### Lecture 3: Review of Linear Algebra and MATLAB®

- Vector and matrix notation
- Vectors
- Matrices
- Vector spaces
- Linear transformations
- Eigenvalues and eigenvectors
- MATLAB<sup>®</sup> primer



### Vector and matrix notation

• A d-dimensional (column) vector x and its transpose are written as:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \text{ and } \mathbf{x}^{\mathsf{T}} = \begin{bmatrix} \mathbf{x}_1 \mathbf{x}_1 \cdots \mathbf{x}_d \end{bmatrix}$$

An n×d (rectangular) matrix and its transpose are written as:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & & a_{nd} \end{bmatrix} \text{ and } A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ a_{13} & a_{23} & \cdots & a_{n3} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1d} & a_{2d} & & a_{nd} \end{bmatrix}$$

The product of two matrices is

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1d} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2d} \\ \vdots & \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & a_{n3} & & a_{nd} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ b_{31} & b_{32} & \cdots & b_{3n} \\ \vdots & \vdots & \ddots & \\ b_{d1} & b_{d2} & & b_{dn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1d} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2d} \\ c_{31} & c_{32} & c_{33} & \cdots & c_{3d} \\ \vdots & \vdots & \vdots & \ddots & \\ c_{d1} & c_{d2} & c_{d3} & & c_{dd} \end{bmatrix}$$
where  $c_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj}$ 



#### **Vectors**

• The inner product (a.k.a. dot product or scalar product) of two vectors is defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \mathbf{y}^{\mathsf{T}} \mathbf{x} = \sum_{k=1}^{d} \mathbf{x}_{k} \mathbf{y}_{k}$$

• The <u>magnitude</u> of a vector is

$$|\mathbf{x}| = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \left[\sum_{k=1}^{d} \mathbf{x}_{k}\mathbf{x}_{k}\right]^{1/2}$$

• The <u>orthogonal projection</u> of vector y onto vector x is

$$\langle \mathbf{y}^{\mathsf{T}}\mathbf{u}_{\mathsf{x}}\rangle\mathbf{u}_{\mathsf{x}}$$

- where vector u<sub>x</sub> has unit magnitude and the same direction as x
- The <u>angle</u> between vectors x and y is

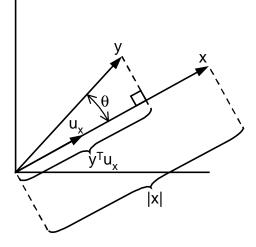
$$\cos\theta = \frac{\langle \mathbf{x}, \mathbf{y} | \mathbf{x} | \mathbf{y} \rangle}{|\mathbf{x}| \cdot | \mathbf{y}|}$$

- Two vectors x and y are said to be
  - <u>orthogonal</u> if x<sup>T</sup>y=0
  - <u>orthonormal</u> if  $x^Ty=0$  and |x|=|y|=1
- A set of vectors x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> are said to be <u>linearly dependent</u> if there exists a set of coefficients a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub> (at least one different than zero) such that

$$\mathbf{a}_1\mathbf{x}_1 + \mathbf{a}_2\mathbf{x}_2 + \cdots + \mathbf{a}_n\mathbf{x}_n = \mathbf{0}$$

• Alternatively, a set of vectors  $x_1, x_2, ..., x_n$  are said to be <u>linearly independent</u> if  $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0 \Rightarrow a_k = 0 \quad \forall k$ 





#### **Matrices**

• The determinant of a square matrix A<sub>d×d</sub> is

$$A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+1}$$

- where A<sub>ik</sub> is the minor matrix formed by removing the i<sup>th</sup> row and the k<sup>th</sup> column of A
- NOTE: the determinant of a square matrix and its transpose is the same:  $|A|=|A^{T}|$
- The <u>trace</u> of a square matrix A<sub>d×d</sub> is the sum of its diagonal elements

$$tr(A) = \sum_{k=1}^{d} a_{kk}$$

- The <u>rank</u> of a matrix is the number of linearly independent rows (or columns)
- A square matrix is said to be <u>non-singular</u> if and only if its rank equals the number of rows (or columns)
  - A non-singular matrix has a non-zero determinant
- A square matrix is said to be <u>orthonormal</u> if AA<sup>T</sup>=A<sup>T</sup>A=I
- For a square matrix A
  - if  $x^TAx>0$  for all  $x\neq 0$ , then A is said to be **positive-definite** (i.e., the covariance matrix)
  - if  $x^TAx \ge 0$  for all  $x \ne 0$ , then A is said to be **positive-semidefinite**
- The inverse of a square matrix A is denoted by A<sup>-1</sup> and is such that AA<sup>-1</sup>= A<sup>-1</sup>A=I
  - The inverse A<sup>-1</sup> of a matrix A exists if and only if A is non-singular
- The <u>pseudo-inverse</u> matrix A<sup>†</sup> is typically used whenever A<sup>-1</sup> does not exist (because A is not square or A is singular):

 $A^{\dagger} = [A^{T}A]^{-1}A^{T}$  with  $A^{\dagger}A = I$  (assuming  $A^{T}A$  is non-singular, note that  $AA^{\dagger} \neq I$  in general)



