Lecture 5: Dimensionality reduction (PCA)

m The curse of dimensionality

s Dimensionality reduction
e Feature selection Vs. feature extraction
e Signal representation Vs. classification

m Principal Components Analysis
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The curse of dimensionality (1)

m The curse of dimensionality
e A term coined by Bellman in 1961

e Refers to the problems associated with multivariate data analysis as the
dimensionality increases

o We will illustrate these problems with a simple example

m Consider a 3-class pattern recognition problem

e A simple approach would be to
m Divide the feature space into uniform bins
m  Compute the ratio of examples for each class at each bin and,
m For a new example, find its bin and choose the predominant class in that bin

e In our toy problem we decide to start with one single feature and divide the real

line into 3 segments

Xy

e After we have done this, we notice that there exists too much overlap for the
classes, so we decide to incorporate a second feature to try and improve the
classification rate
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The curse of dimensionality (2)

m We decide to preserve the granularity of each axis, which raises the number of
bins from 3 (in 1D) to 3%=9 (in 2D)
e At this point we are faced with a decision: do we maintain the density of examples per bin or
do we keep the number of examples we used for the one-dimensional case?
m  Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
»  Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse
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= Moving to three features makes the problem worse:
e The number of bins grows to 33=27 ® il 4 /{
e For the same density of examples the number of needed %
examples becomes 81 - I
e For the same number of examples, well, the 3D scatter
plot is almost empty A
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The curse of dimensionality (3)

Of course, our approach to divide the sample space into equally
spaced bins was quite inefficient

e There are other approaches that are much less susceptible to the curse of
dimensionality, but the problem still exists

How do we beat the curse of dimensionality?
e By incorporating prior knowledge
e By providing increasing smoothness of the target function
e By reducing the dimensionality
In practice, the curse of dimensionality means that, for a given sample

size, there is a maximum number of features above which the
performance of our classifier will degrade rather than improve
¢ |In most cases, the additional information that is lost by discarding some features

is (more than) compensated by a more accurate mapping in the lower-
dimensional space ,

performance
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The curse of dimensionality (4)

m There are many implications of the curse of dimensionality

Exponential growth in the number of examples required to maintain a given
sampling density

m For a density of N examples/bin and D dimensions, the total number of examples is NP
Exponential growth in the complexity of the target function (a density estimate)
with increasing dimensionality

= “A function defined in high-dimensional space is likely to be much more complex than a
function defined in a lower-dimensional space, and those complications are harder to
discern” --Friedman

e This means that a more complex target function requires denser sample
points to learn it well!
What to do if it ain’t Gaussian?

m For one dimension, a large number of density functions can be found in textbooks, but
for high-dimensions almost only the multivariate Gaussian density is left, and for larger
values of D, the Gaussian density can only be handled in a simplified form!

Humans have an extraordinary capacity to discern patterns and clusters in 1, 2
and 3-dimensions, but these capabilities degrade drastically for 4 or higher
dimensions
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Dimensionality reduction (1)

m Two approaches are available to perform dimensionality reduction

e Feature extraction: creating a subset of new features by combinations of the existing
features

e Feature selection: choosing a subset of all the features (the ones more informative)
m Feature selection will be covered at the end of the course
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m The problem of feature extraction can be stated as

e Given a feature space x,[JRN find a mapping y=f(x):RN - RM with M<N such that the
transformed feature vector y,lIRM preserves (most of) the information or structure in RN.

e An optimal mapping y=f(x) will be one that results in no increase in the minimum
probability of error

= This is, the probability of error is the same when a Bayes decision rule is applied on initial space RN
and in the reduced space RV
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Dimensionality reduction (2)

= In general, the optimal mapping y=f(x) will be a non-linear function
e However, there is no systematic way to generate non-linear transforms
m  The selection of a particular subset of transforms is problem dependent
e For this reason, feature extraction is commonly limited to linear transforms: y=Wx
m Thisis, yis a linear projection of x
=  NOTE: When the mapping is a non-linear function, the reduced space is called a manifold
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= We will focus on linear feature extraction for now on, and revisit non-linear
techniques when we cover multi-layer perceptrons
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Signal representation versus classification

m The selection of the feature extraction mapping y=f(x) is guided by an
objective function that we seek to maximize (or minimize)

s Depending on the criteria measured by the objective function, feature
extraction techniques are grouped into two categories:

e Signal representation: The goal of the feature extraction mapping is to represent
the samples accurately in a lower-dimensional space

e Classification: The goal of the feature extraction mapping is to enhance the
class-discriminatory information in the lower-dimensional space
= Within the realm of linear feature extraction, two techniques are
commonly used 4
e Principal Components Analysis (PCA)
m uses a signal representation criterion

e Linear Discriminant Analysis (LDA)
m uses a classification criterion

Feature 2

Feature 1
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Principal Components Analysis, PCA (1)

m The objective of PCA is to perform dimensionality reduction while preserving
as much of the randomness in the high-dimensional space as possible

e Let x be an N-dimensional random vector, represented as a linear combination of
orthonormal basis vectors [¢,| ¢,| ... | §,] as

