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L24: Baum-Welch and Entropic Training 

• The Baum-Welch re-estimation procedure 

• Implementation issues 

• Continuous and semi-continuous HMMs 

• Types of HMM structure 

• Entropic training 

 

This lecture is based on [Rabiner and Juang, 1993] 
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Baum-Welsh re-estimation 

• Problem 3: Parameter estimation 
– The most important and difficult problem in HMMs is to estimate 

model parameters 𝜆 = 𝐴, 𝐵, 𝜋  from data 

• HMMs are trained with a Maximum Likelihood criterion: seek model 
parameters  that best explain the observations, as measured by 𝑃 𝑂|𝜆  

• This problem is solved with an iterative procedure known as Baum-Welch, 
which is an implementation of the EM algorithm we discussed earlier 

– As usual, we begin by defining a new variable, 𝜉𝑡 𝑖, 𝑗   

𝜉𝑡 𝑖, 𝑗 = 𝑃 𝑞𝑡 = 𝑆𝑖 , 𝑞𝑡+1 = 𝑆𝑗|𝑂, 𝜆  

• which is the probability of being in 𝑆𝑖  at time 𝑡, and 𝑆𝑗 at time 𝑡 + 1 

[Rabiner, 1989] 
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– From the definition of 𝛼𝑡 𝑖 , 𝛽𝑡 𝑖  and conditional probability: 

𝜉𝑡 𝑖, 𝑗 =
𝑃 𝑞𝑡 = 𝑆𝑖 , 𝑞𝑡+1 = 𝑆𝑗 , 𝑂|𝜆

𝑃 𝑂|𝜆
=

𝛼𝑡 𝑖  𝑎𝑖𝑗  𝑏𝑗 𝑜𝑡+1  𝛽𝑡+1 𝑗

𝑃 𝑂|𝜆

=
𝛼𝑡 𝑖  𝑎𝑖𝑗  𝑏𝑗 𝑜𝑡+1  𝛽𝑡+1 𝑗

  𝛼𝑡 𝑖  𝑎𝑖𝑗  𝑏𝑗 𝑜𝑡+1  𝛽𝑡+1 𝑗𝑁
𝑗=1

𝑁
𝑖=1

 

– Intuitive interpretation of 𝛾𝑡 𝑖  and 𝜉𝑡 𝑖, 𝑗  

• First note that, since 𝛾𝑡 𝑖  is the probability of being in state 𝑆𝑖 at time 𝑡 given 
observation sequence O and model , 𝜉𝑡 𝑖, 𝑗  can be related to 𝛾𝑡 𝑖  by 

𝛾𝑡 𝑖 =  𝜉𝑡 𝑖, 𝑗
𝑁

𝑗=1
 

• The sum of 𝛾𝑡 𝑖  over time may be interpreted as the expected number of 
times that state 𝑆𝑖 is visited or, excluding time 𝑡 = 𝑇, the number of 
transitions from 𝑆𝑖  

 𝛾𝑡 𝑖
𝑇−1

𝑡=1
= "expected number of transitions from state Si in O" 

• Similarly, summation of 𝜉𝑡 𝑖, 𝑗  from 𝑡 = 1 to 𝑡 = 𝑇 − 1 may be interpreted as 
the expected number of transitions from state 𝑆𝑖 to state 𝑆𝑗  

 𝜉𝑡 𝑖, 𝑗
𝑇−1

𝑡=1
= "expected number of transitions from state Si to state Sj" 
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• Re-estimation procedure 
– Using this line of reasoning, we can produce a method to iteratively 

update the parameters of an HMM by simply “counting events”  
 

𝜋 𝑖 = "expected frequency (number of times) in state Si at time 𝑡 = 1 " = 𝛾1 𝑖   
 

𝑎 𝑖𝑗 =
"expected number of transitions from Si to Sj"

"expected number of transitions from Si"
=

 𝜉𝑡 𝑖, 𝑗𝑇−1
𝑡=1

 𝛾𝑡 𝑖𝑇−1
𝑡=1

 

 

