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L4: Signals and transforms 
• Analog and digital signals 
• Fourier transforms 
• Z transform 
• Properties of transforms 
 

This lecture is based on chapter 10 of [Taylor, TTS synthesis, 2009]  
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Analog signals 
• Signals 

– A signal is a pattern of variation that encodes information 
– A signal that varies over time is generally represented by a waveform 
– A signal that varies continuously (i.e. speech) is called an analog signal 

and can be denoted as 𝑥(𝑡) 

• Types of signals 
– Periodic signals are those that repeat themselves over time, whereas 

aperiodic are those that do not 
– Voiced speech signals are quasi-periodic since they do not repeat 

themselves exactly (i.e., due to jitter, shimmer and other causes) 
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• Sinusoids 
– Sinusoids are the basis for many DSP techniques as well as many 

processes in the physical world that oscillate 
– A sinusoid signal can be represented by a sine or a cosine wave 

𝑥 𝑡 = sin 𝑡  
𝑥𝑥(𝑡) = cos 𝑡  

– The only difference between both signals is a phase shift ϕ of 90 
degrees or π/2 radians 

𝑠𝑠𝑠 𝑡 = cos 𝑡 − 𝜋/2  

• Period and frequency 
– Period (T): time elapsed between two repetitions of the signal 

• Measured in units of time (seconds) 
– Frequency (F): # of times that a signal repeats per unit of time 

• Measured in hertz (Hz) (cycles per second) 
• Frequency is the reciprocal of period: 𝐹 = 1/𝑇 
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– To change the frequency of a sinusoidal, we multiply time by 2𝜋𝜋, 
where F is measured in Hz 

𝑥 𝑡 = cos 2𝜋𝜋𝜋 + 𝜑  
– To scale the signal, we then multiply by parameter 𝐴, its amplitude 

𝑥 𝑡 = Acos 2𝜋𝜋𝜋 + 𝜑  
– And to avoid having to write 2𝜋 every time, we generally use angular 

frequency ω, which has units of radians per second (1 cycle=2π rad) 
𝑥 𝑡 = Acos 𝜔𝜔 + 𝜑  

 

ex4p1.m 
Generate various sine waves with different 
phases, amplitudes and frequencies 
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• General periodic signals 
– Periodic signals do not have to be sinusoidal, they just have to meet 

𝑥 𝑡 = 𝑥 𝑡 + 𝑇 = 𝑥 𝑡 + 2𝑇 = ⋯ = 𝑥 𝑡 + 𝑛𝑇  
for some value 𝑇 = 𝑇0, which is called its fundamental period 

– The reciprocal 𝐹0 = 1 𝑇0⁄  is called the fundamental frequency 
– A harmonic frequency is any integer multiple of the fundamental 

frequency, 2𝐹0, 3𝐹0, … 
• Fourier synthesis 

– It can be shown that ANY periodic signal can be represented as a sum 
of sinusoidals whose frequencies are harmonics of 𝐹0 

𝑥 𝑡 = 𝑎0𝑐𝑐𝑐 𝜑0 + 𝑎1𝑐𝑐𝑐 𝜔0𝑡 + 𝜑1 + 𝑎2𝑐𝑐𝑐 2𝜔0𝑡 + 𝜑2 + ⋯ 
• i.e., for appropriate values of the amplitudes 𝑎𝑘 and phases 𝜑𝑘 

– which can be written in compact form as 

𝑥 𝑡 = 𝐴0 + � 𝑎𝑘𝑐𝑐𝑐 𝑘𝜔0𝑡 + 𝜑𝑘
∞

𝑘=1
 

– The above is known as the Fourier series 
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• Exercise 
– Synthesize a periodic square wave  𝑥 𝑡  as a sum of sinusoidals 

𝑥 𝑡 = � 1 0 ≤ 𝑡 ≤ 𝑇0 2⁄
−1 𝑇0 2⁄ ≤ 𝑡 ≤ 𝑇0

 

