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Lecture 5: Dimensionality reduction (PCA)

g The curse of dimensionality
g Dimensionality reduction

n Feature selection Vs. feature extraction

n Signal representation Vs. classification

g Principal Components Analysis
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g The curse of dimensionality
n A term coined by Bellman in 1961
n Refers to the problems associated with multivariate data analysis as the 

dimensionality increases
n We will illustrate these problems with a simple example

g Consider a 3-class pattern recognition problem
n A simple approach would be to 

g Divide the feature space into uniform bins

g Compute the ratio of examples for each class at each bin and, 

g For a new example, find its bin and choose the predominant class in that bin

n In our toy problem we decide to start with one single feature and divide the real 
line into 3 segments

n After we have done this, we notice that there exists too much overlap for the 
classes, so we decide to incorporate a second feature to try and improve the 
classification rate

The curse of dimensionality (1)
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g We decide to preserve the granularity of each axis, which raises the number of 
bins from 3 (in 1D) to 32=9 (in 2D)
n At this point we are faced with a decision: do we maintain the density of examples per bin or 

do we keep the number of examples we used for the one-dimensional case?
g Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
g Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

g Moving to three features makes the problem worse:
n The number of bins grows to 33=27

n For the same density of examples the number of needed 

examples becomes 81

n For the same number of examples, well, the 3D scatter 
plot is almost empty

The curse of dimensionality (2)
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The curse of dimensionality (3)

g Of course, our approach to divide the sample space into equally 
spaced bins was quite inefficient

n There are other approaches that are much less susceptible to the curse of 
dimensionality, but the problem still exists

g How do we beat the curse of dimensionality?
n By incorporating prior knowledge
n By providing increasing smoothness of the target function
n By reducing the dimensionality

g In practice, the curse of dimensionality means that, for a given sample 
size, there is a maximum number of features above which the 
performance of our classifier will degrade rather than improve

n In most cases, the additional information that is lost by discarding some features 
is (more than) compensated by a more accurate mapping in the lower-
dimensional space
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The curse of dimensionality (4)

g There are many implications of the curse of dimensionality
n Exponential growth in the number of examples required to maintain a given 

sampling density
g For a density of N examples/bin and D dimensions, the total number of examples is ND

n Exponential growth in the complexity of the target function (a density estimate) 
with increasing dimensionality

g “A function defined in high-dimensional space is likely to be much more complex than a 
function defined in a lower-dimensional space, and those complications are harder to 
discern” --Friedman

n This means that a more complex target function requires denser sample 
points to learn it well!

n What to do if it ain’t Gaussian?
g For one dimension, a large number of density functions can be found in textbooks, but 

for high-dimensions almost only the multivariate Gaussian density is left, and for larger 
values of D, the Gaussian density can only be handled in a simplified form!

n Humans have an extraordinary capacity to discern patterns and clusters in 1, 2 
and 3-dimensions, but these capabilities degrade drastically for 4 or higher 
dimensions
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Dimensionality reduction (1)
g Two approaches are available to perform dimensionality reduction

n Feature extraction: creating a subset of new features by combinations of the existing 
features

n Feature selection: choosing a subset of all the features (the ones more informative)
g Feature selection will be covered at the end of the course

g The problem of feature extraction can be stated as
n Given a feature space xi∈ RN find a mapping y=f(x):RN→RM with M<N such that the 

transformed feature vector yi∈ RM preserves (most of) the information or structure in RN.
n An optimal mapping y=f(x) will be one that results in no increase in the minimum 

probability of error
g This is, the probability of error is the same when a Bayes decision rule is applied on initial space RN 

and in the reduced space RM
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Dimensionality reduction (2)
g In general, the optimal mapping y=f(x) will be a non-linear function

n However, there is no systematic way to generate non-linear transforms
g The selection of a particular subset of transforms is problem dependent

n For this reason, feature extraction is commonly limited to linear transforms: y=Wx
g This is, y is a linear projection of x
g NOTE: When the mapping is a non-linear function, the reduced space is called a manifold

g We will focus on linear feature extraction for now on, and revisit non-linear 
techniques when we cover multi-layer perceptrons
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Signal representation versus classification

g The selection of the feature extraction mapping y=f(x) is guided by an 
objective function that we seek to maximize (or minimize)

g Depending on the criteria measured by the objective function, feature 
extraction techniques are grouped into two categories:
n Signal representation: The goal of the feature extraction mapping is to represent 

the samples accurately in a lower-dimensional space

n Classification: The goal of the feature extraction mapping is to enhance the 
class-discriminatory information in the lower-dimensional space

g Within the realm of linear feature extraction, two techniques are 
commonly used
n Principal Components Analysis (PCA)