𝑏 𝑗 𝑘 =
"expected number of times in Sj and obseving  vk"

"expected number of times in Sj"
=

 𝛾𝑡 𝑗𝑇
𝑡=1

𝑠.𝑡.𝑜𝑡=𝑣𝑘

 𝛾𝑡 𝑗𝑇
𝑡=1

 

 
• where the rhs of the equations is computed from the “old” parameter values, 

and the lhs are the re-estimated “new” parameters 

 
– It can be shown that each iteration of this procedure increases the 

likelihood of the data until a local minimum is found 

𝑃 𝑂|𝜆(𝑛𝑒𝑤 ≥ 𝑃 𝑂|𝜆(𝑜𝑙𝑑   
• This property is due to the fact that Baum-Welch is an implementation of the 

Expectation-Maximization algorithm 
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• Baum-Welch is “simply” an implementation of the EM algorithm 
where 
– The observation sequence 𝑂 = {𝑜1, 𝑜2, 𝑜3 …} is the observed data 

– The underlying state seq. 𝑄 = {𝑞1, 𝑞2, 𝑞3 …} is the missing or hidden data 

– The incomplete-data likelihood is given by 𝑃(𝑂|𝜆) 

– The complete-data likelihood is 𝑃(𝑂, 𝑄|𝜆) 

• Therefore, the auxiliary Q function from EM becomes 

𝑄 𝜃|𝜃(𝑖−1 = 𝐸𝑍 𝑙𝑜𝑔𝑝 𝑋, 𝑍|𝜃 |𝑋, 𝜃(𝑖−1 ⇒ 
𝑄 𝜆|𝜆(𝑖−1 = 𝐸𝑄 𝑙𝑜𝑔𝑝 𝑂,𝑄|𝜆 |𝑂, 𝜆(𝑖−1  

– from which the expected value 𝐸𝑄[∙] is computed by averaging over all 
state sequences 

𝑄 𝜆|𝜆(𝑖−1 = 𝐸𝑄 𝑙𝑜𝑔𝑝 𝑂,𝑄|𝜆 |𝑂, 𝜆(𝑖−1 =  𝑙𝑜𝑔𝑝 𝑂, 𝑄|𝜆 𝑝 𝑂, 𝑄|𝜆

∀𝑞

 

– The re-estimation formulas in the previous page can also be obtained from 
this auxiliary function 
• Details on this derivation can be found in [Rabiner and Juang, 1993; Bilmes, 

1998] 
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Types of HMM structure 

• Ergodic vs. left-right HMMs 
– An ergodic HMM is a fully connected model, 

where each state can be reached in one step from 
every other state 

• This is the most general type of HMM, and the one 
that has been implicitly assumed in the previous 
derivations 

– A left-right or Bakis model is one where no 
transitions are allowed to states whose indices are 
lower than the current state: 𝑎𝑖𝑗 = 0; ∀𝑗 < 𝑖 

• Left-right models are best suited to  
model signals whose properties  
change over time, such as speech 

• When using left-right models, some  
additional constraints are used, such as preventing 
large transitions: 𝑎𝑖𝑗 = 0; ∀𝑗 < 𝑖 + Δ (Δ = 3 in the 

example below) 

 

 

 

 

Ergodic HMM 

Left-right HMM 

[Rabiner, 1989] 
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• Null transitions 
– In the HMM models presented in these lectures, observations are 

associated with the states.  A number of people (IBM, CMU) have used 
HMM models where the observations are associated with the 
transitions between states 

– In this type of models, it has been found useful to allow transitions 
that produce no observations.  These are called null transitions 

– In the example below, an HMM with null transition 𝜙 is used to model 
two different pronunciations for the English word “two” 

 

[Rabiner, 1989] 
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Implementation issues for HMMs 
• Scaling 

– Since 𝛼𝑡(𝑖) involves the product of a large number of terms that are less than one, 
the machine precision is likely to be exceeded at some point in the computation 

– To solve this problem, the 𝛼𝑡(𝑖) are re-scaled periodically (e.g., every iteration 𝑡) to 
avoid underflow.  A similar scaling is done to the 𝛽𝑡(𝑖) so that the scaling 
coefficients cancel out exactly 

• Multiple observation sequences 
– The HMM derivation in these lectures is based on a single observation sequence.  

