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L27: independent components analysis 

• The “cocktail party” problem 

• Definition of ICA 

• Independence and uncorrelatedness 

• Independence and non-Gaussianity 

• Preprocessing for ICA 

• The FastICA algorithm 

• Non-linear ICA 
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The cocktail party problem 

• Imagine that you are at a large party where several 
conversations are being held at the same time 
– Despite the strong background, you are able to focus your attention on 

a specific conversation (of your choice), and ignore all others 

– At the same time, if someone were to call our name from the other 
name of the room, we would immediately be able to respond to it  

– How is it that we can separate different flows of information that 
occur at the same time and share the very same frequency bands? 

 

Material in this lecture was obtained 
from [Hyvarinen and Oja, 2000] 
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• Let’s formalize this scenario  
– Two people are speaking simultaneously 

• We will denote their sound pressure waveforms by 𝑠1(𝑡) and 𝑠2(𝑡) 

– Two microphones are placed at different locations 

• We will denote their recorded signals by 𝑥1(𝑡) and 𝑥2(𝑡) 

– We will assume that the recorded signals 𝑥𝑖(𝑡) are a linear 
combination of the sources 𝑠𝑖(𝑡) 

 
𝑥1 𝑡 = 𝑎11𝑠1 𝑡 + 𝑎12𝑠2(𝑡)

𝑥2 𝑡 = 𝑎21𝑠1 𝑡 + 𝑎22𝑠2(𝑡)
 

• where the coefficients aij would depend on the relative distance between 
the microphones and the speakers 

– Note that this is a very oversimplified model, since we are ignoring 
very basic phenomena such as propagation delays and reverberances 
in the room 
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• Our goal is to find the sources 𝑠𝑖(𝑡) from mixed signals 𝑥𝑗(𝑡) 

– Obviously, if we knew the mixing coefficients 𝑎𝑖𝑗 , the problem could be 
trivially solved through matrix inversion 

– But how about when 𝑎𝑖𝑗  are unknown? 

• To solve for both 𝑎𝑖𝑗 (actually, its inverse) and 𝑠𝑖(𝑡), we need to 
make further assumptions 
– One such assumption would be that the speech waveforms of the two 

speakers are statistically independent, which is not that unrealistic 

– Interestingly, this simple assumption is sufficient to solve the problem and, 
in some cases, the assumption need not be strictly true 

• The same principles can be (and have been) used for a variety of 
problems 
– Separating sources of activity in the brain from  

electrical (EEG) and magnetic (MEG, fMRI) recordings 

– Denoising and detrending of sensor signals  

– Finding “interesting” projections in high-dimensional  
data (projection pursuit) 
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Definition of ICA 

• Assume that we observe n linear mixtures 𝑥1, 𝑥2, … 𝑥𝑛, from 
n independent observers 

𝑥𝑗 𝑡 = 𝑎𝑗1𝑠1 𝑡 + 𝑎𝑗2𝑠2 𝑡 + ⋯+ 𝑎𝑗𝑛𝑠𝑛 𝑡  

– Or, using matrix notation, 𝑥 = 𝐴𝑠 

– Our goal is to find a de-mixing matrix W such that 𝑠 = 𝑊𝑥 

• Assumptions 
– Both mixture signals and source signals are zero-mean (i.e. 𝐸 𝑥𝑖 =

𝐸 𝑠𝑗 = 0, ∀𝑖, 𝑗) 

• If not, we simply subtract their means 

– The sources have non-Gaussian distributions 

• More on this in a minute 

– The mixing matrix is square, i.e., there are as many sources as mixing 
signals 

• This assumption, however, can sometimes be relaxed 
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Blind source separation 
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An example 
s1(n)=sin(100n)cos(10n) s2= sign(sin(10n)) s3=rand(n) 

x1 x2 x3 

y1 y2 y3 

FastICA 

x=As 
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Ambiguities of ICA 

• The variance of the ICs cannot be determined 
– Since both s and A are undetermined, any multiplicative factor in s, 

including a change of sign, could be absorbed by the coefficients of A 

𝑥𝑗 𝑡 = 𝑘𝑎𝑗1 𝑠1 𝑡 + 𝑘𝑎𝑗2 𝑠2 𝑡  

= 𝑎𝑗1 𝑘𝑠1 𝑡 + 𝑎𝑗2 𝑘𝑠2 𝑡  

– To resolve this ambiguity, source signals are assumed to have unit 
variance 

𝐸 𝑠𝑖
2 = 1 

• The order of ICs cannot be determined 
– Since both 𝑠 and 𝐴 are unknown, any permutation of the mixing terms 

would yield the same result 

– Compare this with PCA, where the order of the components can be 
determined by their eigenvalues (their variance) 
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Independence vs. uncorrelatedness 

