Lecture 1: Course introduction

Course organization

- Grading policy
- Outline and calendar

Introduction to pattern recognition

- Definitions and related terms
- Features and patterns
- Decision regions and discriminant functions

Pattern recognition examples

Pattern recognition approaches

- Statistical
- Neural
- Structural

Course organization

Instructor

- Ricardo Gutierrez-Osuna
- Office: 401 RC
- Tel: (937) 775-5120
- Email: rgutier@cs.wright.edu
- http://www.cs.wright.edu/~rgutier
- Office hours: MW 4:00-5:30 PM

Meeting time and location

• 302 Russ Engineering Center, MW 5:35-6:50 PM

Grading

- Homework
 - Bi-weekly (first 6 weeks)
- Exams
 - 1 midterm and 1 final
- Term Project
 - Open-ended
 - In-class presentation

	Weight (%)	
Homework	30	
Project	30	
Midterm	20	
Final Exam	20	

Course outline

Introduction to Pattern Recognition (1)

- What is pattern recognition?
- Approaches to pattern recognition: statistical, neural and structural

Overview of Background Material (2)

- Random variables and Probability
- Linear Algebra
- MATLAB®

Decision Theory (1)

- Likelihood Ratio Test
- Probability of error, Bayes Risk
- Dimensionality reduction (2)
 - The curse of dimensionality
 - Principal Components Analysis
 - Linear Discriminant Analysis

Statistical Classifiers (2)

- Linear and quadratic classifiers
- The K Nearest Neighbor (KNN) classifier

Density Estimation (2)

- Parameter estimation: Maximum Likelihood
- Non-Parametric density estimation: Histograms, Kernels, KNN
- Optimal and Naïve Bayes Classifiers

Unsupervised Learning (2)

- K-means and ISODATA
- Hierarchical clustering
- Competitive Learning
- Kohonen Self-Organizing Maps

Feature Selection (2)

- Search strategies: exhaustive, sequential, randomized
- Evaluation strategies: filter, wrapper
- Validation (1)
 - Holdout, cross-validation, bootstrap
 - Data splits
- Classification using Multilayer Perceptrons (2)
 - Historical overview
 - Learning: back-prop and enhancements
 - The role of hidden and output units

Tentative quarter calendar

	Date Topic		Reading (chapters)	Assignments
ek 1	12/31	(No class)		
Week 1	1/2	Course introduction	1	
Week 2	1/7	Random variables, Probability	A.4, A.5	
Wee	1/9	Linear Algebra, MATLAB®	A.2	
k 3	1/14	Bayesian Decision Theory	2.1-3	HW1 assigned
Week 3	1/16	Dimensionality reduction: Principal Components Analysis	3.7, 3.8.1	
Week 4	1/21	Martin Luther King, Jr. Day (No class)		
	1/23	Dimensionality reduction: Linear Discriminants Analysis	3.8.2	
Week 5	1/28	Linear and quadratic classifiers	2.4-7	HW1 due HW2 assigned
	1/30	The K Nearest Neighbors classifier	4.5-6	
Week 6	2/4	Midterm		
	2/6	Parameter estimation, histograms, KNN	4.1-2, 4.4	
ık 7	2/11	Kernel Density Estimation	4.3	HW2 due HW3 assigned
Week 7	2/13	Unsupervised learning: statistical clustering	10.6-9	
Week 8	2/18	Unsupervised learning: Competitive Learning, Kohonen SOM	10.11, 10.14	
Wee	2/20	Feature selection I: objective functions, sequential FS		Project proposal due
Week 9	2/25	Feature selection II: exponential and randomized FS	7.2.1-2 7.5-6	HW3 due
	2/27	Validation	9.1-2, 9.4 9.6.1-3	
k 10	3/4	Multi-layer perceptrons: history, back-prop, enhancements	6.1-4	
Week 10	3/6	Multi-layer perceptrons: the role of hidden and output units	6.5-8	
k 11	3/11	Final Exam		
Week 11	3/13	Project Presentations 5:30-7:30 PM, RC 302		Project report due

