Lecture 10: Density estimation II

- Parzen windows
- Smooth kernels
- Bandwidth selection for univariate data
- Multivariate density estimation
- **Product kernels**
- Naïve Bayes classifier

KDE: Parzen windows (1)

In the previous lecture we found out that the non-parametric density estimate was

$$P(x) \cong \frac{k}{NV} \ \ \, \text{where} \; \left\{ \begin{array}{l} \text{V is the volume surrounding x} \\ \text{N is the total number of examples} \\ \text{k is the number of examples inside V} \end{array} \right.$$

- Suppose that the region \Re that encloses the k examples is a hypercube with sides of length h centered at the estimation point x
 - Then its volume is given by V=h^D, where D is the number of dimensions
- To find the number of examples that fall within this region we define a kernel function K(u)

$$K(u) = \begin{cases} 1 & |u_j| < 1/2 & j = 1,...,D \\ 0 & \text{otherwise} \end{cases}$$

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a <u>Parzen window</u> or the <u>naïve estimator</u>
- The total number of points inside the hypercube is then

$$k = \sum_{n=1}^{N} K \left(\frac{x - x^{(n)}}{h} \right)$$

- K((x-x⁽ⁿ⁾/h) is equal to unity if and only if the point x⁽ⁿ⁾ falls inside a hypercube
 of side h centered at x
- Substituting back into the expression for the density estimate

$$P_{KDE}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K\left(\frac{x - x^{(n)}}{h}\right)$$

 Notice that the Parzen window density estimate resembles the histogram, except that the cell locations are determined by the data points

KDE: Parzen windows (2)

 To understand the role of the kernel function we compute the expectation of the probability estimate P(x)

$$E[P_{KDE}(x)] = \frac{1}{Nh^{D}} \sum_{n=1}^{N} E\left[K\left(\frac{x - x^{(n)}}{h}\right)\right] =$$

$$= \frac{1}{h^{D}} E\left[K\left(\frac{x - x^{(n)}}{h}\right)\right] =$$

$$= \frac{1}{h^{D}} \int K\left(\frac{x - x'}{h}\right) P(x') dx'$$

- where we have assumed that the vectors $x^{(n)}$ are drawn independently from the true density P(x)
- We can see that the expectation of the estimated density $P_{KDE}(x)$ is a convolution of the true density P(x) with the kernel function
 - The width w of the kernel plays the role of a smoothing parameter: the wider the kernel function, the smoother the estimate P_{KDE}(x)
- For h \rightarrow 0, the kernel approaches a delta function and $P_{KDE}(x)$ approaches the true density
 - However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the density estimate $P_{KDF}(x)$ approaches a set of delta functions centered at the data points

KDE: smooth kernels

- The Parzen window has several drawbacks
 - Yields density estimates that have discontinuities
 - Weights equally all the points x_i, regardless of their distance to the estimation point x
- It is easy to to overcome some of these difficulties by generalizing the Parzen window with a smooth kernel function K(u) which satisfies the condition

$$\int_{R^{D}} K(x) dx = 1$$

 Usually, but not not always, K(u) will be a radially symmetric, unimodal probability density function, such as the multivariate Gaussian density function

$$K(x) = \frac{1}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2}x^{T}x\right)$$

where the expression of the density estimate remains the same as with Parzen windows

$$P_{KDE}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K \left(\frac{x - x^{(n)}}{h} \right)$$

- Just as the Parzen window estimate can be considered a sum of boxes centered at the observations, the smooth kernel estimate is a sum of "bumps" placed at the observations
 - The kernel function determines the shape of the bumps
 - The parameter h, also called the **smoothing parameter** or **bandwidth**, determines their width

Choosing the bandwidth: univariate case (1)

The problem of choosing the bandwidth is crucial in density estimation

- A large bandwidth will over-smooth the density and mask the structure in the data
- A small bandwidth will yield a density estimate that is spiky and very hard to interpret

