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L7: Linear prediction of speech 
• Introduction 
• Linear prediction  
• Finding the linear prediction coefficients 
• Alternative representations 

This lecture is based on [Dutoit and Marques, 2009, ch1; Taylor, 2009, ch. 12; Rabiner and Schaefer, 2007, ch. 6]  
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Introduction 
• Review of speech production 

– Speech is produced by an excitation signal generated in the throat, 
which is modified by resonances due to the shape of the vocal, nasal 
and pharyngeal tracts 

– The excitation signal can be  
• Glottal pulses created by periodic opening and closing of the vocal folds 

(voiced speech) 
– These periodic components are characterized by their fundamental frequency 

(𝐹0), whose perceptual correlate is the pitch 

• Continuous air flow pushed by the lungs (unvoiced speech) 
• A combination of the two 

– Resonances in the vocal, nasal and pharyngeal tracts are called 
formants 
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– On a spectral plot for a speech frame 
• Pitch appears as narrow peaks for fundamental and harmonics 
• Formants appear as wide peaks in the spectral envelope 

[Dutoit and Marques, 2009] 
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Linear prediction 
• The source-filter model 

– Originally proposed by Gunnar Fant in 1960 as a linear model of 
speech production in which glottis and vocal tract are fully uncoupled 

– According to the model, the speech signal is the output 𝑦 𝑛  of an all-
pole filer 1 𝐴 𝑧⁄   excited by 𝑥 𝑛  

𝑌 𝑧 = 𝑋 𝑧 1
1−∑ 𝑎𝑘𝑧−𝑘

𝑝
𝑘=1

= 𝑋 𝑧 1
𝐴𝑝 𝑧

  

• where 𝑌 𝑧  and 𝑋 𝑧  are the z transforms of the speech and excitation 
signals, respectively, and 𝑝 is the prediction order 

– The filter 1 𝐴𝑝 𝑧⁄  is known as the synthesis filter, and 𝐴𝑝 𝑧  is called 
the inverse filter 

– As discussed before, the excitation signal is either 
• A sequence of regularly spaced pulses, whose period 𝑇0 and amplitude 𝜎 

can be adjusted, or 
• White Gaussian noise, whose variance 𝜎2 can be adjusted 
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[Dutoit and Marques, 2009] 
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– The above equation implicitly introduces the concept of linear 
predictability, which gives name to the model 

– Taking the inverse z-transform, the speech signal can be expressed as 

𝑦 𝑛 = 𝑥 𝑛 + � 𝑎𝑘
𝑝

𝑘=1
𝑦 𝑛 − 𝑘  

– which states that the speech sample can be modeled as a weighted 
sum of the 𝑝 previous samples plus some excitation contribution 
 

– In linear prediction, the term 𝑥 𝑛  is usually referred to as the error (or 
residual) and is often written as 𝑒 𝑛  to reflect this 
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• Inverse filter 
– For a given speech signal 𝑥 𝑛 , and given the LP parameters 𝑎𝑖 , the 

residual 𝑒 𝑛  can be estimated as 

𝑒 𝑛 = 𝑦 𝑛 −� 𝑎𝑘
𝑝

𝑘=1
𝑦 𝑛 − 𝑘  

• which is simply the output of the inverse filter excited by the speech 
signal (see figure below) 

– Hence, the LP model also allows us to obtain an estimate of the 
excitation signal that led to the speech signal 

• One will then expect that 𝑒 𝑛  will approximate a sequence of pulses (for 
voiced speech) or white Gaussian noise (for unvoiced speech) 
 

[Dutoit and Marques, 2009] 

𝐴𝑝 𝑧  𝑦 𝑛  𝑒 𝑛  

𝑎𝑖  
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Finding the LP coefficients 
• How do we estimate the LP parameters? 