– It can be shown that the square wave can be generated by adding the 
odd harmonics, each having the same phase 𝜑 = −𝜋/2, and the 
following amplitudes 

𝑎𝑘 = �4 𝑘𝜋⁄ 𝑘 = 1,3,5 …
0 𝑘 = 0,2,4 … 

 
 
 

– This is all very interesting, but eventually we would like to do the 
reverse: estimate the parameters 𝑎𝑘 from the signal 𝑥 𝑡  

• This reverse problem is known as Fourier analysis, and will be described in 
a few slides 

ex4p2.m 
Generate code to reconstruct this signal 
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• Sinusoids as complex exponentials 
– A different representation of the sinusoidal 𝑥 𝑡 = Acos 𝜔𝜔 + 𝜑  

greatly simplifies the mathematics 
– This representation is based on Euler’s formula 

𝑒𝑗𝜃 = 𝑐𝑐𝑐𝜃 + 𝑗𝑗𝑗𝑗𝑗 
• where 𝑗 = −1, and 𝑒𝑗𝜃 is a complex number with real part 𝑐𝑐𝑐𝜃 and 

imaginary part 𝑠𝑖𝑖𝜃 
– The inverse Euler formulas are 

𝑐𝑐𝑐𝜃 =
𝑒𝑗𝜃 + 𝑒−𝑗𝜃

2
; 𝑠𝑠𝑠𝜃 =

𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗
 

 
– If we add amplitude 𝐴 and set 𝜃 = 𝜔𝜔 + 𝜑 

𝐴𝑒𝑗(𝜔𝜔+𝜑) = 𝐴𝑐𝑐𝑐 𝜔𝜔 + 𝜑 + 𝑗𝑗𝑗𝑗𝑗 𝜔𝜔 + 𝜑  
• This representation seems quite crazy, but it does simplify the math  
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– As an example, consider the following decomposition of the complex 
sine wave 

𝑥 𝑡 = 𝐴𝑒𝑗(𝜔𝜔+𝜑) = 𝐴𝑒𝑗𝜑𝑒𝑗𝜔𝜔 = 𝑋𝑒𝑗𝜔𝜔 
• Since 𝐴𝑒𝑗𝜑 is a constant, it can be combined with the amplitude 

𝑥 𝑡 = 𝑋𝑒𝑗𝜔𝜔 
– such that the pure sine part 𝑒𝑗𝜔𝜔 is now free of phase information 

• In practice, real signals (i.e., speech) do not have imaginary part, so one 
can simply ignore it 

– Combining this with the Fourier synthesis equation yields a more 
general expression 

𝑥 𝑡 = � 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡
∞

−∞
 

 where 𝑎𝑘 = 𝐴𝑘𝑒𝑗𝜑𝑘 
• It can be shown that for real-valued signals, the complex amplitudes are 

conjugate symmetric (𝑎𝑘= −𝑎𝑘), so the negative harmonics do not add 
information and the signal can be reconstructed by summing from 0 to ∞ 
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• Fourier analysis 
– Given a periodic signal 𝑥 𝑡 , the coefficients 𝑎𝑘 can be derived from 

the Fourier analysis equation: 

𝑎𝑘 =
1
𝑇0
� 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑑
𝑇0

0
 

– Example: compute the Fourier analysis for 𝑥 𝑡 = 𝑏𝑛𝑒𝑗𝑛𝜔0𝑡 

𝑎𝑘 =
1
𝑇0
� 𝑏𝑛𝑒𝑗𝑛𝜔0𝑡𝑒−𝑗𝑘𝜔0𝑡𝑑𝑑
𝑇0

0
=
𝑏𝑛
𝑇0
� 𝑒𝑗(𝑛−𝑘)𝜔0𝑡𝑑𝑑
𝑇0

0
 

• For 𝑛 = 𝑘, the integrand is 1, the integral is 𝑇0, and 𝑎𝑘 = 𝑏𝑛 (as expected) 
• For 𝑛 ≠ 𝑘, we have the integral of a (complex) sine wave over a multiple 

of its period, which integrates to zero: 