### **Vector spaces**

- The n-dimensional space in which all the n-dimensional vectors นว reside is called a vector space A set of vectors {u<sub>1</sub>, u<sub>2</sub>, ... u<sub>n</sub>} is said to form a <u>basis</u> for a vector a, space if any arbitrary vector x can be represented by a linear combination of the {u<sub>i</sub>}  $\mathbf{X} = \mathbf{a}_1\mathbf{u}_1 + \mathbf{a}_2\mathbf{u}_2 + \cdots + \mathbf{a}_n\mathbf{u}_n$ • The coefficients {a<sub>1</sub>, a<sub>2</sub>, ... a<sub>n</sub>} are called the <u>components</u> of vector x with respect to the basis  $\{u_i\}$ • In order to form a basis, it is necessary and sufficient that the {u<sub>i</sub>} vectors be a, linearly independent  $u_i^{\mathsf{T}} u_j \begin{cases} \neq 0 & i = j \\ = 0 & i \neq j \end{cases}$ u<sub>3</sub> A basis {u<sub>i</sub>} is said to be <u>orthogonal</u> if  $\mathbf{u}_{i}^{\mathsf{T}}\mathbf{u}_{j} = \begin{cases} 1 & i = j \\ 0 & i \neq i \end{cases}$ A basis {u<sub>i</sub>} is said to be <u>orthonormal</u> if นว d<sub>E</sub>(x,y) As an example, the Cartesian coordinate base is an orthonormal base • Given n linearly independent vectors  $\{x_1, x_2, \dots, x_n\}$ , we can construct an orthonormal base  $\{\phi_1, \phi_2, \dots, \phi_n\}$  for the vector space spanned by {x<sub>i</sub>} with the Gram-Schmidt Orthonormalization Procedure The distance between two points in a vector space is defined as the ≻u, magnitude of the vector difference between the points  $d_{E}(x,y) = |x-y| = \left[\sum_{k=1}^{d} (x_{k} - y_{k})^{2}\right]^{1/2}$ 
  - This is also called the Euclidean distance



## Linear transformations

- A <u>linear transformation</u> is a mapping from a vector space X<sup>N</sup> onto a vector space Y<sup>M</sup>, and is represented by a matrix
  - Given vector  $x \in X$ , the corresponding vector y on Y is computed as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \\ a_{M1} & a_{M2} & a_{M3} & & a_{MN} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$$

- Notice that the dimensionality of the two spaces does not need to be the same.
- For pattern recognition we typically have M<N (project onto a lower-dimensionality space)
- A linear transformation represented by a square matrix A is said to be orthonormal when AA<sup>T</sup>=A<sup>T</sup>A=I
  - This implies that A<sup>T</sup>=A<sup>-1</sup>
  - An orthonormal transformation has the property of preserving the magnitude of the vectors:

$$|\mathbf{y}| = \sqrt{\mathbf{y}^{\mathsf{T}}\mathbf{y}} = \sqrt{(\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{x})} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = |\mathbf{x}|$$

- An orthonormal matrix can be thought of as a rotation of the reference frame
- The row vectors of an orthonormal transformation form a set of orthonormal basis vectors

$$\mathbf{y}_{1 \times N} = \begin{bmatrix} \leftarrow & \mathbf{a}_1 & \rightarrow \\ \leftarrow & \mathbf{a}_2 & \rightarrow \\ \leftarrow & \mathbf{a}_2 & \rightarrow \end{bmatrix} \mathbf{x}_{1 \times N} \text{ with } \mathbf{a}_i^{\mathsf{T}} \mathbf{a}_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$



### **Eigenvectors and eigenvalues**

• Given a matrix  $A_{N \times N}$ , we say that v is an <u>eigenvector</u>\* if there exists a scalar  $\lambda$  (the <u>eigenvalue</u>) such that

 $Av = \lambda v \Leftrightarrow \begin{cases} v \text{ is an eigenvector} \\ \lambda \text{ is the corresponding eigenvalue} \end{cases}$ 

Computation of the eigenvalues

 $\begin{aligned} Av &= \lambda v \implies Av - \lambda v = 0 \implies (A - \lambda I)v = 0 \implies \begin{cases} v = 0 & \text{trivial solution} \\ (A - \lambda I) = 0 & \text{non-trivial solution} \end{cases} \\ (A - \lambda I) = 0 \implies |A - \lambda I| = 0 \implies \underbrace{\lambda^{N} + a_{1}\lambda^{N-1} + \cdots + a_{N-1}\lambda}_{N-1} + a_{0} = 0 \end{aligned}$ 

The matrix formed by the column eigenvectors is called the modal matrix M

$$\mathsf{M} = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \mathsf{v}_1 & \mathsf{v}_2 & \mathsf{v}_3 & \cdots & \mathsf{v}_N \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} \land = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & & \lambda_N \end{bmatrix}$$

