
Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 1 

L6: Short-time Fourier analysis and synthesis 
• Overview 
• Analysis: Fourier-transform view 
• Analysis: filtering view 
• Synthesis: filter bank summation (FBS) method 
• Synthesis: overlap-add (OLA) method 
• STFT magnitude 

This lecture is based on chapter 7 of [Quatieri, 2002]  
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Overview 
• Recap from previous lectures 

– Discrete time Fourier transform (DTFT) 
• Taking the expression of the Fourier transform 𝑋 𝑗𝜔 = ∫ 𝑥(𝑡)𝑒−𝑗𝑗𝑡𝑑𝑑∞

−∞ , 
the DTFT can be derived by numerical integration 

𝑋 𝑒𝑗𝜔� = � 𝑥 𝑛 𝑒−𝑗𝜔�𝑛
∞

−∞
 

– where 𝑥 𝑛 = 𝑥 𝑛𝑇𝑆  and 𝜔� = 2𝜋𝜋 𝐹𝑆⁄  

– Discrete Fourier transform (DFT) 
• The DFT is obtained by “sampling” the DTFT at 𝑁 discrete frequencies 
𝜔𝑘 = 2𝜋𝐹𝑠 𝑁⁄ , which yields the transform  

𝑋 𝑘 = � 𝑥 𝑛 𝑒−𝑗
2𝜋
𝑁 𝑘𝑘

𝑁−1

𝑛=0
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• Why is another Fourier transform needed? 
– The spectral content of speech changes over time (non stationary) 

• As an example, formants change as a function of the spoken phonemes 
• Applying the DFT over a long window does not reveal transitions in 

spectral content 
– To avoid this issue, we apply the DFT over short periods of time 

• For short enough windows, speech can be considered to be stationary 
• Remember, though, that there is a time-frequency tradeoff here 
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• The short-time Fourier transform in a nutshell 
– Define analysis window (e.g., 30ms narrowband, 5 ms wideband) 
– Define the amount of overlap between windows (e.g., 30%) 
– Define a windowing function (e.g., Hann, Gaussian) 
– Generate windowed segments (multiply signal by windowing function) 
– Apply the FFT to each windowed segment 

 
 

[Sethares, 2007] 
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• Windowing function 
– To “localize” the speech signal in time, we define a windowing 

function 𝑤 𝑛, 𝜏 , which is generally tapered at its ends to avoid 
unnatural discontinuities in the speech segment  

– Any window affects the spectral estimate computed on it 
• The window is selected to trade off the width of its main lobe and 

attenuation of its side lobes 
– The most common are the Hann  

and Hamming windows (raised cosines) 

𝑤 𝑛, 𝜏 = 0.54 − 0.4 cos
2𝜋 𝑛 − 𝜏
𝑁𝑤 − 1

 

𝑤 𝑛, 𝜏 = 0.5 1 − cos
2𝜋 𝑛 − 𝜏
𝑁 − 1

 

 
 
 http://en.wikipedia.org/wiki/Window_function 
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STFT: Fourier analysis view 
• Discrete-time Short-time Fourier transform 

– The Fourier transform of the windowed speech waveform is defined as 

𝑋 𝑛,𝜔 = � 𝑥 𝑚 𝑤 𝑛 −𝑚 𝑒−𝑗𝑗𝑗
∞

𝑚=−∞
= � 𝑓𝑛 𝑚 𝑒−𝑗𝑗𝑗

∞

𝑚=−∞
 

• where the sequence 𝑓𝑛 𝑚 = 𝑥 𝑚 𝑤 𝑛 −𝑚  is a short-time section of 
𝑥 𝑚  at time 𝑛, and 𝑤 𝑛  is non-zero only in the interval [0,𝑁𝑤 − 1] 

[Quatieri, 2002] 

n 
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• Discrete STFT 
– By analogy with the DTFT/DFT, the discrete STFT is defined as 

𝑋 𝑛, 𝑘 = 𝑋 𝑛,𝜔 �
𝜔=2𝜋𝑁 𝑘

 

– The spectrogram we saw in previous lectures is a graphical display of 
the magnitude of the discrete STFT, generally in log scale 