� 𝑒𝑗𝑘𝜔0𝑡𝑑𝑑
𝑇0

0
= 0 

– The representation of periodic signal 𝑥 𝑡  in terms of its harmonic 
coefficients 𝑎𝑘 is known as the spectrum 

• Hence, we can represent a signal in the time domain (a waveform) or in 
the frequency domain (a spectrum) 
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• Magnitude and phase spectrum 
– Rather than plotting the spectrum of a signal in terms of its real and 

imaginary parts, one generally looks at the magnitude and phase 
– The human ear is largely insensitive to phase information 

• As an example, if you play a piano note and then again a while later, both 
sound identical 

– This result holds when you have a complex signal 
• If we synthesize a signal with the same magnitude spectrum of a square 

wave and arbitrary phase it will sound the same as the square wave 
• Nonetheless, the two waveforms may look very different (see below)! 

– For these reasons, one generally studies just the magnitude spectrum 
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• Exercise 

ex4p3.m 
 Synthesize a square wave of the previous 

exercise, now with a different phase 
 Plot both and show they look very different 
 Play both and show they sounds similar 
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• The Fourier transform 
– In general we will need to analyze non-periodic signals, so the 

previous Fourier synthesis/analysis equations will not suffice 
– Instead, we use the Fourier transform, defined as 

𝑋 𝑗𝜔 = � 𝑥(𝑡)𝑒−𝑗𝑗𝑗𝑑𝑑
∞

−∞
 

• Compare with the Fourier analysis equation 𝑎𝑘 = 1
𝑇0
∫ 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑑𝑇0
0  

– The integral is over −∞,∞  since the signal is aperiodic 
– The result is a continuous function over frequency, rather than over a discrete 

set of harmonics 

– And the inverse Fourier transform is defined as 

𝑥 𝑡 = � 𝑋(𝑗𝜔)𝑒𝑗𝑗𝑡𝑑𝑑
∞

−∞
 

• For which the same discussion holds when compared to the Fourier 
synthesis equation 𝑥 𝑡 = ∑ 𝑎𝑘𝑒𝑗𝑗𝜔0𝑡∞

−∞  
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The Fourier transform as a sound “prism” 

From [Sethares (2007). Rhythms and transforms] 
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Digital signals 
• A digital signal 𝒙 𝒏  is a sequence of numbers 

𝑥 𝑛 = ⋯𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, … 
– Each point in the sequence is called a sample, and the distance (in 

time) between two samples is called the sampling period 𝑇𝑆 
• Likewise, the sample rate or sample frequency is 𝐹𝑆 = 1/𝑇𝑆 

– For a given sample frequency 𝐹𝑆, the highest frequencies that 𝑥 𝑛  can 
represent is 𝐹𝑆/2; this is known as the Nyquist frequency 

– The bit range describes the dynamic range of the digital signal, and is 
given by the number of bits used to store the signal 

• With 16 bits, you can represent 216 values, from -32768 to 32767 

• Normalized frequency 
– With digital signals, one generally uses the normalized frequency  

𝜔� = 𝜔 𝐹𝑆⁄ = 2𝜋𝜋 𝐹𝑆⁄  
• This will come in handy when you try to convert indices in the FFT into 

real frequencies (Hz) 
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• Aliasing 
– Occurs when the signal contains frequencies above 𝐹𝑆 2⁄  (video) 
– These frequencies appear as mirrored within the Nyquist range 
– Assume a signal with frequencies at 25Hz, 70Hz, 160Hz, and 510Hz, 

and a sampling frequency 𝐹𝑆 = 100𝐻𝐻 
• When sampled, the 25Hz component appears correctly 
• However, the remaining components appear mirrored 

– Alias F2: |100 – 70| = 30 Hz 
– Alias F3: |2×100 – 160| = 40 Hz 
– Alias F4: |5×100 – 510| = 10 Hz 