R

Definition of pattern recognition

Definitions from the literature

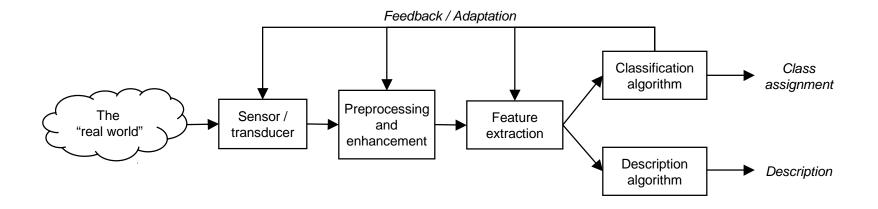
- "The assignment of a physical object or event to one of several prespecified categories" --Duda & Hart
- "A problem of estimating density functions in a high-dimensional space and dividing the space into the regions of categories or classes" --Fukunaga
- "Given some examples of complex signals and the correct decisions for them, make decisions automatically for a stream of future examples" – Ripley
- "The science that concerns the description or classification (recognition) of measurements" -- Schalkoff
- "The process of giving names a to observations x", --Schürmann
- Pattern Recognition is concerned with answering the question "What is this?" --Morse

More on Pattern Recognition

Related fields

- Adaptive Signal Processing
- Machine Learning
- Artificial Neural Networks
- Robotics and Vision
- Cognitive Sciences
- Mathematical Statistics
- Nonlinear Optimization
- Exploratory Data Analysis
- Fuzzy and Genetic systems
- Detection and Estimation Theory
- Formal Languages
- Structural Modeling

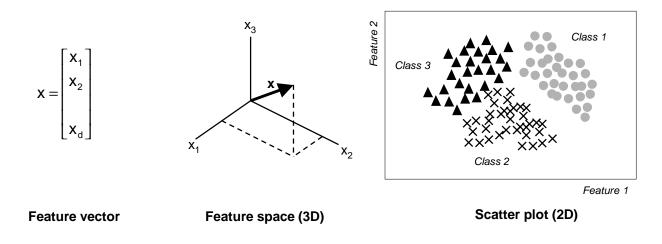
Applications


- Image Preprocessing / Segmentation
- Computer Vision
- Speech Recognition
- Automated Target Recognition
- Optical Character Recognition
- Seismic Analysis
- Man and Machine Diagnostics
- Fingerprint Identification
- Industrial Inspection
- Financial Forecast
- Medical Diagnosis
- EKG Signal Analysis

Components of a pattern recognition system

A typical pattern recognition system contains

- A sensor
- A preprocessing mechanism
- A feature extraction mechanism (manual or automated)
- A classification or description algorithm
- A set of examples (training set) already classified or described

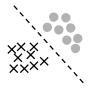


Features and patterns (1)

Feature

- Feature is any distinctive aspect, quality or characteristic
 - Features may be symbolic (i.e., color) or numeric (i.e., height)
- Definitions
 - The combination of d features is represented as a d-dimensional column vector called a feature vector
 - The d-dimensional space defined by the feature vector is called the **feature space**
 - Objects are represented as points in feature space. This representation is called a scatter plot

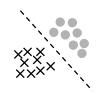
Pattern


- Pattern is a composite of traits or features characteristic of an individual
- For our purposes, a pattern is a <u>pair</u> of variables $\{x, \omega\}$ where
 - **x** is a collection of observations or features (feature vector)
 - ω is the concept behind the observation (label)

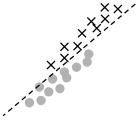
Features and patterns (2)

What makes a "good" feature vector?

- The quality of a feature vector is related to its ability to discriminate examples from different classes
 - Examples from the same class should have similar feature values
 - Examples from different classes have different feature values



"Good" features

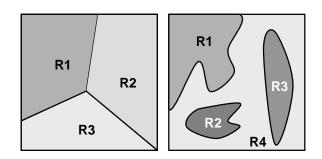

"Bad" features

More feature properties

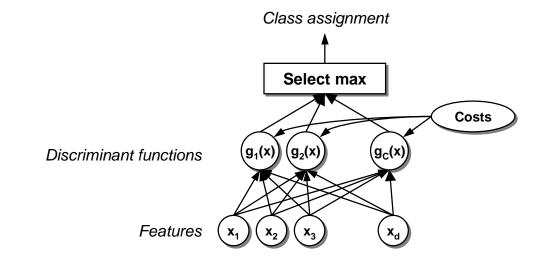
Linear separability

Non-linear separability

Highly correlated features


Multi-modal

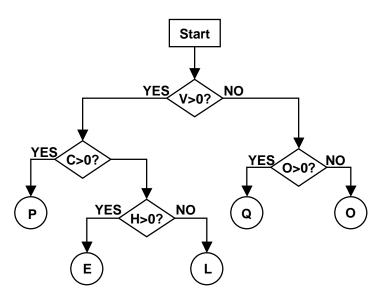
Classifiers


The task of a classifier is to partition feature space into class-labeled decision regions