N [0 i#]
= ©. wh . =
X Zy.cp.vvere P |9, % =

e Suppose we choose to represent x with only M (M<N) of the basis vectors. We can do this
by replacing the components [y,,,,. ..., Y\]" with some pre-selected constants

M N
X(M) = IZ Yi® +i:;lbi(pi

e The representation error is then

Ax(M) = x = )A((M) = iyi(pi - % Yi®i — _:ilbi(pi EZ ':il(yi - bi)(pi

e \We choose to measure this representation error by the mean-squared magnitude of Ax

g2(M) = EhAx(M)\z] = Eég

+1 ]

i l(yi ~b,)y, -b,JeTe, E: i:ilE[(yi ~b,)]

e Among all the basis vectors @ and constants bi we choose the ones that minimize this
mean-square error
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Principal Components Analysis, PCA (2)

The optimal values of b, are found by computing the partial derivative of the objective

function and equating to zero

0
£E (y, -b,f ] =-2(Ely]-b)=0 O b, =E[y]
= So we will replace the discarded y;'s by their expected value (an intuitive solution)

The mean-square error can be written as
£ = ;E[ €yl = 3 Elbo,-Epco)) (o, ~Erce)

<p?E[(X —E[X])(x - E[X])T]cpi X

i=M+1 i=M+1

We seek to find the solution that minimizes this expression subject to the orthonormality
constraint, which we incorporate into the expression using a set of Lagrange multipliers A,
N

N
eMmM =S zZ0 + ;Ai(l—cpfcpi)
1 i=M+1

i=M+

Computing the partial derivative with respect to the basis vectors

a?pl €2 (M) = a?pl Oc s, ¢ Z)\(l ¢, (P.)H ( 2.0, - ):0 0 .0 =AQ.
if Ais
NOTE: dix(xTAx) =(a+ATX = 2AX

= So ¢, and A, are the eigenvectors and eigenvalues of the covariance matrix Z,
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Principal Components Analysis, PCA (3)

e We can express the sum-square error as

2 — = T — =T — -
3 (M)_ ¢, Zx(Pi - ? )\i(pi - )\i

i=M+1 i=M+1 i=M+1

¢ In order to minimize this measure, A, will have to be smallest eigenvalues

m  Therefore, to represent x with minimum sum-square error, we will choose the eigenvectors ¢,
corresponding to the largest eigenvalues A,

PCA dimensionality reduction

The optimal* approximation of a random vector x[II N by a linear combination of M
(M<N) independent vectors is obtained by projecting the random vector x onto the

eigenvectors ¢; corresponding to the largest eigenvalues A; of the covariance matrix %,

*optimality is defined as the minimum of the sum-square magnitude of the approximation error
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Principal Components Analysis, PCA (4)

m NOTES
e Since PCA uses the eigenvectors of the covariance matrix %, it is able to find
the independent axes of the data under the unimodal Gaussian assumption
» For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
e The main limitation of PCA is that it does not consider class separability since it
does not take into account the class label of the feature vector

m PCA simply performs a coordinate rotation that aligns the transformed axes with the
directions of maximum variance

m Thereis no quarantee that the directions of maximum variance will contain good
features for discrimination!!!

m Historical remarks
e Principal Components Analysis is the oldest technique in multivariate analysis
e PCA is also known as the Karhunen-Loeve transform (communication theory)

e PCA was first introduced by Pearson in 1901, and it experienced several
modifications until it was generalized by Loeve in 1963
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PCA examples (1)

= In this example we have a three-dimensional
Gaussian distribution with the following
parameters
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m The three pairs of principal component
projections are shown below

¢ Notice that the first projection has the largest
variance, followed by the second projection

¢ Also notice that the PCA projections de-correlate
the axis (we knew this since Lecture 2)
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PCA examples (2)

m This example shows a projection of a three-dimensional data set into two dimensions
¢ Initially, except for the elongation of the cloud, there is no apparent structure in the set of points
e Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation
as "walking around" the three-dimensional set, looking for the best viewpoint)
s PCA can help find such underlying structure. It selects a rotation such that most of the
variability within the data set is represented in the first few dimensions of the rotated data
¢ In our three-dimensional case, this may seem of little use
e However, when the data is highly multidimensional (10’s of dimensions), the analysis is quite powerful
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