20 25

30

Choosing the bandwidth: univariate case (2)

- We would like to find a value of the smoothing parameter that minimizes the error between the estimated density and the true density
 - A natural measure is the mean square error at the estimation point x, defined by

$$MSE_{x}(P_{KDE}) = E[(P_{KDE}(x) - P(x))^{2}] = \underbrace{\{E[P_{KDE}(x) - P(x)]\}^{2} + \underbrace{var(P_{KDE}(x))}_{variance}}_{variance}$$

- This expression is an example of the <u>bias-variance dilemma</u> of statistics: the bias can be reduced at the expense of the variance, and vice versa
 - The bias of an estimate is the systematic error incurred in the estimation
 - The variance of an estimate is the random error incurred in the estimation
- The bias-variance dilemma applied to bandwidth selection simply means that
 - A large bandwidth will reduce the differences among the estimates of $P_{KDE}(x)$ for different data sets (the variance) but it will increase the bias of $P_{KDE}(x)$ with respect to the true density P(x)
 - A small bandwidth will reduce the bias of P_{KDE}(x), at the expense of a larger variance in the estimates P_{KDE}(x)

Bandwidth selection methods, univariate case (1)

Subjective choice

- The natural way for choosing the smoothing parameter is to plot out several curves and choose the estimate that is most in accordance with one's prior (subjective) ideas
- However, this method is not practical in pattern recognition since we typically have highdimensional data

Reference to a standard distribution

 Assume a standard density function and find the value of the bandwidth that minimizes the integral of the square error (MISE)

$$h_{opt} = \underset{h}{argmin} \big\{ MISE(P_{KDE}(x)) \big\} = \underset{h}{argmin} \big\{ E \Big[\int (P_{KDE}(x) - P(x))^2 dx \Big] \big\}$$

• If we assume that the true distribution is a Gaussian density and we use a Gaussian kernel, it can be shown that the optimal value of the bandwidth becomes [Silverman]

$$h_{opt} = 1.06 \sigma N^{-1/5}$$

• where σ is the sample variance and N is the number of training examples

Bandwidth selection methods, univariate case

 Better results can be obtained if we use a robust measure of the spread instead of the sample variance and we reduce the coefficient 1.06 to better cope with multimodal densities [Silverman]. With this in mind, the optimal bandwidth becomes

$$h_{opt} = 0.9AN^{-1/5}$$
 where $A = min\left(\sigma, \frac{IQR}{1.34}\right)$

- IQR is the interquartile range, a robust estimate of the spread. It is computed as one half the difference between the 75th percentile (Q3) and the 25th percentile (Q1). The formula for semi-interquartile range is therefore: (Q3-Q1)/2
 - A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

Likelihood cross-validation

- The ML estimate of h is degenerate since it yields h_{ML}=0, a density estimate with delta functions at each training data point
- An practical alternative is to maximize the "pseudo-likelihood" computed using crossvalidation

$$\begin{split} h_{MLCV} &= argmax \bigg\{ \frac{1}{N} \sum_{n=1}^{N} log f_i \Big(x^{(n)} \Big) \bigg\} \\ & \text{where } f_i \Big(x^{(m)} \Big) = \frac{1}{(N-1)h} \sum_{n=1, n \neq m}^{N} K \Bigg(\frac{x^{(m)} - x^{(n)}}{h} \Bigg) \end{split}$$

Multivariate density estimation

■ The derived expression of the estimate P_{KDE}(x) for multiple dimensions was

$$P_{KDE}(x) = \frac{1}{Nh^{D}} \sum_{n=1}^{N} K \left(\frac{x - x^{(n)}}{h} \right)$$

