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We have seen three important trends develop in the last five 
years in speech recognition. First, heterogeneous parameter sets 
that mix absolute spectral information with dynamic, or time- 
derivative, spectral information, have become common. Second, 
similariry transform techniques, often used to normalize and decor- 
relate parameters in some computationally inexpensive way, have 
become popular. Third, the signal parameter estimation problem 
has merged with the speech recognition process so that more 
sophisticated statistical models of the signal’s spectrum can be 
estimated in a closed-loop manner. In this paper, we review 
the signal processing components of these algorithms. These al- 
gorithms are presented as part of a unified view of the signal 
parameterization problem in which there are three major tasks: 
measurement, transformation, and statistical modeling. 

This paper is by no means a comprehensive survey of all possible 
techniques of signal modeling in speech recognition. There are far 
too many algorithms in use today to make an exhaustive survey 
feasible (and cohesive). Instead, this paper is meant to serve as a 
tutorial on signal processing in state-of-the-art speech recognition 
systems and to review those techniques most commonly used. In 
keeping with this goal, a complete mathematical description of 
each algorithm has been included in the paper. 

I. INTRODUCTION 
Parameterization of an analog speech signal is the first 

step in the speech recognition process. Several popular sig- 
nal analysis techniques have emerged as de facto standards 
in the literature. These algorithms are intended to produce a 
“perceptually meaningful” parametric representation of the 
speech signal: parameters that emulate some of the behavior 
observed in the human auditory and perceptual systems. Of 
course, and perhaps more importantly, these algorithms are 
also designed to maximize recognition performance. 

The roots of many of these techniques can be traced 
to early speech recognition research on speaker depen- 
dent technology. Today, though significant portions of 
speech recognition research are now focused on the speaker 
independent recognition problem, many of these parame- 
terizations continue to be useful. In speaker independent 
speech recognition, a premium is placed on developing 
descriptions that are somewhat invariant to changes in the 
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speaker. Parameters that represent salient spectral energies 
of the sound, rather than details of the particular speaker’s 
voice, are desired. 

In this paper, we will adopt a view that a syntactic 
pattern recognition approach to speech recognition consists 
of two fundamental operations: signal modeling and net- 
work searching. Signal modeling represents the process 
of converting sequences of speech samples to observation 
vectors representing events in a probability space. Network 
searching is the task of finding the most probable sequence 
of these events given some syntactic constraints. In this 
tutorial, we present an overview of popular approaches to 
signal modeling in speech recognition. 

A. The Signal Model Paradigm 

Signal modeling can be subdivided into four basic oper- 
ations: spectral shaping, spectral analysis, parametric trans- 
formation, and statistical modeling. The complete sequence 
of steps is summarized in Fig. 1. The first three operations 
are straightforward problems in digital signal processing. 
The last task, however, is often divided between the signal 
modeling system and the speech recognition system. 

There are three main driving forces in designing signal 
modeling systems. First, parameterizations are sought that 
represent salient aspects of the speech signal, preferably 
parameters that are analogous to those used by the human 
auditory system. This is often referred to as perceptually 
meaningful parameters. Second, parameterizations are de- 
sired that are robust to variations in channel, speaker, and 
transducer. We refer to this as the robustness, or invariance, 
problem. Finally, most recently, parameters that capture 
spectral dynamics, or changes of the spectrum with time, are 
desired. We refer to this as the temporal correlation prob- 
lem. With the introduction of Markov modeling techniques 
that are capable of statistically modeling the time course 
of the signal, parameters that incorporate both absolute 
and differential measurements of the signal spectrum have 
become increasingly common. 

Signal modeling now requires less than 10% of the 
total processing time required in a typical large vocabulary 
speech recognition application. The difference in process- 
ing time between various signal modeling approaches is 
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Fig. 1. An overview of the signal modeling process is shown. Advances in speech recognition 
technology have blurred the distinction between signal modeling and statistical modeling by 
introducing context-sensitive statistical models into the parameterization of the signal. 

now a small percentage of the total processing time. The 
focus today has shifted towards maintaining high perfor- 
mance and minimizing the number of degrees of freedom. 
Parameterizations that concisely describe the signal, can 
be easily computed in fixed point hardware, and can be 
compressed though straightforward quantization techniques 
are often preferred over more exotic approaches. Memory 
considerations often outweigh any small gains that may be 
achieved in speech recognition performance by a new signal 
model. 