g uses a signal representation criterion

n Linear Discriminant Analysis (LDA)
g uses a classification criterion
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Principal Components Analysis, PCA (1)
g The objective of PCA is to perform dimensionality reduction while preserving 

as much of the randomness in the high-dimensional space as possible
n Let x be an N-dimensional random vector, represented as a linear combination of 

orthonormal basis vectors [ϕ1| ϕ2| ... | ϕN] as

n Suppose we choose to represent x with only M (M<N) of the basis vectors. We can do this 
by replacing the components [yM+1, …, yN]T with some pre-selected constants

n The representation error is then

n We choose to measure this representation error by the mean-squared magnitude of ∆x

n Among all the basis vectors φi and constants bi we choose the ones that minimize this 
mean-square error





=
≠

==∑
= ji1

ji0
|whereyx ji

N

1i
ii

∑∑
+==

+=
N

1Mi
ii

M

1i
ii by)M(x̂

( )∑∑∑∑
+=+===

−=



 −−=−=

M

1Mi
iii

N

1Mi
ii

M

1i
ii

N

1i
ii bybyy)M(x̂x)M(x

[ ] ( )( ) ( )[ ]∑∑ ∑
+=+= +=

−=







−−==

N

1Mi

2
ii

N

1Mi

N

1Mj
j

T
ijjii

22 byEbybyE)M(xE)M(



Introduction to Pattern Recognition 
Ricardo Gutierrez-Osuna
Wright State University

10

Principal Components Analysis, PCA (2)
n The optimal values of bi are found by computing the partial derivative of the objective 

function and equating to zero

g So we will replace the discarded yi’s by their expected value (an intuitive solution)

n The mean-square error can be written as

n We seek to find the solution that minimizes this expression subject to the orthonormality 
constraint, which we incorporate into the expression using a set of Lagrange multipliers λ i

n Computing the partial derivative with respect to the basis vectors

g So ϕ i and λ i are the eigenvectors and eigenvalues of the covariance matrix Σx
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Principal Components Analysis, PCA (3)
n We can express the sum-square error as

n In order to minimize this measure, λ i will have to be smallest eigenvalues
g Therefore, to represent x with minimum sum-square error, we will choose the eigenvectors ϕi

corresponding to the largest eigenvalues λ I
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PCA dimensionality reduction

The optimal* approximation of a random vector x∈ℜ N by a linear combination of M 
(M<N) independent vectors is obtained by projecting the random vector x onto the 
eigenvectors ϕi corresponding to the largest eigenvalues λ i of the covariance matrix Σx

*optimality is defined as the minimum of the sum-square magnitude of the approximation error 

PCA dimensionality reduction

The optimal* approximation of a random vector x∈ℜ N by a linear combination of M 
(M<N) independent vectors is obtained by projecting the random vector x onto the 
eigenvectors ϕi corresponding to the largest eigenvalues λ i of the covariance matrix Σx

*optimality is defined as the minimum of the sum-square magnitude of the approximation error 



Introduction to Pattern Recognition 
Ricardo Gutierrez-Osuna
Wright State University

12

Principal Components Analysis, PCA (4)

g NOTES
n Since PCA uses the eigenvectors of the covariance matrix Σx, it is able to find 

the independent axes of the data under the unimodal Gaussian assumption 
g For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes

n The main limitation of PCA is that it does not consider class separability since it 
does not take into account the class label of the feature vector

g PCA simply performs a coordinate rotation that aligns the transformed axes with the 
directions of maximum variance

g There is no guarantee that the directions of maximum variance will contain good 
features for discrimination!!!

g Historical remarks
n Principal Components Analysis is the oldest technique in multivariate analysis

n PCA is also known as the Karhunen-Loève transform (communication theory)
n PCA was first introduced by Pearson in 1901, and it experienced several 

modifications until it was generalized by Loève in 1963
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PCA examples (1) 
g In this example we have a three-dimensional 

Gaussian distribution with the following 
parameters

g The three pairs of principal component 
projections are shown below

n Notice that the first projection has the largest 
variance, followed by the second projection

n Also notice that the PCA projections de-correlate 
the axis (we knew this since Lecture 2) 
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PCA examples (2)
g This example shows a projection of a three-dimensional data set into two dimensions

n Initially, except for the elongation of the cloud, there is no apparent structure in the set of points
n Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation 

as "walking around" the three-dimensional set, looking for the best viewpoint)

g PCA can help find such underlying structure. It selects a rotation such that most of the 
variability within the data set is represented in the first few dimensions of the rotated data

n In our three-dimensional case, this may seem of little use
n However, when the data is highly multidimensional (10’s of dimensions), the analysis is quite powerful


