Lecture 10: Density estimation Il

m Parzen windows

m Smooth kernels

m Bandwidth selection for univariate data
m Multivariate density estimation

m Product kernels

m Naive Bayes classifier
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KDE: Parzen windows (1)

In the previous lecture we found out that the non-parametric density estimate was

K V is the volume surrounding x
P(X)=—— where 1 N is the total number of examples
NV k is the number of examples inside V
Suppose that the region %R that encloses the k examples is a hypercube with sides of length
h centered at the estimation point x
e Then its volume is given by V=hP, where D is the number of dimensions
To find the number of examples that fall within this region we define a kernel function K(u)

K(u):{1 uj<v2  j=1..D

0 otherwise

e This kernel, which corresponds to a unit hypercube centered at the origin , is known as a Parzen window or
the naive estimator

The total number of points inside the hypercube is then ! W

kziK(X_x(nJ X, X3 Xol  Xq
n=1 h

e K((x-xM/h) is equal to unity if and only if the point x(" falls inside a hypercube

W:_/
of side h centered at x i T K(xxp)
Substituting back into the expression for the density estimate o

1 & (x=x"

n=1

Notice that the Parzen window density estimate resembles the
histogram, except that the cell locations are determined by the data points
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KDE: Parzen windows (2)

m To understand the role of the kernel function we compute the expectation of the probability
estimate P(x)

ElPeoe () - N_iDiEHX X J] _

n=1

—xn
- ity
h h

_ hiD | K(X;X’}’(x’)dx’

e where we have assumed that the vectors x" are drawn independently from the true density P(x)
= We can see that the expectation of the estimated density P,-(X) is a convolution of the true
density P(x) with the kernel function
e The width w of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother
the estimate Py e(X)
= For h—0, the kernel approaches a delta function and P, -(X) approaches the true density

e However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the
density estimate P ,:(X) approaches a set of delta functions centered at the data points
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KDE: smooth kernels

m The Parzen window has several drawbacks
¢ Yields density estimates that have discontinuities
o Weights equally all the points x;, regardless of their distance to the estimation point x

m |tis easy to to overcome some of these difficulties by generalizing the Parzen window with
a smooth kernel function K(u) which satisfies the condition

JK(x)dx =1

e Usually, but not not always, K(u) will be a radially symmetric, unimodal probability density function, such as
the multivariate Gaussian density function

K(x)= ﬁexp(—%ﬂx)

e where the expression of the density estimate remains the same as with Parzen windows

N (n 0.045 ;
SRR Ll Rt
n=1 o035l
m Just as the Parzen window estimate can be 0.03
considered a sum of boxes centered at the L o 0os) Kemel
observations, the smooth kernel estimate is a sum 2 o0l functions
of “bumps” placed at the observations " ool
e The kernel function determines the shape of the bumps 001}
e The parameter h, also called the smoothing parameter 0.005
or bandwidth, determines their width o -
Data
points
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Choosing the bandwidth: univariate case (1)

s The problem of choosing the bandwidth is crucial in density estimation
¢ A large bandwidth will over-smooth the density and mask the structure in the data
¢ A small bandwidth will yield a density estimate that is spiky and very hard to interpret
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Choosing the bandwidth: univariate case (2)

= We would like to find a value of the smoothing parameter that minimizes the error between
the estimated density and the true density
e A natural measure is the mean square error at the estimation point x, defined by

MSE, (Poe ) = ElProg (X)~P(x)) | = {E[Poe (X) - P(X)] 7 + var (Peoe (x))

bias variance

m This expression is an example of the bias-variance dilemma of statistics: the bias can be
reduced at the expense of the variance, and vice versa
e The bias of an estimate is the systematic error incurred in the estimation
e The variance of an estimate is the random error incurred in the estimation
m The bias-variance dilemma applied to bandwidth selection simply means that

e A large bandwidth will reduce the differences among the estimates of P,,<(x) for different data sets (the
variance) but it will increase the bias of P c(x) with respect to the true density P(x)

