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L2: Speech production and perception 
• Anatomy of the speech organs 
• Models of speech production 
• Anatomy of the ear 
• Auditory psychophysics  
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Anatomy of the speech organs 
• The speech organs can be broadly divided into three groups 

– Lungs: serve as a “power supply” and provides airflow to the larynx 
– Vocal chords (Larynx): modulate the airflow into either a periodic 

sequence of puffs or a noisy airflow source 
• A third type of source is impulsive 
• Exercise, say the word “shop” and determine where each sound occurs  

– Vocal tract: converts modulated airflow into spectrally “colored” signal 
 
 
 

[Quatieri, 2002] 
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The vocal tract 
• The vocal tract can further be divided into 

– Velum (soft palate): controls airflow through the nasal cavity. In its 
open position is used for “nasals” (i.e., [n], [m]). 

– Hard palate: hard surface at the roof of the mouth. When tongue is 
pressed against it, leads to consonants 

– Tongue: Away from the palate produces vowels; close to or pressing 
the palate leads to consonants 

– Teeth: used to brace the tongue for certain consonants 
– Lips: can be rounded or spread to shape consonant quality, or closed 

completely to produce certain consonants (i.e., [p], [b], [m]) 

[Huang, Acero & Hon, 2001] 
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[Taylor, 2009] 
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The vocal folds 
• Two masses of flesh, ligament and muscle across the larynx 

– Fixed at the front of the larynx but free to move at the back and sides 
– Can be in one of three primary states 

• Breathing: Glottis is wide, muscles are relaxed, and air flows with minimal 
obstruction 

• Voicing: vocal folds are tense and are brought up together.  Pressure 
builds up behind, leading to an oscillatory opening of the folds (video) 

• Unvoiced:  similar to breathing state, but folds are closer, which leads to 
turbulences (i.e. aspiration, as in the sound [h] in ‘he’) or whispering 

http://biorobotics.harvard.edu/research/heather2.gif 
http://academic.kellogg.edu/herbrandsonc/bio201_mckinl
ey/f25-5b_vocal_folds_lary_c.jpg  

http://www.youtube.com/watch?v=iYpDwhpILkQ
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• Other (minor) forms of voicing include 
– Hoarse voice: voicing period (pitch) jitters, as what results from 

laryngitis or a cold 
– Breathy voice: aspiration occurs simultaneously while voicing (audio) 
– Creaky voice: vocal folds are very tense and only a portion oscillates. 

Result is a harsh sounding voice (audio) 
– Vocal fry: folds are very relaxed, which leads to secondary glottal 

pulses (video) 
– Diplophonic: secondary pulses occur, but during the closed phase 

 

[Quatieri, 2002] 

Vocal fry Diplophonia 

http://www.ims.uni-stuttgart.de/phonetik/EGG/breathy.wav
http://www.ims.uni-stuttgart.de/phonetik/EGG/harsh.wav
http://www.youtube.com/watch?v=P74x3D4NOuk
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Models of speech production 
• Acoustic theory of speech production 

– Speech occurs when a source signal passing through the glottis is 
modified by the vocal tract acting as a filter 

– Models of this kind are generally known as source-filter models 
– Using the theory of linear time invariant (LTI) systems, the overall 

process can be modeled in the z-domain (see lecture 4) as 
 
 

• where U(z) is the glottal source, and P(z), O(z), R(z) are the transfer 
functions at the pharynx, oral cavity and lips 

– which can be simplified as 
 

   

• by combining P(z) and O(z) into a single vocal-tract transfer function, 
which represents the filter component of the model 

𝑌 𝑧 = 𝑈 𝑧 𝑃 𝑧 𝑂 𝑧 𝑅 𝑧  

𝑌 𝑧 = 𝑈 𝑧 𝑉 𝑧 𝑅 𝑧  
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The physics of sounds 
• Resonant systems 

– Consider the mass spring shown below 
• If you displace the mass, the system will try to return to its rest position 
• In the process, it will lead to oscillations around the rest position 
• Due to frictions, the mass will eventually settle onto the rest position 

– Now consider a periodic forcing function being applied 
• At a certain frequency fR, the size of the oscillations will increase over 

time rather than decrease  
• Eventually, and in the absence of other factors, the system will break 
• Frequency fR is known as the resonant frequency of the system 

 
 

 

[Taylor, 2009] 

𝑓𝑅 =
1
2𝜋

𝑘
𝑚 
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The Tacoma Narrows Bridge 

http://www.youtube.com/watch?v=j-zczJXSxnw
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• Travelling and standing waves 
– Consider a person holding a rope fixed to a wall on the opposite end 

• The person gives a jerk to the rope, and as a result a wave forms and 
starts travelling down the rope 

• When the rope reaches the wall, it is reflected and begins to travel back 
towards the person 

• When it reaches the person, the wave is reflected back towards the wall 
• This process goes on until all energy in the rope dissipates 

[Taylor, 2009] 
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– Now consider the person performs a repetitive movement 
• The forward and backward wave will interfere, which may lead to full 

cancellation (if the two waves are in anti-phase) 
• At some frequencies, the reflected wave will reinforce the forward wave, 

and the rope settles into a fixed pattern 
• The resulting wave will appear not to be moving at all (a standing wave) 
• Thus the rope acts as a resonator: it amplifies some waves and attenuates 

others 
 

 

http://www.cccc.edu/instruction/slympany/ELN/236/
Mod7/loet01-07-06new.gif 

https://www.youtube.com/watch?v=7xCmtYXewdk
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– What determines the behavior of the system? 
• The frequency of the oscillations is determined entirely by the hand 
• The rate of travel of the wave is determined entirely by the rope 
• Boundary conditions: whether the rope is fixed or free at each end. 