– We seek to estimate model parameters 𝑎𝑖  that minimize the 
expectation of the residual energy 𝑒2 𝑛   

𝑎𝑖 𝑜𝑜𝑜 = arg min 𝑒2 𝑛  
 

– Two closely related techniques are commonly used 
• the covariance method  
• the autocorrelation method 
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• The covariance method 
– Using the term 𝐸 to denote the sum squared error, we can state 

𝐸 = � 𝑒2 𝑛
𝑁−1

𝑛=0
= � 𝑦 𝑛 −� 𝑎𝑘

𝑝

𝑘=1
𝑦 𝑛 − 𝑘

2𝑁−1

𝑛=0
 

 
– We can then find the minimum of 𝐸 by differentiating with respect to 

each coefficient 𝑎𝑖 and setting to zero  

𝜕𝜕
𝜕𝑎𝑗

= 0 ⇒� 2 𝑦 𝑛 −� 𝑎𝑘
𝑝

𝑘=1
𝑦 𝑛 − 𝑘 𝑦 𝑛 − 𝑗

𝑁−1

𝑛=0
= 

= −2� 𝑦 𝑛 𝑦 𝑛 − 𝑗
𝑁−1

𝑛=0
+ 2� � 𝑎𝑘𝑦 𝑛 − 𝑘 𝑦 𝑛 − 𝑗

𝑝

𝑘=1

𝑁−1

𝑛=0
= 0 

∀𝑗 = 1,2, …𝑝 
– which gives  

� 𝑦 𝑛 𝑦 𝑛 − 𝑗
𝑁−1

𝑛=0
= 2� 𝑎𝑘� 𝑦 𝑛 − 𝑘 𝑦 𝑛 − 𝑗

𝑁−1

𝑛=0

𝑝

𝑘=1
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– Defining  𝜙 𝑗, 𝑘  as  

𝜙 𝑗, 𝑘 = � 𝑦 𝑛 − 𝑗 𝑦 𝑛 − 𝑘
𝑁−1

𝑛=0
 

– This expression can be written more succinctly as  

𝜙 𝑗, 0 = � 𝜙 𝑗, 𝑘 𝑎𝑘
𝑝

𝑘=1
 

– Or in matrix notation as 
𝜙 1,0
𝜙 2,0

𝜙 𝑝, 0

=

𝜙 1,1 𝜙 1,2 𝜙 1,𝑝
𝜙 2,1 𝜙 2,2 𝜙 2,𝑝

𝜙 𝑝, 1 𝜙 𝑝, 2 𝜙 𝑝,𝑝

𝑎1
𝑎2

𝑎𝑝

 

– or even more compactly as Φ = Ψ𝑎 
 

– Since Φ is symmetric, this system of equations can be solved 
efficiently using Cholesky decomposition in 𝑂 𝑝3  
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– NOTES 
• This method is known as the covariance method (for unclear reasons) 

 
• The method calculates the error in the region 0 ≤ 𝑛 < 𝑁 − 1, but to do 

so uses speech samples in the region −𝑝 ≤ 𝑛 < 𝑁 − 1 
– Note that to estimate the error at 𝑦 0 , one needs samples up to 𝑦 −𝑝  

 
• No special windowing functions are needed for this method 

 
• If the signal follows an all-pole model, the covariance matrix can produce 

an exact solution 
– In contrast, the method we will see next is suboptimal, but leads to more 

efficient and stable solutions 
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• The autocorrelation method 
– The autocorrelation function of a signal can be defined as 

𝑅 𝑛 = � 𝑦 𝑚 𝑦 𝑛 −𝑚
∞

𝑚=−∞
 

– This expression is similar to that of 𝜙 𝑗,𝑘  in the covariance method but 
extends over to ±∞ rather than to the range 0 ≤ 𝑛 < 𝑁 

𝜙 𝑗, 𝑘 = � 𝑦 𝑛 − 𝑗 𝑦 𝑛 − 𝑘
∞

−∞
 

– To perform the calculation over ±∞, we window the speech signal (i.e., 
Hann), which sets to zero all values outside 0 ≤ 𝑛 < 𝑁 