• What is independence? 
– Two random variables 𝑦1 and 𝑦2 are said to be independent if 

knowledge of the value of 𝑦1 does not provide any information about 
the value of 𝑦2, and viceversa 

𝑝 𝑦1|𝑦2 = 𝑝 𝑦1 ⇔ 𝑝 𝑦1, 𝑦2 = 𝑝 𝑦1 𝑝 𝑦2  

• What is uncorrelatedness? 
– Two random variables 𝑦1 and 𝑦2 are said to be uncorrelated if their 

covariance is zero 
𝐸 𝑦1

2𝑦2
2 = 0 

• Equivalences 
– Independence implies uncorrelatedness  

– Uncorrelatedness DOES NOT imply independence…  
• Unless the random variables 𝑦1 and 𝑦2 are Gaussian, in which case 

uncorrelatedness and independence are equivalent 

• Note that, in this case, the covariance matrix is diagonal, and 𝑝(𝑥1, 𝑥2) 
can be trivially factorized as the product of the two univariate densities 
𝑝(𝑥1) and 𝑝(𝑥2)  
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Why can’t Gaussian variables be used with ICA? 
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Independence and non-Gaussianity 
• As we have just seen, a necessary condition for ICA to work is that the 

signals be non-Gaussian 
– Otherwise, ICA cannot resolve the independent directions due to symmetries  

– Besides, if signals are Gaussian, one may just use PCA to solve the problem (!) 

• We will now show that finding the independent components is 
equivalent to finding the directions of largest non-Gaussianity  
– For simplicity, let us assume that all the sources have identical distributions 

– Our goal is to find the vector w such that 𝑦 = 𝑤𝑇𝑥 is equal to one of the sources 𝑠 

– We make the change of variables 𝑧 = 𝐴𝑇𝑤,  
• This leads to 𝑦 = 𝑤𝑇𝑥 = 𝑤𝑇𝐴𝑠 = 𝑧𝑇𝑠 

• Thus, y is a linear combination of the sources 𝑠 

– According to the CLT, the signal 𝑦 is more Gaussian than the sources 𝑠 since it is a 
linear combination of them, and becomes the least Gaussian when it is equal to 
one of the sources  

– Therefore, the optimal 𝑤 is the vector that maximizes the non-Gaussianity of 𝑤𝑇𝑥, 
since this will make y equal to one of the sources 

 

– The trick is now how to measure “non-Gaussianity”… 
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Measures of non-Gaussianity 
• Kurtosis 

– The classical measure of non-Gaussianity is kurtosis, 
which is defined as the fourth order cummulant 

𝑘𝑢𝑟𝑡 𝑦 = 𝐸 𝑦4 − 3 𝐸 𝑦2 2 

– Kurtosis can be both positive or negative 
• When kurtosis is zero, the variable is Gaussian 

• When kurtusis is positive, the variable is said to be  
supergaussian or leptokurtic 

– Supergaussians are characterized by a “spiky” pdf with 
heavy  
tails, i.e., the Laplace pdf 

• When kurtosis is negative, the variable is said to be  
subgaussian or platykurtic 

– Subgaussians are characterized by a rather “flat” pdf 

– Thus, the absolute value of the kurtosis can be used as 
a measure of non-Gaussianity 
• Kurtosis has the advantage of being computationally 

cheap 

• Unfortunately, kurtosis is rather sensitive to outliers 
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• Negentropy 
– An information-theoretic quantity of differential entropy 

– The entropy of a variable can be thought of as a measure of 
randomness 

• For a discrete-valued variable, the entropy 𝐻 𝑌  is defined as 

𝐻 𝑌 = −  𝑃 𝑌 = 𝑎𝑖 log𝑃 𝑌 = 𝑎𝑖𝑖   

• whereas for a continuous-valued variable, the (differential) entropy is 

𝐻 𝑌 = −∫ 𝑝 𝑦 log 𝑝 𝑦 𝑑𝑦  

• A uniform variable has the largest entropy among discrete-valued 
variables, whereas a Gaussian has the largest entropy among continuous 
valued variables 