– What is the relationship with the speech signal? 
• The hand acts as the source (the glottal pulses) 
• The rope acts as the filter (the vocal tract) 
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• Acoustic waves 
– Properties of sound waves traveling in a tube (i.e., vocal tract) are 

similar to those moving down a rope 
• The effect of a sound source causes air particles to move back and forth, 

so the wave spreads from the source 
– In some areas, particles come close together (compression) whereas in others 

they move further apart (rarefaction). 

• One difference is that sound waves are longitudinal whereas those in a 
rope are transverse, but otherwise the same mathematical model can be 
used for both systems 
 

[Taylor, 2009] 
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• Acoustic reflection and tube models 
– As with the rope, boundary conditions in the tube will determine how 

acoustic waves are reflected at the end of the tube 
• At certain frequencies, determined by the length of the tube and the 

speed of sound, the backward and forward waves will reinforce each 
other and cause resonances 

– We can model the volume velocity (e.g., particle  
velocity × area) at position x and time t as: 

 
 

• where 𝑢+(𝑡) and 𝑢−(𝑡) are the forward- and backward-travelling waves, 
and 𝑐 is the speed of sound 

– And the pressure becomes 
 
 

• where ρ𝑐/𝐴 is the characteristic impedance of the tube 
• Notice how in this case the two waves add up as they meet at point 𝑥 

 

[Taylor, 2009] 𝑢 𝑥, 𝑡 = 𝑢+ 𝑡 − 𝑥 𝑐⁄ − 𝑢− 𝑡 + 𝑥 𝑐⁄  

𝑝 𝑥, 𝑡 =
𝜌𝑐
𝐴 𝑢+ 𝑡 − 𝑥 𝑐⁄ + 𝑢− 𝑡 + 𝑥 𝑐⁄  
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– If the area of the tube remains constant, the wave propagates through 
the tube 

– However, if the area changes, then the impedance changes, which 
causes reflection, which in turn leads to standing waves, which then 
cause resonances 

– Thus, the impedance pattern on the tube determines the resonance 
properties of the model 
 

http://www.livingcontrolsystems.com/fests
chrift/nevin_files/image015.jpg 
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– The vocal tract can then be modeled as a series of short uniform tubes 
connected in series 

• By increasing the number of tubes, the vocal tract can be modeled with 
arbitrary accuracy 

• As we will see in linear predictive coding (lecture 7), a tube model with N 
sections leads to N/2 resonances, so in practice only a few tube sections 
are needed to model the main formants in the speech signal 

 

http://www.gregandmel.net/burnett_thesis/2_3.ht7.jpg 

[Taylor, 2009] 
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Anatomy of the ear 
• There are two major components in auditory system 

– The peripheral auditory organs (the ear) 
• Converts sounds pressure into mechanical vibration patterns, which then 

are transformed into neuron firings 
– The auditory nervous system (the brain) 

• Extracts perceptual information in various stages 
– We will focus on the peripheral auditory organ 

• The ear can be further divided into 
– Outer ear:  

• Encompasses the pinna (outer cartilage), auditory canal, and eardrum 
• Transforms sound pressure into vibrations 

– Middle ear:  
• Consists of three bones: malleus, incus and stapes 
• Transport eardrum vibrations to the inner ear 

– Inner ear:  
• Consists of the cochlea 
• Transforms vibrations into spike trains at the basilar membrane 
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http://www.bissy.scot.nhs.uk/master_code/pilsinl/042.gif 

Oval window 

https://www.youtube.com/watch?v=dCyz8-eAs1I
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• The cochlea 
– A tube coiled in a snake-shaped spiral 
– Inside filled with gelatinous fluid 
– Running along  its length is the basilar membrane 
– Along the BM are located approx. 10,000 inner hair cells 

• Signal transduction 
– Vibrations of the eardrum cause movement in the oval window 
– This causes a compression sound wave in the cochlear fluid 
– This causes vertical vibration of basilar membrane 
– This causes deflections in the inner hair cells, which then fire 

• Frequency tuning 
– BM is stiff/thin at basal end (stapes), but compliant/massive at apex 
– Thus, traveling waves peak at different positions along BM 
– As a result, BM can be modeled as a filter bank (video) 

 

http://www.youtube.com/watch?v=dyenMluFaUw
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http://upload.wikimedia.org/wikipedia/commons/6/65/Uncoiled_coc
hlea_with_basilar_membrane.png 

(apex) 

http://cobweb.ecn.purdue.edu/
~ee649/notes/figures/basilar_m
embrane.gif 

http://www.youtube.com/watch?v=dyenMluFaUw&feature=related
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http://hyperphysics.phy-astr.gsu.edu/hbase/sound/cochimp.html 
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[Rabiner & Schafer, 2007] 
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Auditory psychophysics 
• Psychoacoustics is concerned with  

quantitative modeling of human  
auditory perception 
– How does the ear respond to different  

intensities and frequencies? 
– How well does it focus on a sound of interest  

in the presence of interfering  sounds? 
 