This becomes a problem in left-right models, since the transient nature of the 
states only allows a few observations to be used for each state 

– For this reason, one has to use multiple observation sequences.  Re-estimation 
formulas for multiple sequences can be found in [Rabiner and Juang, 1993] 

• Initial parameter estimates 
– How are the initial HMM parameters chosen so that the local maximum to which 

Baum-Welch converges to is actually the global maximum? 

– Random or uniform initial values for 𝜋 and A have experimentally been found to 
work well in most cases 

– Careful selection of initial values for B, however, has been found to be helpful in 
the discrete case and essential in the continuous case.  These initial estimates may 
be found by segmenting the sequences with k-means clustering 
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• The discussion thus far has focused on discrete HMMs 

– Discrete HMMs assume that the observations are defined by a set of discrete 
symbols from a finite alphabet 

– In most pattern recognition applications, however, observations are inherently 
multidimensional and having continuous features 

• There are two alternatives to handle continuous vectors with HMMs 

– Convert the continuous multivariate observations into discrete univariate 
observations via a codebook (e.g., cluster the observations with k-means) 

• This approach, however, may lead to degraded performance as a result of the 
discretization of the continuous signals 

– Employ HMM states that have continuous observation densities 𝑏𝑗(∙) 

• This is, in general, a much better alternative, which we explore next 
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• Continuous HMMs model the observation probabilities with a 
continuous density function, as opposed to a multinomial 

– To ensure that model parameters can be re-estimated in a consistent manner, 
some restrictions are applied to the observation pdf 

– The most common form is the Gaussian mixture model of L14 

𝑏𝑗 𝑜 =  𝑐𝑗𝑘𝑁 𝑜, 𝜇𝑗𝑘 , Σ𝑗𝑘
𝑀
𝑘=1   

• where 𝑜 is the observation vector, and 𝑐𝑗𝑘, 𝜇𝑗𝑘  and Σ𝑗𝑘  are the mixture coefficient, 

mean and covariance for the k-th Gaussian component at state 𝑆𝑗 , respectively 

• The re-estimation formulas for the continuous case generalize very 
gracefully from the discrete HMM 

– The term 𝛾𝑡(𝑗) generalizes to 𝛾𝑡(𝑗, 𝑘), which is the probability of being in state 
𝑆𝑗 at time 𝑡 with the k-th mixture component accounting for observation 𝑜𝑡  

𝛾𝑡 𝑗, 𝑘 =
𝛼𝑡 𝑗 𝛽𝑡 𝑗

 𝛼𝑡 𝑗 𝛽𝑡 𝑗𝑁
𝑗=1

𝑠𝑎𝑚𝑒 𝑎𝑠 𝑖𝑛
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐻𝑀𝑀𝑠

𝑐𝑗𝑘𝑁 𝑜𝑡 , 𝜇𝑗𝑘 , Σ𝑗𝑘

 𝑐𝑗𝑚𝑁 𝑜𝑡 , 𝜇𝑗𝑚 , Σ𝑗𝑚
𝑀
𝑚=1

𝑡𝑒𝑟𝑚 𝑑𝑢𝑒 𝑡𝑜 
𝑘𝑡ℎ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛
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• The re-estimation formulas for the continuous HMM become 

𝑐 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘𝑇

𝑡=1

  𝛾𝑡 𝑗, 𝑘𝑀
𝑘=1

𝑇
𝑡=1

;                     𝜇 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘𝑇

𝑡=1 𝑜𝑡

 𝛾𝑡 𝑗, 𝑘𝑇
𝑡=1

; 

Σ 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘 𝑜𝑡 − 𝜇𝑗𝑘 𝑜𝑡 − 𝜇𝑗𝑘

𝑡𝑇
𝑡=1

 𝛾𝑡 𝑗, 𝑘𝑇
𝑡=1

 