 
P(Y) 

Y 

P(Y) 

Y 

High entropy Low entropy 
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– To obtain a measure of non-Gaussianity, one may then take a 
differential measurement of entropy relative to a Gaussian; this is 
known as negentropy 

𝐽 𝑦 = 𝐻 𝑦𝐺 − 𝐻 𝑦  

• where 𝑦𝐺  is a Gaussian variable with the same variance as 𝑦 

– Note that 𝐽(𝑦) is always non-negative, and only equal to zero for a 
Gaussian 

– Properties 

• Negentropy is statistically robust 

• Unfortunately, it is also computationally intensive, since it requires density 
estimation, possibly non-parametric 
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• Approximations of negentropy 
– Since the estimation of negentropy is difficult, one typically uses 

approximations proposed by Hyvarinen, which have the form 
𝐽 𝑦 ∝ 𝐸 𝐺(𝑦) − 𝐸 𝐺(𝑣) 2 

• where 𝑣 is a Gaussian variable N(0,1), 𝑦 is assumed to be zero-mean, and 
𝐺 is a nonquadratic function 

• Several choices of 𝐺 have been shown to work well, including 

𝐺1 𝑢 =
1

𝑎1
log cosh 𝑎1𝑢     1 ≤ 𝑎1 ≤ 2 

𝐺2 𝑢 = − exp −𝑢2/2  

– These approximations have several advantages 

• Even in cases when they are not accurate, they are consistent (always 
non-negative and zero if 𝑦 is Gaussian) 

• They provide a tradeoff between the properties of the two classical 
measures (kurtosis and negentropy) 

• They are computationally simple, fast to compute, and have good 
statistical properties (robustness) 
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Preprocessing for ICA 

• ICA can be made simpler and better conditioned it the data 
is preprocessed prior to the analysis 
– Centering 

• This step consists of subtracting the mean of the observation vector 

𝑥′ = 𝑥 − 𝐸 𝑥  

• The mean vector can be added to the estimates of the sources afterwards 

𝑠 = 𝑠′ + 𝐴−1𝐸 𝑥  

– Whitening 

• Whitening consists of applying a linear transform to the observations so 
that its components are uncorrelated and have unit variance 

𝑥 = 𝑊𝑥 ⇒ 𝐸 𝑥 𝑥 𝑇 = 𝐼 

• This can be achieved through principal components 

𝑥 = 𝐸𝐷−1/2𝐸𝑇𝑥 
– where (the columns of) 𝐸 and (the diagonal of) 𝐷 are the are eigenvector and 

eigenvalues of 𝐸[𝑥𝑥𝑇], respectively  

𝐸 𝑥𝑥𝑇 = 𝐸𝐷𝐸𝑇 
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– Whitening (continued) 

• Note that whitening makes the mixing matrix orthogonal 

𝑥 = 𝐸𝐷−1/2𝐸𝑇𝑥 ⇒ 
𝑥 = 𝐸𝐷−1/2𝐸𝑇𝐴𝑠 = 𝐴 𝑠 ⇒ 

𝐸 𝑥 𝑥 𝑇

𝐼

= 𝐴 𝐸 𝑠𝑠𝑇

𝐼

𝐴 = 𝐴 𝐴 𝑇 = 𝐼 

• Which has the advantage of halving the number of parameters that need 
to be estimated, since an orthogonal matrix only has 𝑛(𝑛 − 1)/2 free 
parameters 

– For a 2 source problem, there will only be one parameter (an angle) to be 
estimated! 

• Since computing PCA is straightforward, it is then worthwhile to reduce 
the complexity of the ICA problem by whitening the data 
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The FastICA algorithm for one unit 
• FastICA is a very efficient method of maximizing the measures of non-

Gaussianity mentioned earlier 
– In what follows, we will assume that the data has been centered and whitened 

– We will first start with a single-unit problem, then generalize to multiple units 

• FastICA for one unit 
– The goal is to find a weight vector 𝑤 that maximizes the negentropy estimate 

𝐽 𝑤𝑇𝑥 ∝ 𝐸 𝐺 𝑤𝑇𝑥 − 𝐸 𝐺 𝑣 2 

– Note that the maxima of 𝐽(𝑤𝑇𝑥) occurs at a certain optima of 𝐸{𝐺(𝑤𝑇𝑥)}, since 
the second part of the estimate is independent of 𝑤 