– Thus, all errors 𝑒 𝑛  will be zero before the window and 𝑝 samples after 
the window, and the calculation of the error over ±∞ can be rewritten as 

𝜙 𝑗, 𝑘 = � 𝑦 𝑛 − 𝑗 𝑦 𝑛 − 𝑘
𝑁−1+𝑝

𝑛=0
 

– which in turn can be rewritten as  

𝜙 𝑗,𝑘 = � 𝑦 𝑛 𝑦 𝑛 + 𝑗 − 𝑘
𝑁−1−(𝑗−𝑘)

𝑛=0
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– thus, 𝜙 𝑗, 𝑘 = 𝑅 𝑗 − 𝑘  
– which allows us to write 𝜙 𝑗, 0 = ∑ 𝜙 𝑗, 𝑘 𝑎𝑘

𝑝
𝑘=1  as 

𝑅 𝑗 = � 𝑅 𝑗 − 𝑘 𝑎𝑘
𝑝

𝑘=1
 

– The resulting matrix 
𝑅 1
𝑅 2

𝑅 𝑝

=

𝑅 0 𝑅 1 𝑅 𝑝 − 1
𝑅 1 𝑅 0 𝑅 𝑝 − 2

𝑅 𝑝 − 1 𝑅 𝑝 − 2 𝑅 0

𝑎1
𝑎2

𝑎𝑝

 

– is now a Toeplitz matrix (symmetric, with all elements on each 
diagonal being identical), which is significantly easier to invert 

• In particular, the Levinson-Durbin recursion provides a solution in 𝑂 𝑝2  
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• Speech spectral envelope and the LP filter 
– The frequency response of the LP filter can be found by evaluating the 

transfer function on the unit circle at angles 2𝜋𝜋 𝑓𝑠⁄ , that is 

𝐻 𝑒𝑗𝑗𝑗𝑗 𝑓𝑠⁄ 2
=

𝐺
1 − ∑ 𝑎𝑘𝑒−𝑗𝑗𝑗𝑘𝑓 𝑓𝑠⁄𝑝

𝑘=1

2

 

 
– Remember that this all-pole filter models the resonances of the vocal 

tract and that the glottal excitation is captured in the residual 𝑒 𝑛  
– Therefore, the frequency response of 1 𝐴𝑝 𝑧⁄  will be smooth and 

free of pitch harmonics 
– This response is generally referred to as the spectral envelope  
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• How many LP parameters should be used? 
– The next slide shows the spectral envelope for 𝑝 = 12, 40 , and the 

reduction in mean-squared error over a range of values 
• At 𝑝 = 12 the spectral envelope captures the broad spectral peaks (i.e. 

the harmonics), whereas at 𝑝 = 40 the spectral peaks also capture  the 
harmonic structure 

• Notice also that the MSE curve flattens out above about 𝑝 = 12 and then 
decreases modestly after 

– Also consider the various factors that contribute to the speech spectra 
• Resonance structure comprising about one resonance per 1Khz, each 

resonance needing one complex pole pair 
• A low-pass glottal pulse spectrum, and a high-pass filter due to radiation 

at the lips, which can be modeled by 1-2 complex pole pairs 
• This leads to a rule of thumb of 𝑝 = 4 + 𝑓𝑠 1000⁄ , or about 10-12 LP 

coefficients for a sampling rate of 𝑓𝑠 = 8𝑘𝑘𝑘 
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[Rabiner and Schafer, 2007] 
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http://www.phys.unsw.edu.au/jw/graphics/voice3.gif 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 18 