Historically, robustness to background acoustic noise has 
been a major driving force in the design of signal models. 
In fact, many of the signal models in use today were the 
outgrowth of research into applications involving noisy 
environments: voice control of military instrumentation 
(speech recognition in the cockpit) [ 11, [2] and voice control 
of the telephone (automatic telephone transactions) [3]-[6]. 
As speech recognition technologies have become more 
sophisticated, the recognition system itself now contributes 
more to the noise robustness problem than the signal 
model. Hence, it is often difficult to isolate signal modeling 
algorithm enhancements. 

In addition, signal models that are good for one type 
of application may not necessarily be optimal for an- 
other. For example, in speaker independent speech recog- 
nition targeted for a single environment (for example, 
continuous digit recognition for telecommunications appli- 
cations), certain types of statistical variations of the channel 
and speakers can be safely predicted and accounted for 
a priori (e.g., the bandwidth of the channel). In speaker- 
dependent or speaker identification applications, learning 
unique characteristics of the user and the user’s acoustic 
environment is important. Though this difference might 
seem to necessitate different signal modeling approaches, 
most approaches discussed in this paper work well in both 
types of applications. 

B.  Terminology 
Throughout this paper,’ we will avoid the overworked 

and all encompassing term “feature extraction” for two rea- 
sons. First, most often this term conveys some connotation 
that the amount of information has been reduced (distilled). 
Salient features of the speech signal are strongly context 
dependent. No feature extraction algorithm can magically 

‘Since no field today is worth its salt without a plateful of jargon, a 
few brief comments on terminology are made in this section. 

normalize all variations in the observed data without some 
knowledge of the context of the sound. We often prefer 
methods that preserve spectral variation in the data, rather 
than those that attempt to remove it in early stages of the 
processing. Our disposition is to let the speech recognizer 
deal with statistical variation in the data. 

Second, the term “feature extraction” somehow implies 
we know what we are looking for (in the signal). At this 
early stage in speech recognition history, there are no abso- 
lutes. The merit of a signal model must be measured in the 
context of a recognition task. Various objective measures of 
modeling accuracy or efficiency, such as distortion, have no 
strong correlation with recognition performance. In fact, the 
best feature set can often be a function of the recognition 
algorithm and the task. The end goal is to preserve those 
dimensions in the data that represent dimensions in which 
fundamental sound units can be discriminated. The rather 
grim reality is that many signal models in use today are 
great achievements in empirical optimization. 

Having said this, what term should we use? We pre- 
fer the use of the simple term signal model. A sig- 
nal model will have three intemal components: measure- 
ments-basic spectral and temporal measurements; param- 
eters-parametrically collated and smoothed versions of 
these measurements; and observations-the output of some 
form of statistical model of the parameters. The signal 
model’s observations are of course intimately interrelated 
with the speech recognition technology. These intemal 
components are shown in Fig. 1. 

Let us now describe each of these steps in greater detail. 
We note that it is a shame that very few, if any, speech 
recognition systems are capable of exhaustively comparing 
many variants of signal models in a controlled manner. 
Hence, it is often the case that motivations for choosing a 
particular approach are not always scientific. Therefore, we 
conclude this paper with an overview of common signal 
models used in today’s state-of-the-art speech recognition 
systems, and make a few comments on the respective 
author’s claims about the merits of their approach. Excellent 
papers on this and other related topics can be found in 
[7]-[26].2 

2The references in this paper have been selected mainly for their 
worth as general introductions to mainstream work in this area, rather 
than their authenticity as an original reference on the subject. It was 
not our intention to discredit particular research in this area (though that 
is probably unavoidable). Excellent comprehensive discussions of many 
topics presented in this paper can be found in [27]-[29]. 
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From Microphone To Spectral Analyzer 

(Preemphasis) 

Fig. 2. The sequence of operations in converting an analog signal to a digital signal suitable for 
spectral analysis are shown. Some components, such as a low-quality A/D converter or a nonlinear 
microphone, can introduce unwanted artifacts in the signal. 
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Fig. 3. The frequency response of a typical telephone grade A D  
converter is shown. 