– According to the Kuhn-Tucker conditions, the optima of 𝐸{𝐺(𝑤𝑇𝑥)} unde the 
constraint 𝐸{ 𝑤𝑇𝑥 2} = 𝑤 2 = 1 occurs at points where 

𝐹 𝑤 = 𝐸 𝑥𝑔 𝑤𝑇𝑥 − 𝛽𝑤 = 0 

• where 𝑔(𝑢) = 𝑑𝐺(𝑢)/𝑑𝑢 

• The constraint 𝐸{ 𝑤𝑇𝑥 2} = 𝑤 2 = 1 occurs because the variance of 𝑤𝑇𝑥 must be 
equal to unity (by design): if the data is pre-whitened, then the norm of 𝑤 must be equal 
to one 

– The problem can be solved as an approximation of Newton’s method 
• To find a zero of 𝑓(𝑥), apply the iteration 𝑥𝑛 = 𝑥𝑛 − 𝑓(𝑥𝑛)/𝑓′(𝑥𝑛) 
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– Computing the Jacobian of 𝐹(𝑤) yields 

𝐽𝐹 𝑋 = 𝐸 𝑥𝑥𝑇𝑔′ 𝑤𝑇𝑥 − 𝛽𝐼 

– To simplify inversion of this matrix, we approximate the first term of 
the expression by noting that the data is sphered 

𝐸 𝑥𝑥𝑇𝑔′ 𝑤𝑇𝑥 ≈ 𝐸 𝑥𝑥𝑇 𝐸 𝑔′ 𝑤𝑇𝑥 = 𝐸 𝑔′ 𝑤𝑇𝑥 𝐼
𝑎 𝑠𝑐𝑎𝑙𝑎𝑟

 

• So the Jacobian is diagonal, which simplifies the inversion 

– Thus, the (approximate) Newton’s iteration becomes 

𝑤+ = 𝑤 − 𝐸 𝑥𝑔 𝑤𝑇𝑥 − 𝛽𝑤 / 𝐸 𝑔′ 𝑤𝑇𝑥 − 𝛽  

– This algorithm can be further simplified by multiplying both sides by 
𝛽 − 𝐸 𝑔′ 𝑤𝑇𝑥 , which yields the FastICA iteration 

 

 

 

(1)  Choose an initial (e.g., random) weight vector 𝑤 
(2)  Let 𝑤

+
 =  𝐸{𝑥𝑔(𝑤𝑇𝑥)}  −  𝐸{𝑔′(𝑤𝑇𝑥)}𝑤 

(3)  Let 𝑤 = 𝑤+/ 𝑤+  
(4)  If not converged, go back to (2) 
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The FastICA algorithm for several units 
• To estimate several independent components, we run the one-unit 

FastICA with several units 𝑤1, 𝑤2, … , 𝑤𝑛 
– To prevent several of these vectors from converging to the same solution, we 

decorrelate outputs 𝑤1
𝑇𝑥, 𝑤2

𝑇𝑥, … , 𝑤𝑛
𝑇𝑥 at each iteration 

– This can be done using a deflation scheme based on Gram-Schmidt 
• We estimate each independent component one by one 

• With 𝑝 estimated components 𝑤1, 𝑤2, … , 𝑤𝑝, we run a 1-unit ICA iteration for 𝑤𝑝+1 

• After each iteration, we subtract from 𝑤𝑝+1 its projections 𝑤𝑝+1
𝑇 𝑤𝑗 𝑤𝑗  on the 

previous vectors 𝑤𝑗   

• Then, we renormalize 𝑤𝑝+1  

1  𝐿𝑒𝑡 𝑤𝑝+1 = 𝑤𝑝+1 −  𝑤𝑝+1
𝑇 𝑤𝑗𝑤𝑗

𝑃
𝑗=1   

2  𝐿𝑒𝑡 𝑤𝑝+1 = 𝑤𝑝+1/ 𝑤𝑝+1
𝑇 𝑤𝑝+1             

– Or, if all components must be computed simultaneously (to avoid 
asymmetries), the following iteration proposed by Hyvarinen can be used  

1  𝐿𝑒𝑡 𝑊 = 𝑊/ 𝑊𝑊𝑇                                                          

2  𝑅𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒   𝑊 =
3

2
𝑊 −

1

2
𝑊𝑊𝑇𝑊  