- Notice that the bandwidth h is the same for all the axes, so this density estimate will be weight all the axis equally
- However, if the spread of the data is much greater in one of the coordinate directions than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure
- There are two basic alternatives to solve the scaling problem without having to use a more general kernel density estimate
 - Pre-scale each axis (normalize to unit variance, for instance)
 - **Pre-whiten the data** (linearly transform to have unit covariance matrix), estimate the density, and then transform back [Fukunaga]
 - The whitening transform is simply $y=\Lambda^{-1/2}M^Tx$, where Λ and M are the eigenvalue and eigenvector matrices of the sample covariance of x
 - Fukunaga's method is equivalent to using a hyper-ellipsoidal kernel

Product kernels

 A very common method of performing multivariate density estimation is the product kernel, defined as

$$\begin{split} P_{PKDE}(x) &= \frac{1}{N} \sum_{i=1}^{N} K(x, x^{(n}, h_{1}, ..., h_{D}) \\ & \text{where } K(x, x^{(n}, h_{1}, ..., h_{D}) = \frac{1}{h_{1} \cdots h_{D}} \prod_{d=1}^{D} K_{d} \left(\frac{x(d) - x^{(n}(d)}{h_{d}} \right) \end{split}$$

- The product kernel consists of the product of one-dimensional kernels
- Typically the same kernel function is used in each dimension (K_d(x)=K(x)), and only the bandwidths are allowed to differ
 - Bandwidth selection can then be performed with any of the methods presented for univariate density estimation
- It is important to notice that although the expression of K(x,x⁽ⁿ,h₁,...h_D) uses kernel independence, this does not imply that any type of feature independence is being assumed
 - A density estimation method that assumed feature independence would have the following expression

$$P_{\text{FEAT-IND}}(x) = \prod_{d=1}^{D} \left(\frac{1}{Nh_{d}} \sum_{i=1}^{N} K_{d} \left(\frac{x(d) - x^{(n}(d)}{h_{d}} \right) \right)$$

 Notice how the order of the summation and product are reversed compared to the product kernel

Product kernel, example 1

- This example shows the product kernel density estimate of a bivariate unimodal Gaussian distribution
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using h=1.06σN^{-1/5} (middle) and h=0.9AN^{-1/5} (right)

Product kernel, example 2

- This example shows the product kernel density estimate of a bivariate bimodal Gaussian distribution
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using h=1.06 σ N^{-1/5} (middle) and h=0.9AN^{-1/5} (right)

Naïve Bayes classifier

Recall that the Bayes classifier is given by the following family of discriminant functions

choose
$$\omega_i$$
 if $g_i(x) > g_j(x) \ \forall j \neq i$

where
$$g_i(x) = P(\omega_i \mid x)$$

Using Bayes rule, these discriminant functions can be expressed as

$$g_i(x) = P(\omega_i \mid x) \propto P(x \mid \omega_i)P(\omega_i)$$

- where $P(\omega)$ is our prior knowledge and $P(x|\omega)$ is obtained through density estimation
- Although we have presented density estimation methods that allow us to estimate the multivariate likelihood $P(x|\omega_i)$, the curse of dimensionality still poses problems
- One highly practical simplification of the Bayes classifier is the so-called <u>Naïve Bayes</u> classifier
 - The Naïve Bayes classifier makes the assumption that the features are class-conditionally independent

$$P(x \mid \omega_i) = \prod_{d=1}^{D} P(x(d) \mid \omega_i)$$

- It is important to notice that this assumption is not as rigid as assuming independent features $P(x) = \prod_{d=1}^{D} P(x(d))$
- Merging this expression into the discriminant function yields the decision rule for the Naïve Bayes classifier

$$g_{i,NB}(x) = P(\omega_i) \prod_{d=1}^{D} P(x(d) \mid \omega_i)$$
 Naïve Bayes Classifier

- The main advantage of the Naïve Bayes classifier is that we only need to compute the univariate densities $P(x(d)|\omega_i)$, which is a much easier problem than estimating the multivariate density $P(x|\omega_i)$
 - Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural networks and decision tree learning in some domains