𝑆 𝑛, 𝑘 = log 𝑋 𝑛, 𝑘 2 

• This can be thought of as a 2D plot of the relative energy content in 
frequency at different time locations 
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– For a long window 𝑤 𝑛 , the result is the narrowband spectrogram, 
which exhibits the harmonic structure in the form of horizontal 
striations 

– For a short window 𝑤 𝑛 , the result is the wideband spectrogram, 
which exhibits periodic temporal structure in the form of vertical 
striations 
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STFT: filtering view 
• The STFT can also be interpreted as a filtering operation 

– In this case, the analysis window 𝑤 𝑛  plays the role of the filter 
impulse response  

– To illustrate this view, we fix the value of 𝜔 at 𝜔0, and rewrite 

𝑋 𝑛,𝜔0 = � 𝑥 𝑚 𝑒−𝑗𝜔0𝑚 𝑤 𝑛 −𝑚
∞

𝑚=−∞
 

• which can be interpreted as the convolution of the signal 𝑥 𝑛 𝑒−𝑗𝜔0𝑛  
with the sequence 𝑤 𝑛 : 

𝑋 𝑛,𝜔0 = 𝑥 𝑛 𝑒−𝑗𝜔0𝑛 ∗ 𝑤 𝑛  

• and the product 𝑥 𝑛 𝑒−𝑗𝜔0𝑛 can be interpreted as the modulation of 𝑥 𝑛  
up to frequency 𝜔0 (i.e., per the frequency shift property of the FT) 
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[Quatieri, 2002] 
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– Alternatively, we can rearrange as [Quatieri, 2002] 

𝑋 𝑛,𝜔0 = 𝑒−𝑗𝜔0𝑛 𝑥 𝑛 ∗ 𝑤 𝑛 𝑒𝑗𝜔0𝑛  

• In this case, the sequence 𝑥 𝑛  is first passed through the same filter 
(with a linear phase factor 𝑒𝑗𝜔0𝑛), and the filter output is demodulated by 
𝑒−𝑗𝜔0𝑛 

 

[Quatieri, 2002] 
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– This later rearrangement allows us to interpret the discrete STFT as 
the output of a filter bank 

𝑋 𝑛, 𝑘 = 𝑒−𝑗
2𝜋
𝑁 𝑘𝑘 𝑥 𝑛 ∗ 𝑤 𝑛 𝑒𝑗

2𝜋
𝑁 𝑘𝑘  

• Note that each filter is acting as a bandpass filter centered around its 
selected frequency 

– Thus, the discrete STFT can be viewed as a collection of sequences, 
each corresponding to the frequency components of 𝑥 𝑛  falling 
within a particular frequency band 

• This filtering view is shown in the next slide, both from the analysis side 
and from the synthesis (reconstruction) side 
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[Quatieri, 2002] 

analysis synthesis 
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• Examples 

ex6p1.m 
Generate STFT using Matlab functions 
 

ex6p2.m 
Generate filterbank outputs using the filtering view 
of the STFT 
 

ex6p3.m 
Time-frequency resolution tradeoff (Quatieri fig 7.8) 
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Short-time synthesis 
• Under what conditions is the STFT invertible? 

– The discrete-time STFT 𝑋 𝑛,𝜔  is generally invertible 
• Recall that  

𝑋 𝑛,𝜔 = � 𝑓𝑛 𝑚 𝑒−𝑗𝑗𝑗
∞

𝑚=−∞
 

with 𝑓𝑛 𝑚 = 𝑥 𝑚 𝑤 𝑛 −𝑚  
• Evaluating 𝑓𝑛[𝑚] at 𝑚 = 𝑛 we obtain 𝑓𝑛[𝑛] = 𝑥 𝑛 𝑤 0  
• So assuming that 𝑤 0 ≠ 0, we can estimate 𝑥 𝑛  as 