 

http://zone.ni.com/devzone/cda/tut/p/id/3016 

http://www.youtube.com/watch?v=jHS9JGkEOmA
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http://zone.ni.com/cms/images/devzone/tut/a/0f6e74b4493.jpg 

aliasing 

aliasing 
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• The discrete-time Fourier transform (DTFT) 
– Taking the expression of the Fourier transform 

𝑋 𝑗𝜔 = ∫ 𝑥(𝑡)𝑒−𝑗𝑗𝑡𝑑𝑑∞
−∞  and noticing that 𝑥 𝑛 = 𝑥 𝑛𝑇𝑆 , the DTFT 

can be derived by numerical (rectangular) integration 

𝑋 𝑗𝜔 = � 𝑥(𝑛𝑇𝑆)𝑒−𝑗𝑗𝑗𝑇𝑆 × 𝑇𝑆
∞

−∞
 

– which, using the normalized frequency 𝜔�, becomes 

𝑋 𝑒𝑗𝜔� = � 𝑥 𝑛 𝑒−𝑗𝜔�𝑛
∞

−∞
 

• where the multiplicative term 𝑇𝑆 has been neglected 
 

– Note that the DTFT is discrete in time but still continuous in frequency 
– In addition, it requires an infinite sum, which is not useful for 

computational reasons 
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• Discrete Fourier transform (DFT) 
– The DFT is obtained by “sampling” the spectrum at 𝑁 discrete 

frequencies 𝜔𝑘 = 2𝜋𝐹𝑠 𝑁⁄ , which yields the transform  

𝑋 𝑘 = � 𝑥 𝑛 𝑒−𝑗
2𝜋
𝑁 𝑘𝑘

𝑁−1

𝑛=0
 

– Interpretation 
• For each required frequency value 𝑋 𝑘 , we compute the inner value of 

our signal 𝑥 𝑛  with sine wave exp −𝑗𝑗𝜋𝑘𝑘/𝑁  
• The result is a complex number that describes the magnitude and phase 

of 𝑥 𝑛  at that frequency 
– Frequency resolution 

• Note that the number of time samples in 𝑥 𝑛  is the same as the number 
of discrete frequencies in 𝑋 𝑘  

• Therefore, the longer the waveform, the better frequency resolution we 
can achieve 

– As we saw in the previous lectures, though, with speech there is a limit to 
how long of a sequence we want to use since the signal is not stationary 
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– Both the DTFT and DFT have inverse transforms, defined by 

𝑥 𝑛 =
1

2𝜋
� 𝑋 𝑒𝑗𝜔� 𝑒𝑗𝜔�𝑛𝑑𝜔�
∞

−∞
 

𝑥 𝑛 =
1
𝑁
� 𝑋 𝑘 𝑒𝑗

2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑛=0
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• The DFT as a matrix multiplication 
– Denoting 𝑊𝑛 = 𝑒−𝑗𝑗𝑗/𝑁, the DFT can be expressed as 

𝑋 𝑘 = � 𝑥 𝑛 𝑊𝑛
𝑘𝑘

𝑁−1

𝑛=0
 

– Or using matrix notation: 
 
𝑋 0
𝑋 1
𝑋 2

𝑋 𝑁 − 1

=

1 1 1 1 1
1 𝑊𝑁 𝑊𝑁

2 𝑊𝑁
𝑁−1

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
2 𝑁−1

1
1 𝑊𝑁

𝑁−1 𝑊𝑁
2 𝑁−1 𝑊𝑁

𝑁−1 𝑁−1

𝑥 0
𝑥 1
𝑥 2

𝑥 𝑁 − 1

 

 
• So the DFT can also be thought of as a projection of the time series data 

by means of a complex-valued matrix 

http://en.wikipedia.org/wiki/DFT_matrix 

http://en.wikipedia.org/wiki/DFT_matrix
http://en.wikipedia.org/wiki/DFT_matrix
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– Note that the 𝑘𝑡𝑡 row of the DFT matrix consist of a unitary vector 
rotating clockwise with a constant increment of 2π𝑘/𝑁 
 