¢ A small bandwidth will reduce the bias of P,(X), at the expense of a larger variance in the estimates P ()
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Bandwidth selection methods, univariate case (1)

m Subjective choice

e The natural way for choosing the smoothing parameter is to plot out several curves and
choose the estimate that is most in accordance with one’s prior (subjective) ideas

e However, this method is not practical in pattern recognition since we typically have high-
dimensional data

m Reference to a standard distribution

e Assume a standard density function and find the value of the bandwidth that minimizes the
integral of the square error (MISE)

hopt = argpin{MISE(PKDE (x))}: arghmin{EU (PKDE (X)_ P(X))del}

e If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel,
it can be shown that the optimal value of the bandwidth becomes [Silverman]

hop =1.060N™°

» where ¢ is the sample variance and N is the number of training examples
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Bandwidth selection methods, univariate case

e Better results can be obtained if we use a robust measure of the spread instead of the
sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities
[Silverman]. With this in mind, the optimal bandwidth becomes

h,, =0.9AN™"® where A =min 0,@
P 1.34

= IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the
difference between the 75" percentile (Q3) and the 25™ percentile (Q1). The formula for semi-
interquartile range is therefore: (Q3-Q1)/2
e A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

m Likelihood cross-validation

e The ML estimate of h is degenerate since it yields h,, =0, a density estimate with delta
functions at each training data point

e An practical alternative is to maximize the “pseudo-likelihood” computed using cross-
validation

1 N
hycy = arg max{—ZIog f (x(”)}
h N n=1

(M _ (0
where fi(X(m)z(N—ll)h i K(%)

n=Ln#m
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Multivariate density estimation

m The derived expression of the estimate P ye(x) for multiple dimensions was

1 & (x=x"
PKDE (X) = K( )
=1

NhP 4 h
¢ Notice that the bandwidth h is the same for all the axes, so this density estimate will be
weight all the axis equally

s However, if the spread of the data is much greater in one of the coordinate
directions than the others, we should use a vector of smoothing parameters or
even a full covariance matrix, which complicates the procedure

m There are two basic alternatives to solve the scaling problem without having to
use a more general kernel density estimate
e Pre-scale each axis (normalize to unit variance, for instance)

o Pre-whiten the data (linearly transform to have unit covariance matrix), estimate the density,
and then transform back [Fukunaga]

—_—— —~—
—_—
—

» The whitening transform is simply y=A"1?MTx, - N
where A and M are the eigenvalue and eigenvector ///O O ]
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Product kernels

= A very common method of performing multivariate density estimation is the
product kernel, defined as

K(x X",y

Z||—\
M=

PKDE
i=1

where K(x, x®.h,,..., )

D (x(d)—x"(d)
hl---hD HK"( )

d=1 d

e The product kernel consists of the product of one-dimensional kernels
m Typically the same kernel function is used in each dimension ( K4(x)=K(x) ), and
only the bandwidths are allowed to differ

e Bandwidth selection can then be performed with any of the methods presented for univariate
density estimation

= It is important to notice that although the expression of K(x,x",h,,...hp) uses
kernel independence, this does not imply that any type of feature independence
IS being assumed
¢ A density estimation method that assumed feature independence would have the following

expression
)= 1 S0 X272

d=1 =1 d

e Notice how the order of the summation and product are reversed compared to the product
kernel
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Product kernel, example 1

distribution

m This example shows the product kernel density estimate of a bivariate unimodal Gaussian

100 data points were drawn from the distribution

The figures show the true density (left) and the estimates using h=1.066NY°> (middle) and h=0.9AN"Y> (right)
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Product kernel, example 2

m This example shows the product kernel density estimate of a bivariate bimodal Gaussian
distribution
e 100 data points were drawn from the distribution
e The figures show the true density (left) and the estimates using h=1.066N-V> (middle) and h=0.9AN-Y> (right)
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Naive Bayes classifier

Recall that the Bayes classifier is given by the following family of discriminant functions
choose w; if g,(x)>g;(x) Vj=i

where g;(X) =P(w, | X)
Using Bayes rule, these discriminant functions can be expressed as

i (x) = P(wi | X) o< P(X| wi)P(wi)

e where P(w) is our prior knowledge and P(x|m) is obtained through density estimation
Although we have presented density estimation methods that allow us to estimate the
multivariate likelihood P(x|w,), the curse of dimensionality still poses problems
One highly practical simplification of the Bayes classifier is the so-called Naive Bayes
classifier

e The Naive Bayes classifier makes the assumption that the features are class-conditionally independent

P(x|w) =HP(X(d)Iwi)

D
= [tis important to notice that this assumption is not as rigid as assuming independent features P(x) =HP(x(d))
d=1

e Merging this expression into the discriminant function yields the decision rule for the Naive Bayes classifier

Classifier

Gine (X) = P(wi)lg[ P(x(d) | w;) NEl® [EEyEs

The main advantage of the Naive Bayes classifier is that we only need to compute the
univariate densities P(x(d)|w;), which is a much easier problem than estimating the
multivariate density P(x|,)
e Despite its simplicity, the Naive Bayes has been shown to have comparable performance to artificial neural
networks and decision tree learning in some domains
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