𝑥 𝑛 = 1
2𝜋𝜋 0 ∫ 𝑋 𝑛,𝜔 𝑒𝑗𝑗𝑗𝑑𝑑𝜋

−𝜋    

– This is known as a synthesis equation for the DT STFT 
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– Redundancy of the discrete-time STFT 
• There are many synthesis equations that map 𝑋 𝑛,𝜔  uniquely to 𝑥 𝑛  
• Therefore, the STFT is very redundant if we move the analysis window one 

sample at a time 𝑛 = 1,2,3 …  
• For this reason, the STFT is generally computed by decimating over time, 

that is, at integer multiples 𝑛 = 𝐿, 2𝐿, 3𝐿…  
– For large 𝐿, however, the DT STFT may become non-invertible 

• As an example, assume that 𝑤 𝑛  is nonzero over its length 𝑁𝑤 
• In this case, when 𝐿 > 𝑁𝑤, there are some samples of 𝑥 𝑛  that are not 

included in the computation of 𝑋 𝑛,𝜔  
• Thus, these samples can have arbitrary values yet yield the same 𝑋 𝑘𝑘,𝜔  
• Since 𝑋 𝑘𝑘,𝜔  is not uniquely defined, it is not invertible 

𝐿 2𝐿 3𝐿 

𝑁𝑤 Unaccounted temporal samples 

Am
pl

itu
de

 

𝑛 
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– Likewise, the discrete STFT 𝑥 𝑛, 𝑘  is not always invertible 
• Consider the case where 𝑤 𝑛  is band-limited with bandwidth 𝐵 
• If the sampling interval 2𝜋 𝑁⁄  is greater than 𝐵, some of the frequency 

components in 𝑥 𝑛  do not pass through any of the filters of the STFT 
• Thus, those frequency components can have any arbitrary values yet 

produce the same discrete STFT 
• In consequence, depending on the frequency sampling resolution, the 

discrete STFT may become non invertible 
 

2𝜋
𝑁

 2
2𝜋
𝑁

 3
2𝜋
𝑁

 

𝐵 Lost spectral region 

Am
pl

itu
de

 

𝜔 

[Quatieri, 2002] 
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Synthesis: filter bank summation 
• FBS is based on the filtering interpretation of the STFT 

– As we saw earlier, according to this interpretation the discrete STFT is 
considered to be the set of outputs from a bank of filters 

– In the FSB method, the output of each filter is modulated with a 
complex exponential, and these outputs are summed to recover the 
original signal 

𝑦 𝑛 = 1
𝑁𝑁 0

∑ 𝑋 𝑛, 𝑘 𝑒𝑗
2𝜋
𝑁 𝑛𝑛∞

𝑚=−∞   

 

[Quatieri, 2002] 
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– Under which conditions does FBS yield exact synthesis? 
• It can be shown that 𝑦 𝑛 = 𝑥 𝑛  if either  

1. The length of 𝑤 𝑛  is less than or equal to the no. of filters 𝑁𝑤 < 𝑁 , or 
2. For 𝑁𝑤 > 𝑁: 

� 𝑊 𝜔−
2𝜋
𝑁
𝑘 = 𝑁𝑁 0

𝑁−1

𝑘=0
 

• The latter is known as the BFS constraint, and states that the frequency 
response of the analysis filters should sum to a constant across the entire 
bandwidth 

[Quatieri, 2002] 
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Synthesis: Overlap-add 
• OLA is based on the Fourier transform view of the STFT 

– In the OLA method, we take the inverse DFT for each fixed time in the 
discrete STFT 

– In principle, we could then divide by the analysis window 
• This method is not used, however, as small perturbations in the STFT can 

become amplified in the estimated signal 𝑦 𝑛  
– Instead, we perform an OLA operation between the sections 

• This works provided that 𝑤 𝑛  is designed such that the OLA effectively 
eliminates the analysis windows from the synthesized sequence 

• The intuition is that the redundancy within overlapping segments and the 
averaging of the redundant samples averages out the effect of windowing 

– Thus, the OLA method can be expressed as 

𝑦 𝑛 =
1

𝑊 0 � � 𝑋 𝑝, 𝑘 𝑒𝑗
2𝜋
𝑁 𝑘𝑘

𝑁−1

𝑘=0

∞

𝑝=−∞

 