 
 
 
 
 
 
 
 
 
 

• The second and last row are complex conjugates 
• The third and second-to-last rom are complex conjugates… 

 
 
 

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]

=
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– So, expressing these rotating unitary vectors in terms of the underlying 
sine waves, we obtain 
 
 
 
 
 
 
 
 
 

• where the solid line represents the real part and the dashed line 
represent the imaginary part of the corresponding sine wave 

– Note how this illustration brings us back to the definition of the DFT as 
an inner product between our signal x[k] and a complex sine wave 

 http://en.wikipedia.org/wiki/DFT_matrix 

http://en.wikipedia.org/wiki/DFT_matrix
http://en.wikipedia.org/wiki/DFT_matrix
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• Example (1) 
– Sampling rate 𝐹𝑆 = 2𝑘𝑘𝑘  
– Signal 𝑥(𝑡) = sin (2𝜋10𝑡) 
– Recording length 1 sec 
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• Example (2) 
– Sampling rate 𝐹𝑆 = 2𝑘𝑘𝑘  
– Signal 𝑥(𝑡)  =  10sin (2𝜋10𝑡)  +  3sin (2𝜋100𝑡) 
– Recording length 1 sec 
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• Fast Fourier Transform (FFT) 
– The FFT is an efficient implementation of the DFT 

• The DFT runs in O(N2), whereas FFT algorithms run in O(Nlog2N) 
– Several FFT algorithms exists, but the most widely used are radix-2 

algorithms, which require 𝑁 = 2𝑘 samples 
• If the time signal does not have the desired number of samples, one 

simply “pads” the signal with extra zeros  
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• The Z transform 
– The Z transform is defined as 

𝑋 𝑧 = � 𝑥 𝑛 𝑧−𝑛
∞

𝑛=−∞
 

• which is the familiar DTFT for 𝑧 = 𝑒𝑗𝜔�  
– The Z transform is the most practical of all the transforms in digital 

signal processing because it allows us to manipulate signals and filters 
as polynomials (in 𝑧−1) 

𝑋 𝑧 = � 𝑥 𝑛 𝑧−1 𝑛
∞

𝑛=−∞
 

• The Laplace transform 
– A generalization of the Z transform for continuous-time signals 
– The Laplace transform is to the Fourier transform what the Z 

transform is to the DTFT 
– The Laplace transform is not required here since we will always work 

with discrete-time signals (i.e., after they are sampled) 
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• Frequency domain for digital signals 
– For analog signals, the frequency domain extends from -∞ to ∞ 

• For digital signals, however, we know that the Nyquist frequency 𝐹𝑆 2⁄  is 
the highest that can be represented by the signal 

• Thus, the spectrum for 𝑓 > 𝐹𝑆 2⁄  contains no new information 
– What happens beyond the Nyquist range? 

• It can be shown that the spectrum repeats itself at multiples of the 
Nyquist frequency, or at multiples of 2𝜋 for the normalized frequency 𝜔� 

• In other words, the spectrum of a digital signal is periodic 

• For this reason, the spectrum is described as 𝑋 𝑒𝑗𝜔�  rather than as 𝑋 𝜔�  
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[Proakis & Malonakis, 1996] 
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Properties of the transforms 
• A number of properties hold for all these transforms 

 
 
 

• Linearity 
– Taking the Fourier transform as an example, this means that  

• if 𝑥 𝑡 = 𝛼𝑠1 𝑡 + 𝛽𝑠2 𝑡 ,  
• then 𝑋 𝑗𝜔 = 𝛼𝑋1 𝑗𝜔 + 𝛽𝑋2 𝑗𝜔  

• Time and frequency duality 
– It can be shown that  

𝑔 𝑡
𝐹
→𝐺 𝜔  

𝑔 𝜔
𝐼𝐹
→𝐺 𝑡  

• To convince yourself, note that the Fourier transform and its inverse have 
very similar forms 
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• Time delay 
– Delaying a signal by 𝑡𝑑  is equivalent to multiplying its Fourier 