#### Properties

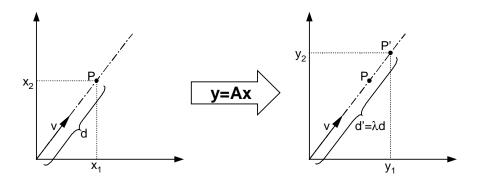
- If A is non-singular
  - All eigenvalues are non-zero
- If A is real and symmetric
  - All eigenvalues are real
  - The eigenvectors associated with distinct eigenvalues are orthogonal
- If A is positive definite
  - All eigenvalues will be positive



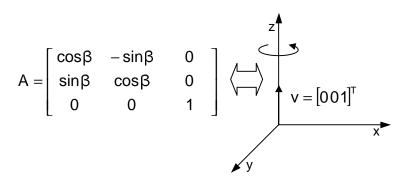
\*The "eigen-" of "eigenvector" is normally translated as "characteristic"

## Interpretation of eigenvectors and eigenvalues (1)

- If we view matrix A as a linear transformation, an eigenvector represents an invariant direction in the vector space
  - When transformed by A, any point lying on the direction defined by v will remain on that direction, and its magnitude will be multiplied by the corresponding eigenvalue  $\lambda$



• For example, the transformation which rotates 3-d vectors about the Z axis has vector [0 0 1] as its only eigenvector and 1 as the corresponding eigenvalue





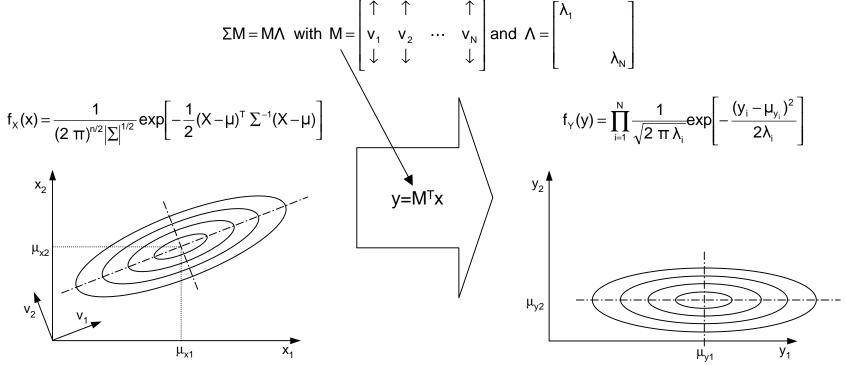
### Interpretation of eigenvectors and eigenvalues (2)

#### • Given the covariance matrix $\Sigma$ of a Gaussian distribution

- The eigenvectors of  $\Sigma$  are the principal directions of the distribution
- The eigenvalues are the variances of the corresponding principal directions

# The linear transformation defined by the eigenvectors of Σ leads to vectors that are uncorrelated <u>regardless</u> of the form of the distribution

• If the distribution happens to be Gaussian, then the transformed vectors will be statistically independent





Introduction to Pattern Recognition Ricardo Gutierrez-Osuna Wright State University

### **MATLAB®** primer

- The MATLAB environment
  - Starting and exiting MATLAB
  - Directory path
  - The startup.m file
  - The help command
  - The toolboxes

#### Basic features (help general)

- Variables
- Special variables (i, NaN, eps, realmax, realmin, pi, ...)
- Arithmetic, relational and logic operations
- Comments and punctuation (the semicolon shorthand)
- Math functions (help elfun)
- Arrays and matrices
  - Array construction
    - Manual construction
    - The 1:n shorthand
    - The linspace command
  - Matrix construction
    - Manual construction
    - Concatenating arrays and matrices
  - Array and Matrix indexing (the colon shorthand)
  - Array and matrix operations
  - Matrix and element-by-element operations
  - Standard arrays and matrices (eye, ones and zeros)
  - Array and matrix size (size and length)
  - Character strings (help strfun)
    - String generation
    - The str2mat function
- M-files
  - Script files
  - Function files
- Flow control
  - if..else..end construct
  - for construct
  - while construct
  - switch..case construct

- I/O (help iofun)
  - Console I/O
    - The fprintf and sprintf commands
    - the input command
  - File I/O
    - load and save commands
    - The fopen, fclose, fprintf and fscanf commands

#### 2D Graphics (help graph2d)

- The plot command
- Customizing plots
  - Line styles, markers and colors
  - Grids, axes and labels
- Multiple plots and subplots
- Scatter-plots
- The legend and zoom commands

#### 3D Graphics (help graph3d)

- Line plots
- Mesh plots
- image and imagesc commands
- 3D scatter plots
- the rotate3d command

#### Linear Algebra (help matfun)

- Sets of linear equations
- The least-squares solution (x = A\b)
- Eigenvalue problems
- Statistics and Probability
  - Generation
    - Random variables
      - Gaussian distribution: N(0,1) and N(μ,σ)
      - Uniform distribution
    - Random vectors
      - correlated and uncorrelated variables
  - Analysis
    - Max, min and mean
    - Variance and Covariance
    - Histograms



Introduction to Pattern Recognition Ricardo Gutierrez-Osuna Wright State University