– where the term inside the square brackets is the IDFT 
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– Under which conditions does OLA yield exact synthesis? 
• It can be shown that if the discrete STFT has been decimated by a factor 
𝐿, the condition 𝑦 𝑛 = 𝑥 𝑛  is met when 

∑ 𝑤 𝑝𝑝 − 𝑛∞
𝑝=−∞ = 𝑊 0

𝐿
  

• which holds when either  
1. The analysis window has finite bandwidth with maximum frequency 𝜔𝑐 less 

than 2𝜋/𝐿, or 
2. The sum of all the analysis windows (obtained by sliding 𝑤 𝑛  with 𝐿-point 

increments) adds up to a constant 

• In this case, 𝑥 𝑛  can then be resynthesized as 

𝑥 𝑛 =
𝐿

𝑊 0 �
1
𝑁� 𝑋 𝑝𝐿, 𝑘 𝑒𝑗

2𝜋
𝑁 𝑘𝑘

𝑁−1

𝑘=0

∞

𝑝=−∞

 

 
 

 

[Quatieri, 2002] 
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[Quatieri, 2002] 
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STFT magnitude 
• The spectrogram (STFT magnitude) is widely used in speech 

– For one, evidence suggests that the human ear extracts information 
strictly from a spectrogram representation of the speech signal 

– Likewise, trained researchers can visually “read” spectrograms, which 
further indicates that the spectrogram retains most of the information 
in the speech signal (at least at the phonetic level) 

– Hence, one may question whether the original signal 𝑥 𝑛  can be 
recovered from 𝑋 𝑛,𝜔 , that is, by ignoring phase information 
 

• Inversion of the STFTM 
– Several methods may be used to estimate 𝑥 𝑛  from the STFTM 
– Here we focus on a fairly intuitive least-squares approximation 
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• Least-squares estimation from the STFT magnitude 
– In this approach, we seek to estimate a sequence 𝑥𝑒 𝑛  whose STFT 

magnitude 𝑋𝑒 𝑛,𝜔  is “closest” (in a least-squared-error sense) to 
the known STFT magnitude 𝑋 𝑛,𝜔  

– The iteration takes place as follows 
• An arbitrary sequence (usually white noise) is selected as the first 

estimate 𝑥𝑒1 𝑛  
• We then compute the STFT of 𝑥𝑒1 𝑛  and modify it by replacing its 

magnitude by that of 𝑋 𝑛,𝜔  

𝑋1 𝑚,𝜔 = 𝑋 𝑚,𝜔
𝑋𝑒𝑖 𝑚,𝜔
𝑋𝑒𝑖 𝑚,𝜔

 

• From this, we obtain a new signal estimate as 

𝑥𝑒𝑖 𝑛 =
∑ 𝑤 𝑚 − 𝑛 𝑔𝑚𝑖−1 𝑛∞
𝑚=−∞
∑ 𝑤2 𝑚 − 𝑛∞
𝑚=−∞

 

 where𝑔𝑚𝑖−1 𝑛  is the inverse DFT of 𝑋𝑖−1 𝑚,𝜔  
• And the process continues iteratively until convergence or a stopping 

criterion is met 
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• It can be shown that this process reduces the distance between 
𝑋𝑒 𝑛,𝜔  and 𝑋 𝑛,𝜔  at each iteration 

• Thus, the process converges to a local minimum, though not necessarily a 
global minimum 

 
– All steps in the iteration can be summarized as (Quatieri, 2002; p. 342) 

𝑥𝑒𝑖+1 𝑛 =
∑ 𝑤 𝑚 − 𝑛 1

2𝜋 ∫ 𝑋𝑖 𝑚,𝜔 𝑒𝑗𝑗𝑗𝑑𝑑𝜋
−𝜋

∞
𝑚=−∞

∑ 𝑤2 𝑚 − 𝑛∞
𝑚=−∞

 

where 𝑋𝑖 𝑚,𝜔 = 𝑋 𝑚,𝜔 𝑋𝑒𝑖 𝑚,𝜔
𝑋𝑒𝑖 𝑚,𝜔

 

 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 27 

• Example 

ex6p4.m 
Estimate a signal from its STFT magnitude 
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