– The re-estimation formula for 𝑐𝑗𝑘 is the ratio between the expected 

number of times the system is in state 𝑆𝑗 using the k-th mixture 

component, and the expected number of times the system is in state 𝑆𝑗  

– The re-estimation formula for the mean vector 𝜇𝑗𝑘 weights the numerator 

in the equation for 𝑐𝑗𝑘 by the observation, to produce the portion of the 

observation that can be accounted by that mixture component  

• The re-estimation formula for the covariance term can be interpreted similarly 

– The re-estimation formula for the transition probabilities aij is the same as 
in the discrete HMM 
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Semi-continuous HMMs 

• Continuous HMMs avoid the distortions introduced by a 
discrete codebook, but this comes at a price  
– A large number of mixtures are generally required to improve the 

recognition accuracy as compared to D-HMMs [Huang, 1992] 

– As a result, the computational complexity of C-HMMs increases 
considerably with respect to D-HMMs 

– In addition, the number of free parameters increases significantly, 
which means that a larger amount of training data is required to 
properly train the model 

• Semi-continuous HMMs (SC-HMMs) represent a compromise 
between discrete and continuous HMMs 
– In SC-HMMs, the observation space is modeled with a Gaussian 

mixture whose components (𝜇, Σ) are shared by all HMM states 

– Each state in the HMM, though, is allowed to have a different mixing 
coefficient 𝑐𝑗𝑘 for each of the k Gaussian components in the 
“common” mixture 
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Entropic training 
• Selecting the HMM model structure 

– Given that the process being modeled by an HMM is hidden, how can an 
appropriate model structure be selected? 
• In most cases, this is achieved by training several models with different 

structures and selecting the best one through cross-validation 

– Nonetheless, even after an appropriate model is selected, conventional 
training (Baum-Welch) leads to HMMs that are too ambiguous, too 
difficult to interpret 
• In an HMM it is not rare to find many slightly different state sequences that 

are virtually equally likely.  The Viterbi sequence, for instance, may represent 
only a small fraction of the total probability mass 

• An alternative procedure, known as entropic training,  can be used 
to learn sparse HMM models 
– Conventional HMM training (Baum-Welch) is based on a Maximum 

Likelihood criterion: find model parameters 𝜆 = {𝐴, 𝐵, 𝜋} that maximize 
the likelihood of the observation sequence 𝑃(𝑂|𝜆) 

– Entropic training is based on a MAP criterion 𝜆 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝜆|𝑂) with a 
prior term 𝑃(𝜆) that favors low-entropy multinomials 

 

 

 

 

[Brand, 1998] 
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• The prior term employed by entropic training is expressed by 

𝑃𝑒 𝜃 = 𝑒−𝐻 𝜃 = exp  𝜃𝑖 log 𝜃𝑖
𝑁
𝑖=1 =  𝜃𝑖

𝜃𝑖𝑁
𝑖=1   

– where 𝜃𝑖  are multimodal parameters,  
such as the set of transition probabilities  
𝑎𝑖𝑗 from a state, or the mixture coefficient  

in a GMM 

• This prior favors multinomials that have low entropy 𝐻(𝜽) 

– The highest entropy multinomial is a uniform histogram 

• This is called a “non informative” prior because it does not tell us anything about 
the parameter value 

– The lowest entropy corresponds to a histogram where all but one bin are zero 

• This histogram has no uncertainty: only one parameter value is possible 

 

 P(x) 

x 

P(x) 

x 

High entropy Low entropy 
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• Assume that you are given a collection of events {𝝎𝑖}, where 
𝝎𝑖  is the # occurrences of the i-th event in the multinomial 
– The likelihood of the collection of events 𝜔𝑖 given multinomial 𝜃𝑖 is 

𝑃 𝜔|𝜃 =  𝜃𝑖
𝜔𝑖𝑁

𝑖=1   

• Merging the entropic prior with the posterior leads to the 
following MAP objective function 