11. SPECTRAL SHAPING 
Spectral shaping involves two basic operations: A/D con- 

version-onversion of the signal from a sound pressure 
wave to a digital signal; and digital filtering4mphasizing 
important frequency components in the signal. This con- 
version process is shown in Fig. 2. A good discussion of 
general principles of sampling and A D  conversion can be 
found in [30]. We will not discuss the choice of a signal 
sample frequency and the implications of such choices 
in this tutorial, though choice of an appropriate sample 
frequency obviously plays an important part in the signal 
modeling problem. 

The microphone used in the A / D  conversion process 
usually introduces undesired side effects, such as line 
frequency noise (“50 / 60-Hz hum”), loss of low- and high- 
frequency information, and nonlinear distortion. The A / D 
converter also introduces its own distortion in the form 
of a less than ideal frequency response and nonlinear 
input loutput transfer function, and fluctuating dc bias. An 
example of the frequency response of a typical telephone 
grade channel (including A / D  conversion) is shown in 
Fig. 3. The sharp attenuation of low and high frequen- 
cies often causes problems for the subsequent parametric 
spectral analyses algorithms. 

Because of the limited frequency response of analog 
telecommuncations channels, and the widespread use of 8- 

kHz sampled speech in digital telephony, the most popular 
sample frequency for the speech signal in telecommunica- 
tions is 8 kHz. With the recent emergence of broadband 
digital networks, however, we may soon see new telecom- 
munications applications that utilize higher quality audio 
input. In non-telecommunications applications, in which the 
speech recognition subsystem has access to high-quality 
speech, sample frequencies of 10, 12, and 16 kHz have 
been used. These sample frequencies give better time and 
frequency resolution [3 11. 

The main purpose of the digitization process is to pro- 
duce a sampled data representation of the speech signal 
with as high as signal-to-noise ratio (SNR) as possible. 
Telecommunications systems today regularly deliver SNR’s 
in excess of 30 dB for speech recognition applications, more 
than sufficient for obtaining high performance. Variations in 
transducers, channels, and background noise, however, can 
each contribute significantly to problematic performance in 
such environments. 

Once signal conversion is complete, the last step of digital 
postfiltering is most often executed using a Finite Impulse 
Response (FIR) filter 

Normally, a one coefficient digital filter, known as a pre- 
emphasis filter, is used 

H p r e ( 2 )  = 1 + a p r e 2 - l .  (2) 

A typical range of values for upre is [-1.0, -0.41. Values 
close to -1.0 that can be efficiently implemented in fixed 
point hardware, such as -1 or -(1 - 1/16), are most 
common in speech recognition. A range of frequency 
responses for the preemphasis filter of (2) is shown in 
Fig. 4. The preemphasis filter is intended to boost the signal 
spectrum approximately 20 dB per decade (an order of 
magnitude increment in frequency). 

There are two common explanations of the advantages 
of using this filter. First, voiced sections of the speech 
signal naturally have a negative spectral slope (attenuation) 
of approximately 20 dB per decade due to physiological 
characteristics of the speech production system [28], (3 11. 
The preemphasis filter serves to offset this natural slope 
before spectral analysis, thereby improving the efficiency 
of the analysis [311, [321. 

An altemate explanation is that hearing is more sensitive 
above the I-kHz region of the spectrum. The preemphasis 
filter amplifies this area of the spectrum, assisting the spec- 
tral analysis algorithm in modeling the most perceptually 
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Fig. 4. The frequency responses of common pre-emphasis filters 
used in speech recognition systems are given. The motivation 
behind such filters is to spectrally flatten the speech signal, and 
to amplify important areas of the spectrum. Values of aprf close 
to - 1 .O are most common. 

important aspects of the speech spectrum [31] (see Section 
111-C4 for more details). 