- Borders between decision regions are called decision boundaries
- The classification of feature vector **x** consists of determining which decision region it belongs to, and assign **x** to this class

A classifier can be represented as a set of discriminant functions

• The classifier assigns a feature vector \mathbf{x} to class ω_i if $g_i(\mathbf{x}) > g_i(\mathbf{x})$ $\forall j \neq i$

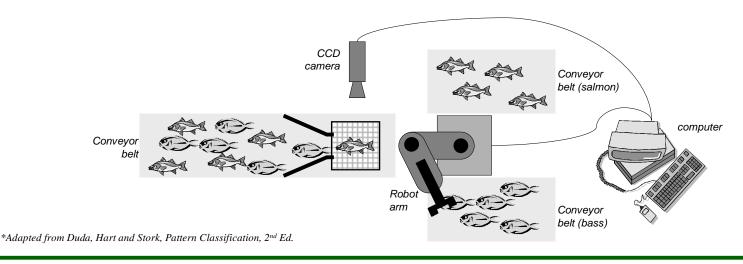


A simple pattern recognition problem

Consider the problem of recognizing the letters L,P,O,E,Q

- Determine a sufficient set of features
- Design a tree-structured classifier

	Features			
Character	Vertical straight lines	Horizontal straight lines	Oblique straight lines	Curved lines
L	1	1	0	0
Р	1	0	0	1
0	0	0	0	1
E	1	3	0	0
Q	0	0	1	1



A realistic pattern recognition system (1)

Consider the following scenario*

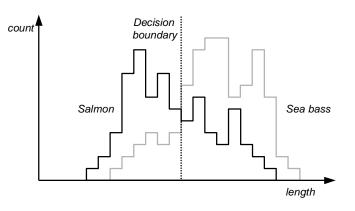
- A fish processing plan wants to automate the process of sorting incoming fish according to species (salmon or sea bass)
- The automation system consists of
 - a conveyor belt for incoming products
 - two conveyor belts for sorted products
 - a pick-and-place robotic arm
 - a vision system with an overhead CCD camera
 - a computer to analyze images and control the robot arm

A realistic pattern recognition system (2)

Sensor

• The vision system captures an image as a new fish enters the sorting area

Preprocessing

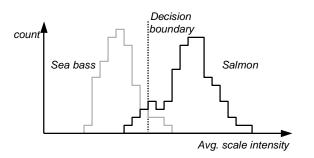

- Image processing algorithms
 - adjustments for average intensity levels
 - segmentation to separate fish from background

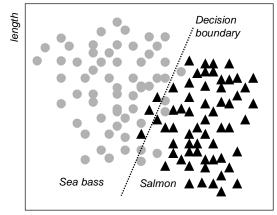
Feature Extraction

- Suppose we know that, on the average, sea bass is larger than salmon
 - From the segmented image we estimate the length of the fish

Classification

- Collect a set of examples from both species
- Compute the distribution of lengths for both classes
- Determine a decision boundary (threshold) that minimizes the classification error
- We estimate the classifier's probability of error and obtain a discouraging result of 40%
- What do we do now?

