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Lecture 10: Density estimation II

g Parzen windows
g Smooth kernels
g Bandwidth selection for univariate data
g Multivariate density estimation
g Product kernels
g Naïve Bayes classifier
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KDE: Parzen windows (1)
g In the previous lecture we found out that the non-parametric density estimate was

g Suppose that the region ℜ that encloses the k examples is a hypercube with sides of length 
h centered at the estimation point x

n Then its volume is given by V=hD, where D is the number of dimensions

g To find the number of examples that fall within this region we define a kernel function K(u)

n This kernel, which corresponds to a unit hypercube centered at the origin , is known as a Parzen window or 
the naïve estimator

g The total number of points inside the hypercube is then

n K((x-x(n)/h) is equal to unity if and only if the point x(n falls inside a hypercube 
of side h centered at x

g Substituting back into the expression for the density estimate

g Notice that the Parzen window density estimate resembles the 
histogram, except that the cell locations are determined by the data points
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KDE: Parzen windows (2)
g To understand the role of the kernel function we compute the expectation of the probability 

estimate P(x)

n where we have assumed that the vectors x(n are drawn independently from the true density P(x)

g We can see that the expectation of the estimated density PKDE(x) is a convolution of the true 
density P(x) with the kernel function
n The width w of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother 

the estimate PKDE(x)

g For h→0, the kernel approaches a delta function and PKDE(x) approaches the true density
n However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the 

density estimate PKDE(x) approaches a set of delta functions centered at the data points
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KDE: smooth kernels
g The Parzen window has several drawbacks

n Yields density estimates that have discontinuities
n Weights equally all the points xi, regardless of their distance to the estimation point x

g It is easy to to overcome some of these difficulties by generalizing the Parzen window with 
a smooth kernel function K(u) which satisfies the condition

n Usually, but not not always, K(u) will be a radially symmetric, unimodal probability density function, such as 
the multivariate Gaussian density function

n where the expression of the density estimate remains the same as with Parzen windows
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g Just as the Parzen window estimate can be 
considered a sum of boxes centered at the 
observations, the smooth kernel estimate is a sum 
of “bumps” placed at the observations

n The kernel function determines the shape of the bumps
n The parameter h, also called the smoothing parameter

or bandwidth, determines their width
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Choosing the bandwidth: univariate case (1)
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g The problem of choosing the bandwidth is crucial in density estimation
n A large bandwidth will over-smooth the density and mask the structure in the data

n A small bandwidth will yield a density estimate that is spiky and very hard to interpret
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Choosing the bandwidth: univariate case (2)
g We would like to find a value of the smoothing parameter that minimizes the error between 

the estimated density and the true density
n A natural measure is the mean square error at the estimation point x, defined by

g This expression is an example of the bias-variance dilemma of statistics: the bias can be 
reduced at the expense of the variance, and vice versa
n The bias of an estimate is the systematic error incurred in the estimation
n The variance of an estimate is the random error incurred in the estimation

g The bias-variance dilemma applied to bandwidth selection simply means that
n A large bandwidth will reduce the differences among the estimates of PKDE(x) for different data sets (the 

variance) but it will increase the bias of PKDE(x) with respect to the true density P(x)
n A small bandwidth will reduce the bias of PKDE(x), at the expense of a larger variance in the estimates PKDE(x) 
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Bandwidth selection methods, univariate case (1)
g Subjective choice

n The natural way for choosing the smoothing parameter is to plot out several curves and 
choose the estimate that is most in accordance with one’s prior (subjective) ideas

n However, this method is not practical in pattern recognition since we typically have high-
dimensional data

g Reference to a standard distribution
n Assume a standard density function and find the value of the bandwidth that minimizes the 

integral of the square error (MISE)

n If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel, 
it can be shown that the optimal value of the bandwidth becomes [Silverman]

g where σ is the sample variance and N is the number of training examples
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Bandwidth selection methods, univariate case
n Better results can be obtained if we use a robust measure of the spread instead of the 

sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities 
[Silverman]. With this in mind, the optimal bandwidth becomes

g IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the 
difference between the 75th percentile (Q3) and the 25th percentile (Q1). The formula for semi-
interquartile range is therefore: (Q3-Q1)/2

n A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

g Likelihood cross-validation
n The ML estimate of h is degenerate since it yields hML=0, a density estimate with delta 

functions at each training data point

n An practical alternative is to maximize the “pseudo-likelihood” computed using cross-
validation
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Multivariate density estimation
g The derived expression of the estimate PKDE(x) for multiple dimensions was

n Notice that the bandwidth h is the same for all the axes, so this density estimate will be 
weight all the axis equally

g However, if the spread of the data is much greater in one of the coordinate 
directions than the others, we should use a vector of smoothing parameters or 
even a full covariance matrix, which complicates the procedure

g There are two basic alternatives to solve the scaling problem without having to 
use a more general kernel density estimate 

n Pre-scale each axis (normalize to unit variance, for instance)

n Pre-whiten the data (linearly transform to have unit covariance matrix), estimate the density, 
and then transform back [Fukunaga]

g The whitening transform is simply y=Λ-1/2MTx, 

where Λ and M are the eigenvalue and eigenvector 

matrices of the sample covariance of x
g Fukunaga’s method is equivalent to using a 

hyper-ellipsoidal kernel 
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Product kernels
g A very common method of performing multivariate density estimation is the 

product kernel, defined as

n The product kernel consists of the product of one-dimensional kernels

g Typically the same kernel function is used in each dimension ( Kd(x)=K(x) ), and 
only the bandwidths are allowed to differ

n Bandwidth selection can then be performed with any of the methods presented for univariate 
density estimation

g It is important to notice that although the expression of K(x,x(n,h1,…hD) uses 
kernel independence, this does not imply that any type of feature independence 
is being assumed

n A density estimation method that assumed feature independence would have the following 
expression

n Notice how the order of the summation and product are reversed compared to the product 
kernel
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Product kernel, example 1
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g This example shows the product kernel density estimate of a bivariate unimodal Gaussian 
distribution

n 100 data points were drawn from the distribution 
n The figures show the true density (left) and the estimates using h=1.06σN-1/5 (middle) and h=0.9AN-1/5 (right)
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Product kernel, example 2
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g This example shows the product kernel density estimate of a bivariate bimodal Gaussian 
distribution

n 100 data points were drawn from the distribution 
n The figures show the true density (left) and the estimates using h=1.06σN-1/5 (middle) and h=0.9AN-1/5 (right)
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Naïve Bayes classifier
g Recall that the Bayes classifier is given by the following family of discriminant functions

g Using Bayes rule, these discriminant functions can be expressed as

n where P(ωi) is our prior knowledge and P(x|ωi) is obtained through density estimation

g Although we have presented density estimation methods that allow us to estimate the 
multivariate likelihood P(x|ωi), the curse of dimensionality still poses problems

g One highly practical simplification of the Bayes classifier is the so-called Naïve Bayes
classifier

n The Naïve Bayes classifier makes the assumption that the features are class-conditionally independent

g It is important to notice that this assumption is not as rigid as assuming independent features

n Merging this expression into the discriminant function yields the decision rule for the Naïve Bayes classifier

g The main advantage of the Naïve Bayes classifier is that we only need to compute the 
univariate densities P(x(d)|ωi), which is a much easier problem than estimating the 
multivariate density P(x|ωi)

n Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural 
networks and decision tree learning in some domains
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