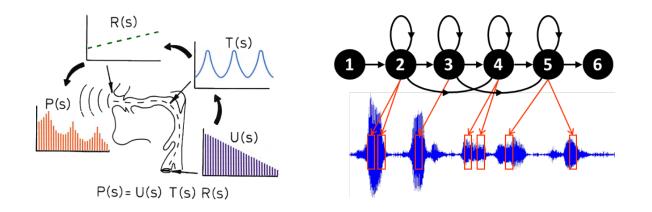
L1: Course introduction

Course introduction


Course logistics

Course contents

Course introduction

What is speech processing?

- The study of speech signals and their processing methods
- Speech processing encompasses a number of related areas
 - Speech recognition: extracting the linguistic content of the speech signal
 - Speaker recognition: recognizing the identity of speakers by their voice
 - Speech coding: compression of speech signals for telecommunication
 - Speech synthesis: computer-generated speech (e.g., from text)
 - Speech enhancement: improving intelligibility or perceptual quality of speech signals

The music carried on until ðə mju:zIk kær[i,I]d ɒn AntIl

after midnight and then the a:ft $\exists mIdnaIt[|,] \exists n[d] \exists n[|,] \exists n[d] \exists n[|,] d$

drummers became tired and $dr Am \partial z b[I,\partial] keIm taI \partial d[|,]\partial n[d]$

the dancers became cold. $\partial \partial da:ns \partial z b[1,\partial] keIm k \partial v ld|$

Applications of speech processing

- Human computer interfaces (e.g., speech I/O, affective)
- Telecommunication (e.g., speech enhancement, translation)
- Assistive technologies (e.g., blindness/deafness, language learning)
- Audio mining (e.g., diarization, tagging)
- Security (e.g., biometrics, forensics)

Related disciplines

- Digital signal processing
- Natural language processing
- Machine learning
- Phonetics
- Human computer interaction
- Perceptual psychology

The course objectives are to familiarize students with

- Fundamental concepts of speech production and speech perception
- Mathematical foundations of signal processing and pattern recognition
- Computational methods for speech analysis, recognition, synthesis, and modification

As outcomes, students will be able to

- Manipulate, visualize, and analyze speech signals
- Perform various decompositions, codifications, and modifications of speech signals
- Build a complete speech recognition system using state of the art tools

Course logistics

Class meetings

- MWF 11:30-12:20am
- HRBB 204

Course prerequisites

- ECEN 314 or equivalent, or permission of the instructor
- Basic knowledge of signals and systems, linear algebra, and probability and statistics
- Programming experience in a high-level language is required

Textbook

- The course will not have an official textbook and instead will be based on lecture slides developed by the instructor from several sources
- Additional course materials may be found in the course website <u>http://courses.cs.tamu.edu/rgutier/csce630_f14/</u>

Recommended references

- B. Gold, N. Morgan and D. Ellis, Speech and Audio Signal Processing: Processing and perception of speech and music, 2nd Ed., Wiley, 2011
- J. Holmes & W. Holmes, Speech Synthesis and Recognition, 2nd Ed, CRC Press, 2001 (available online at TAMU libraries)
- P. Taylor, *Text-to-speech synthesis*, Cambridge University Press, 2009
- L. R. Rabiner and R. W. Schafer, *Introduction to Digital Speech Processing*, Foundations and Trends in Signal Processing 1(1–2), 2007
- T. Dutoit and F. Marques, Applied signal processing, a Matlab-based proof-of-concept, Springer, 2009
- J. Benesty, M. M. Sondhi, and Y. Huang (Eds.), Springer Handbook of Speech Processing, 2008 (available online at TAMU libraries)
- X. Huang, A. Acero and H.-W. Hon, Spoken Language Processing, Prentice Hall, 2001

Grading

- Homework assignments
 - Three assignments, roughly every 2-3 weeks
 - Emphasis on implementation of material presented in class
 - Must be done individually

– Tests

- Midterm and final exam
- Closed-books, closed notes (cheat-sheet allowed)
- Project
 - Team-based, in groups of up to 3 people
 - Three types: application of existing tools, development of new tools, design of new algorithms

	Weight (%)	
Homework	40	
Project	30	
Midterm	15	
Final Exam	15	

Course contents

Introduction (3 lectures)

- Course introduction
- Speech production and perception
- Organization of speech sounds

Mathematical foundations (4 lectures)

- Signals and transforms
- Digital filters
- Probability, statistics and estimation theory
- Pattern recognition principles

Speech analysis and coding (4 lectures)

- Short-time Fourier analysis and synthesis
- Linear prediction of speech
- Source estimation
- Cepstral analysis

Speech and speaker recognition (6 lectures)

- Template matching
- Hidden Markov models
- Refinements for HMMs
- Large vocabulary continuous speech recognition
- The HTK speech recognition system
- Speaker recognition

Speech synthesis and modification (4 lectures)

- Text-to-speech front-end
- Text-to-speech back-end
- Prosodic modification of speech
- Voice conversion

Tentative schedule

Week	Date	Classroom meeting	Materials due
1	9/1	Course introduction	
	9/3	Speech production and perception	
	9/5	Organization of speech sounds	
2	9/8	Signals and transforms	
	9/10	Signals and transforms	
	9/12	Digital filters	
3	9/15	Digital filters	
	9/17	Short-time Fourier analysis and synthesis	
	9/19	Short-time Fourier analysis and synthesis	HW1 assigned
4	9/22	Linear prediction of speech	
	9/24	Linear prediction of speech	
	9/26	Source estimation	
5	9/29	Source estimation	
	10/1	Cepstral analysis	
	10/3	Cepstral analysis	HW1 due
6	10/6	Probability, statistics, and estimation theory	HW2 assigned
	10/8	Probability, statistics, and estimation theory	
	10/10	Pattern recognition principles	
7	10/13	Pattern recognition principles	
	10/15	Template matching	
	10/17	Hidden Markov models	
8	10/20	Hidden Markov models	
	10/22	Review/catch-up day	HW2 due
	10/24	Midterm exam	
9	10/27 10/29	Refinements for HMMs Refinements for HMMs	
	10/29	HTK speech recognition system	UW/2 assigned
	10/31	HTK speech recognition system	HW3 assigned
10	11/5	Large vocabulary continuous speech recognition	
	11/7	Large vocabulary continuous speech recognition	
11	11/10	Speaker recognition	
	11/10	Speaker recognition	
	11/12	Speech synthesis	
12	11/17	Speech synthesis	HW3 due
	11/19	Speech synthesis	ii wa duo
	11/21	Speech modification	
13	11/24	Proposal presentations	Project proposal
	11/26	Proposal presentations	j · · · · · · · ·
	11/28	Thanksgiving holiday	
14	12/1	Speech modification	
	12/3	Speech modification	
	12/5	Review/catch-up day	
15	12/8	Final exam	
	12/10	Reading day	
	12/12	No class	
16	12/17	Project presentations: 10:30am-12:30pm	Project report