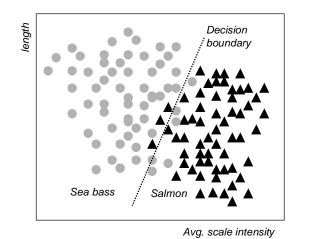


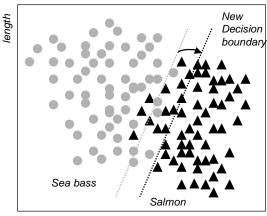

A realistic pattern recognition system (3)

Improving the performance of our PR system

- Determined to achieve a recognition rate of 95%, we try a number of features
 - Width, Area, Position of the eyes w.r.t. mouth...
 - only to find out that these features contain no discriminatory information
- Finally we find a "good" feature: average intensity of the scales

- We combine "*length*" and "*average intensity of the scales*" to improve class separability
- We compute a linear discriminant function to separate the two classes, and obtain a classification rate of 95.7%


Avg. scale intensity



A realistic pattern recognition system (4)

Cost Versus Classification rate

- Our linear classifier was designed to minimize the overall misclassification rate
- Is this the best objective function for our fish processing plant?
 - The cost of misclassifying salmon as sea bass is that the end customer will occasionally find a tasty piece of salmon when he purchases sea bass
 - The cost of misclassifying sea bass as salmon is an end customer upset when he finds a piece of sea bass purchased at the price of salmon
- Intuitively, we could adjust the decision boundary to minimize this cost function


Avg. scale intensity

A realistic pattern recognition system (5)

The issue of generalization

- The recognition rate of our linear classifier (95.7%) met the design specs, but we still think we can improve the performance of the system
 - We then design an artificial neural network with five hidden layers, a combination of logistic and hyperbolic tangent activation functions, train it with the Levenberg-Marquardt algorithm and obtain an impressive classification rate of 99.9975% with the following decision boundary

- Satisfied with our classifier, we integrate the system and deploy it to the fish processing plant
 - After a few days, the plant manager calls to complain that the system is misclassifying an average of 25% of the fish
 - What went wrong?

Pattern recognition approaches

Statistical (StatPR)

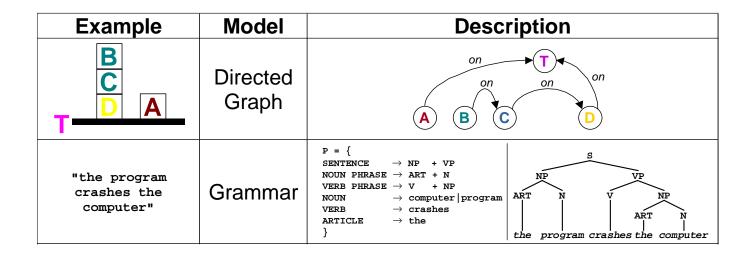
- Patterns classified based on an underlying statistical model of the features
 - The statistical model is defined by a family of class-conditional probability density functions Pr(x|c_i) (Probability of feature vector *x* given class *c_i*)

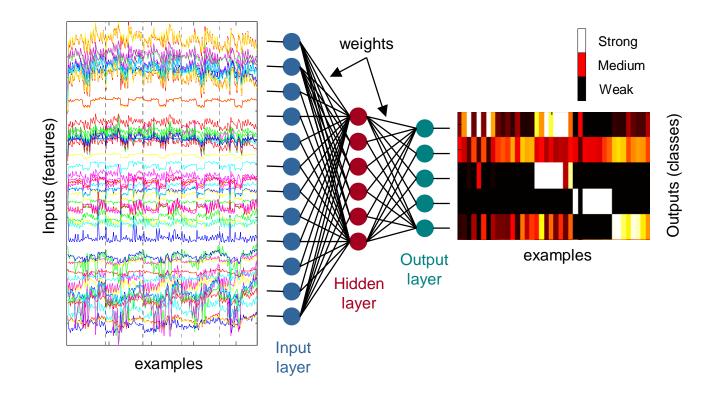
Syntactic (SyntPR)

- Patterns classified based on measures of structural similarity
 - Structure is represented by means of formal grammars or relational descriptions (graphs)
- SyntPR is used not only for classification, but also for description
 - Typically, SyntPR approaches formulate hierarchical descriptions of complex patterns built up from simpler sub patterns.

Neural (NeurPR)

- Classification is based on the response of a network of processing units (neurons) to an input stimuli (pattern)
 - The response of the network is determined by the connectivity and strength of the synaptic weights
- NeurPR is a trainable, non-algorithmic, black-box strategy
- NeurPR is very attractive since
 - it requires minimum a priori knowledge
 - with enough layers and neurons, an ANN can create **any** complex decision region


Statistical pattern recognition: an example


٨

Structural pattern recognition: an example

Neural pattern recognition: an example