• Thresholds 
– The ear is capable of hearing sounds in the range of 16Hz to 18kHz 
– Intensity is measured in terms of sound pressure levels (SPL) in units 

of decibels (dB) 
– Hearing threshold: Minimum intensity at which a sound is perceived 

• Sounds below 1kHz or above 5kHz have increasingly higher thresholds 
• Threshold is nearly constant across most speech frequencies (700Hz-7kHz) 

 
 

http://msis.jsc.nasa.gov/images/Section04/Image126.gif 

https://www.youtube.com/watch?v=H-iCZElJ8m0


Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 25 

• SPL and loudness 
– As with other sensory systems (seeing, smelling), auditory sensations 

increase logarithmically with the intensity of the stimulus 
– The relation between sound pressure p, sound intensity I and loudness 

S follows Steven’s power law 
𝑆 ∝ 𝑝0.6 ∝ 𝐼0.3 

• where the unit of 𝑆 is the sone, and  
the proportionality constant implied  
by the equation is frequency  
dependent 

– The ear is most sensitive to tones 
around 4kHz 

• Each loudness contour corresponds 
to a unit of a phons (the SPL in dB 
of a 1kHz tone) 

 
 

http://replaygain.hydrogenaudio.org/ 
pics/equal_loudness.gif 
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• Masking 
– A phenomenon whereby the perception of a sound is obscured by the 

presence of another (i.e., the latter raises the threshold of the former) 
– Masking is the major non-linear phenomenon that prevents treating 

the perception of speech sounds as a summation of responses 

• Two types of masking phenomena 
– Frequency masking 

• A lower frequency sound generally masks a higher frequency one 
• Leads to the concept of critical bands (next) 

– Temporal masking 
• Sounds delayed wrt one another can cause masking of either sound 
• Pre-masking tends to last 5ms; post-masking can last up to 50-300ms 
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http://homepage.mac.com/marc.heijligers/audio/ipod/compression/e
ncoding/encoding.html 

Frequency masking Temporal masking 
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• Critical bands 
– For a given frequency, the critical band is the smallest band of 

frequencies around it which activate the same part of the BM 
• Critical bandwidths correspond to about 1.5 mm spacing along the BM 
• This suggests that a set of 24 bandpass filters (with increasing bandwidth 

with frequency) would model the BM well 
– If a signal and masker are presented simultaneously, only the masker 

frequencies within the CB contribute to masking of the signal 
• The amount of masking is equal to the total energy of the masker within 

the CB of the probe 
 
 

[Rabiner & Schafer, 2007] 
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• How can you test a critical band experimentally? 
– Take a band-limited noise signal with a center frequency of 2 kHz, and play 

it alongside a sinusoidal 2 kHz tone  
– Make the tone very quiet relative to the noise  

• You will not be able to detect the tone because the noise signal will mask it  
• Now, turn up the level of the tone until you can hear it and write down its level 

– Increase the bandwidth of the noise (w/o turning up its level) and repeat 
• You'll find that your threshold for detecting the tone will be higher 
• In other words, if the bandwidth of the masking signal is increased, you have 

to turn up the tone more in order to be able to hear it 
– Increase the bandwidth and do the experiment over and over  

• As you increase the bandwidth of the masker, the detection threshold of the 
tone will increase up to a certain bandwidth. Then it won't increase any more! 

• This means that, for a given frequency, once you get far enough away in 
frequency, the noise does not contribute to the masking of the tone 

– The bandwidth at which the threshold for the detection of the tone stops 
increasing is the critical bandwidth 

 http://www.tonmeister.ca/main/textbook/node331.html 
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• Two perceptual scales have been derived  
from critical bands 
– Bark scale 

• Relates acoustic frequency to perceptual  
frequency resolution 

• One Bark equals one critical band 
 
 

 
 

– Mel scale (more on lecture 9) 
• Linear mapping up to 1 𝑘𝑘𝑧,  

then logarithmic at higher frequencies 
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𝑚 = 2595𝑙𝑙𝑙10 1 + 𝑓 700⁄  
[Rabiner & Schafer, 2007]  
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• Pitch perception 
– Like loudness, pitch is a subjective attribute, in this case related to the 

fundamental frequency (F0) of a periodic signal 
– The relationship between pitch and F0 is non linear and can be 

described by the Mel scale 

[Rabiner & Schafer, 2007] 
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