𝑃 𝜃|𝜔
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

∝ 𝑃𝑒 𝜃
𝑝𝑟𝑖𝑜𝑟

𝑃 𝜔|𝜃
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

∝  𝜃𝑖
𝜃𝑖𝑁

𝑖=1  𝜃𝑖
𝜔𝑖𝑁

𝑖=1 =  𝜃𝑖
𝜃𝑖+𝜔𝑖𝑁

𝑖=1   

– The MAP solution represents a compromise between the prior and the 
likelihood 

• If there is sufficient training data, the term 𝜃𝑖 + 𝜔𝑖  is dominated by 𝜔𝑖 
(note that 𝜔𝑖  represents an event “count”, whereas 𝜃𝑖  is a probability,) 
and the MAP solution converges to the Maximum Likelihood solution 

• If the training data is scarce, the term 𝜃𝑖 + 𝜔𝑖  will be dominated by 𝜃𝑖, 
and the MAP solution will converge to the Minimum Entropy solution 
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– To find the optimal model parameters 𝜃𝑖, we set the derivative of the 
log-posterior to zero using a Lagrange multiplier 𝜌 to ensure  𝜃𝑖𝑖 = 1 

𝜕𝑙𝑜𝑔𝑃(𝜃|𝜔)

𝜕𝜃𝑖
=

𝜕

𝜕𝜃𝑖
𝑙𝑜𝑔 𝜃𝑖

𝜃𝑖+𝜔𝑖𝑁
𝑖=1 + 𝜌  𝜃𝑖 − 1𝑁

𝑖=1 = 0  

 
𝜕

𝜕𝜃𝑖

𝑁
𝑖=1 𝜃𝑖 + 𝜔𝑖 log 𝜃𝑖 + 𝜌 

𝜕

𝜕𝜃𝑖
𝜃𝑖

𝑁
𝑖=1 = 0  

𝜔𝑖

𝜃𝑖
+ log𝜃𝑖 + 1 + 𝜌 = 0  

– This last expression defines a system of non-linear equations, whose 
solution can be found in [Brand, 1998] 
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• Examples 

– The right viewgraph shows the posterior of a binomial (e.g., a coin toss 
experiment) where heads occur twice as often as tails, and 𝜃 = 𝑃(𝐻) 

– In the absence of data, the posterior favors minimum entropy: either 𝜃 = 0 or 
𝜃 = 1 

– As the number of coin-tosses increases, the maximum of the posterior 
becomes closer to the ML solution 𝜃 = 2/3 

– The left viewgraph shows the asymptotic evolution of the MAP parameter 
estimates as the number of examples increases to 𝑁 → ∞ 

 
[Brand, 1998] 
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• How is entropic training used in practice? 
– In the context of mixture modeling, the parameters 𝜃𝑖 are the mixing 

coefficients of the different Gaussian components, and the “evidence” 
is the probability of each Gaussian component given the data 

𝜔𝑖 =  𝑝 𝑐𝑖|𝑥
(𝑛𝑁𝐸𝑋

𝑛=1   

– The figures below illustrate the results on the classical annulus 
problem for conventional (EM) training and entropic training.  The 
latter leads to a more concise Gaussian Mixture Model 

 

[Brand, 1998] 
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– In HMM training, each state has a set of parameters 𝜃 that represent the 
transitions probabilities from that state, and the “evidence” is the expected 
number of state transitions as measured by the E-step in Baum-Welch  

𝜔𝑖 =  𝜉𝑡 𝑖, 𝑗 =𝑇−1
𝑡=1  𝛼𝑡 𝑖 𝑎𝑖𝑗𝑏𝑗 𝑜𝑡+1 𝛽𝑡+1 𝑗𝑇−1

𝑡=1   

• Thus, entropic training treats HMMs as a collection of multinomials, one per state 

• The figures below illustrate the transition matrix for a left-right HMM trained with 
Baum-Welch and entropic training.  The latter leads to a sparse matrix 

– In either situation, convergence is accelerated by “trimming” parameters that 
fall below a threshold (see [Brand, 1998] for details) 

• An added advantage of entropic training is that you can start with a very large 
HMM (or GMM) and let the algorithm trim the model down to a smaller one 

 

[Brand, 1998] 




