the basis vectors

0€*(M) 0
— Ty 1—owlo:)| =
5<Pi a(pl [Zl M+1(pl xPi + Zl M+1/1 ( (pl (pl)]

=2Cx0; — 4ip;) = 0= 2,0, = 49;
« NOTE: % (xTAx) = (A + AT)x = 2A4x (for A symmetric)

— So @;and A; are the eigenvectors and eigenvalues of X,
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— We can then express the sum-squared error as

=2 _ VN T _ vN T _ vN
€°(M) = Yicm+19i Zx®i = Ni=m+19i Li®i = Xizm+1i
— In order to minimize this measure, A; will have to be smallest

eigenvalues

— Therefore, to represent x with minimum MSE, we will choose the
eigenvectors @; corresponding to the largest eigenvalues A;

PCA dimensionality reduction

The optimal* approximation of a random vector x € R" by a linear
combination of M < N independent vectors is obtained by projecting x
onto the eigenvectors @; corresponding to the largest eigenvalues A; of
the covariance matrix X,

*optimality is defined as the minimum of the sum-square magnitude of
the approximation error
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NOTES

— Since PCA uses the eigenvectors of the covariance matrix X, it is able to
find the independent axes of the data under the unimodal Gaussian
assumption

* For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the
axes

— The main limitation of PCA is that it does not consider class separability
since it does not take into account the class label of the feature vector

* PCA simply performs a coordinate rotation that aligns the transformed axes
with the directions of maximum variance

* There is no guarantee that the directions of maximum variance will contain
good features for discrimination

— Historical remarks
* Principal Components Analysis is the oldest technique in multivariate analysis
* PCA is also known as the Karhunen-Loéve transform (communication theory)

* PCA was first introduced by Pearson in 1901, and it experienced several
modifications until it was generalized by Loéve in 1963
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Example |

3D Gaussian distribution N(u, X)

25 -1 7
u=[052]Tand X = 4 —4
10

— The three pairs of PCA projections are

shown below

* Notice that PC1 has the largest
variance, followed by PC2

e Also notice how PCA decorrelates the

axes
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Example Il

The example in the next slide shows a projection of a 3D
data set into two dimensions

— Initially, there is no apparent structure in the dataset, except for the
elongation of the point cloud
— Choosing an appropriate rotation unveils the underlying structure
* You can think of this rotation as "walking around" the 3D dataset, looking
for the best viewpoint
— PCA can help find such underlying structure

* It selects a rotation such that most of the variability within the data set is
represented in the first few dimensions of the rotated data

* In our 3D case, this may seem of little use

 However, when the data is highly multidimensional (10’s of dimensions),
this analysis is quite powerful
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Example Il

10

Problem statement
— Compute the PCA for dataset 8 o
X =1{(1,2), (3,3),(3,5),(54), (5,6), (6,5),(8,7),(9,8)} ) N L ?
— Let’s first plot the data to get an idea of X <> ’ vy
which solution we should expect 4 o
Solution O
— The sample covariance is ° i ) X, ©°
s [6.25 4.25
x 425 3.5

— The eigenvalues are the zeros of the characteristic equation
S V== |5, — A =0
N 6.25—41 425 | _ 0

4.25 3.5 — Al
=1, =9.34;1, = 0.41
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— The eigenvectors are the solutions of the system

425 3.5 vl T 4 v,] T vl T losg

6.25  4.25][V21] _ (AyV51] N V21] _ [—0.59
425 35111  [A,v,, U221 1 0.81

6.25 4.257[V11] —117711_ VU117 '0.81]

— HINT: To solve each system manually, first assume that one of the

variables is equal to one (i.e. v;; = 1), then find the other one and
finally normalize the vector to make it unit-length
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