• Examples 

ex7p1.m 
 Computing linear predictive coefficients  
 Estimating spectral envelope as a function  

of the number of LPC coefficients 
 Inverse filtering with LPC filters 
 Speech synthesis with simple excitation  

models (white noise and pulse trains) 
 

ex7p2.m 
 Repeat the above at the sentence level 
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Alternative representations 
• A variety of different equivalent representations can be 

obtained from the parameters of the LP model 
– This is important because the LP coefficients 𝑎𝑖  are hard to interpret 

and also too sensitive to numerical precision 
– Here we review some of these alternative representations and how 

they can be derived from the LP model 
• Root pairs 
• Line spectrum frequencies 
• Reflection coefficients 
• Log-area ratio coefficients 

– Additional representations (i.e., cepstrum, perceptual linear 
prediction) will be discussed in a different lecture 
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• Root pairs 
– The polynomial can be factored into complex pairs, each of which 

represents a resonance in the model 
• These roots (poles of the LP transfer function) are relatively stable and are 

numerically well behaved 

– The example in the next slide shows the roots (marked with a ×) of a 
12-th order model 

• Eight of the roots (4 pairs) are close  to the unit circle, which indicates  
they model  formant frequencies  

• The remaining four roots lie well within the unit circle, which means 
they only provide for the overall spectral shaping due to glottal and  
radiation influences 
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[Rabiner and Schafer, 2007] 

[McLoughlin and Chance, 1997] 
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• Line spectral frequencies (LSF) 
– A more desirable alternative to quantization of the roots of 𝐴𝑝 𝑧  is 

based on the so-called line spectrum pair polynomials 
𝑃 𝑧 = 𝐴 𝑧 + 𝑧− 𝑝+1 𝐴 𝑧−1  
𝑄 𝑧 = 𝐴 𝑧 − 𝑧− 𝑝+1 𝐴 𝑧−1  

• which, when added up, yield the original 𝐴𝑝 𝑧  

– The roots of 𝑃 𝑧 , 𝑄 𝑧  and 𝐴𝑝 𝑧  are shown in the previous slide 
• All the roots of 𝑃 𝑧  and 𝑄 𝑧  are on the unit circle and their frequencies 

(angles in the z-plane) are known as the line spectral frequencies 
• The LSFs are close together when the roots of 𝐴𝑝 𝑧  are close to the unit 

circle; in other words, presence of two close LSFs is indicative of a strong 
resonance (see previous slide) 

• LSFs are not overly sensitive to quantization noise and are also stable, so 
they are widely used for quantizing LP filters 
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• Reflection coefficients (a.k.a. PARCOR) 
– The reflection coefficients represent the fraction of energy reflected at 

each section of a non-uniform tube model of the vocal tract 
– They are a popular choice of LP representation for various reasons 

• They are easily computed as a by-product of the Levinson-Durbin iteration 
• They are robust to quantization error 
• They have a physical interpretation, making then amenable to 

interpolation 
– Reflection coefficients may be obtained from the predictor coefficients 

through the following backward recursion 
𝑟𝑖 = 𝑎𝑖𝑖     ∀𝑖 = 𝑝, … , 1 

𝑎𝑗𝑖−1 =
𝑎𝑗𝑖 + 𝑟𝑖𝑎𝑖−𝑗𝑖

1 − 𝑟𝑖2
   1 ≤ 𝑗 < 𝑖 

• where we initialize 𝑎𝑖
𝑝 = 𝑎𝑖 
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• Log-area ratios 
– Log-area ratio coefficients are the natural logarithm of the ratio of the 

areas of adjacent sections of a lossless tube equivalent to the vocal 
tract (i.e., both having the same transfer function) 

• While it is possible to estimate the ratio of adjacent sections, it is not 
possible to find the absolute values of those areas 
 

– Log-area ratios can be found from the reflection coefficients as 

𝐴𝑘 = ln
1 − 𝑟𝑘
1 + 𝑟𝑘

 

• where 𝑔𝑘 is the LAR and 𝑟𝑘 is the corresponding reflection coefficient 
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