transform by 𝑒−𝑗𝑗𝑡𝑑 
𝑥 𝑡 ← 𝑋 𝑗𝑗  

𝑥 𝑡 − 𝑡𝑑 ← 𝑋𝑑 𝑗𝜔 = 𝑋 𝑗𝑗  𝑒−𝑗𝑗𝑡𝑑 
• Note that 𝑒−𝑗𝑗𝑡𝑑  does not affect the magnitude of 𝑋𝑑 𝑗𝑗 , only its phase 

by a linear delay of 𝑡𝑑, as we should expect 

• Frequency shift 
– From the duality principle, we can then infer that multiplying a signal 

by 𝑒𝑗𝜔0𝑡  causes a shift of 𝜔0 in its Fourier transform 
𝑥 𝑡 𝑒𝑗𝜔0𝑡 ← 𝑋 𝑗 𝜔 − 𝜔0  

– Thus, a shift in the frequency domain corresponds to modulation in 
the time domain 

• To see this, note that the Fourier transform of signal 𝑥 𝑡 = 𝑒𝑗𝜔0𝑡 (a sine 
wave) is 2𝜋𝜋 𝜔 − 𝜔0 , that is, a single impulse a frequency 𝜔0 

– This property will become handy when we introduce the STFT 
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• Scaling 
– Compression of a signal in time will stretch its Fourier transform, and 

vice versa 

𝑥 𝑎𝑎
𝐹
→

1
𝑎
𝑋 𝑗𝜔/𝑎  

• Impulse properties 
– If we compress the time signal more and more, we reach a unit 

impulse 𝛿 𝑛 , which has zero width 
– As expected from the scaling property, the Fourier transform of an 

impulse will then be infinitely stretched (it is 1 at all frequencies) 

𝛿 𝑡
𝐹
→ 1 

– and by virtue of the duality property 

1
𝐼𝐹
→𝛿 𝜔  

• which is also intuitive, since a constant signal (a DC offset) has no energy 
at frequencies other than zero 
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• Convolution 
– Convolution is defined as the overlap between two functions when 

one is passed over the other 

𝑓 𝑡 = 𝑔 𝑡 ⨂ℎ 𝑡 = �𝑔 𝜏 ℎ 𝑡 − 𝜏 𝑑𝑑 

• Convolution is similar to correlation, with the exception that in 
convolution one of the signals is “flipped” 

– Taking Fourier transforms on both sides, it can be shown that 
𝐹 𝜔 = 𝐺 𝜔 𝐻 𝜔  

• Recall a similar expression when we discussed the vocal tract filter? 
– In other words, convolution in the time domain corresponds to 

multiplication in the frequency domain 
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𝑔 𝑡  ℎ 𝑡  

𝑔 𝜏  

ℎ 𝑡 − 𝜏  
𝑔 𝑡  

ℎ 𝑡 − 𝜏  
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• Stochastic signals 
– All the transforms we have seen so far integrate/sum over an infinite 

sequence, which is meaningful only if the result is finite 
• This is the case for all periodic and many non-periodic signals, but is not 

always true; in the latter case, the Fourier transform does not exist 
– As an example, for stochastic signals generated from a random 

process, e.g., “noisy” fricative sounds 
• It is hard to describe them in the time domain due to their random nature 
• The Fourier/Z transforms cannot be used as defined 

– To avoid these issues, we analyze averages from these signals through 
the autocorrelation function (a measure of self-similarity) 

𝑅 𝑗 = � 𝑥 𝑛 𝑥 𝑛 − 𝑗
∞

𝑛=−∞
 

• which is the expected value of the product of signal 𝑥 𝑛  with a time-
shifted version of itself 

– The autocorrelation function does have a Fourier transform, which is 
known as the power spectral density of the signal 
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• Example 

ex4p4.m 
Compute the autocorrelation of a noisy 
signal, and then compute its power 
spectral density 
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