We also note that such preemphasis filters also raise 
frequencies above 5 kHz, a region in which the auditory 
system becomes increasingly less sensitive. However, fre- 
quencies above 5 kHz are naturally attenuated by the speech 
production system and normally are assigned a significantly 
smaller weight in a typical speech recognition system. 

More sophisticated preemphasis algorithms have been 
proposed. One such notable approach is adaptive preem- 
phasis, in which the spectral slope is automatically flattened 
[3 11 before spectral analysis. Other algorithms utilize shap- 
ing filters that attenuate areas of the spectrum known 
to be quite noisy [33], [34]. More recently, speech/noise 
classification algorithms based on adaptive filtering have 
been employed [35]. However, none of these approaches 
have yet enjoyed widespread success in speech recognition 
applications. In fact, recently, many speech recognition 
systems have eliminated the preemphasis stage altogether 
and compensate for the spectral slope as part of the speech 
recognition statistical model (see Section VI). 

111. SPECTRAL ANALYSIS 
For pedagogical reasons, let us classify the types of spec- 

tral measurements used in speech recognition systems into 
two classes: power-measures of the gross spectral (or tem- 
poral) power of the signal; spectral amplitude-measures of 
power over particular frequency intervals in the spectrum. 

A typical parameter set in speech recognition will include 
each of these measurements. 

Recently there has been resurgence of interest3 in funda- 
mental frequency for use as a prosodic feature [36], for use 
in speech recognition of tonal languages (e.g., Chinese) or 
languages that have some tonal components (e.g., Japan- 
ese), and as a measure of speaker identity or authenticity 
[37]. Let us first briefly review fundamental frequency and 
power calculations, and then focus on spectral amplitude 
estimation. 

A. Fundamental Frequency 

Fundamental frequency4 is defined as the frequency at 
which the vocal cords vibrate during a voiced sound [38], 
[39]. Fundamental frequency (10) has long been a difficult 
parameter to reliably estimate from the speech signal. Previ- 
ously, it has been neglected in speech recognition systems 
for numerous reasons, including the large computational 
burden required for accurate estimation, the concem that 
unreliable estimation would be a barrier to achieving high 
performance, and the difficulty in characterizing complex 
interactions between fo and suprasegmental phenomena. 

There are four major classes of algorithms in use today. 
One of the first algorithms to appear, and one of the 
simplest, is an algorithm that uses multiple measures of pe- 
riodicity in the signal, and votes between them to determine 
the voicing state and fundamental frequency. This algorithm 
was originally known in the speech processing literature 
as the Gold-Rabiner algorithm [40], and motivated many 
other variants based on time-domain measurements [4 11. 
The Gold-Rabiner algorithm is still popular mainly be- 
cause of its simplicity and ease of reliable implementation. 
Unfortunately, it does not work very well. 

Second, the U.S. National Security Agency (NSA), as 
part of a program to develop secure digital telephones 
based on low-bit-rate voice coding, has developed a robust 
algorithm for telecommunications applications [42], [43]. 
This algorithm is based on the average magnitude differ- 
ence function [32], and a discriminant analysis of multiple 
voicing measures. It is a published government standard 
and publicly available in the U.S. 

A third class of algorithms, similar in nature to the 
previous class, is based on dynamic programming con- 
cepts [44]. These algorithms have been shown to provide 
high performance across a wide range of environments, 
including noisy telecommunications channels. This class 
of algorithms uses a sophisticated optimization procedure 
that evaluates several measures of correlation and spectral 
change in the signal, and computes on optimal fundamental 
frequency pattem and voicing pattem simultaneously. 

Finally, an algorithm that is rarely used in real-time 
speech systems, but often used for research experimenta- 
tion, is an algorithm that operates on the cepstrum of the 

30f  course, fundamental frequency is still rarely used in practical speech 
recognition systems. 

4This section is intended to serve only as a reference guide to major 
work in this area. The details of such algorithms are beyond the scope of 
this paper. Good tutorials on the subject can be found in [38], [39]. 
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speech signal [45]. This algorithm is still popular today 
as an accurate method for estimating the fundamental fre- 
quency in extremely quiet laboratory recording conditions. 

Fundamental frequency is often processed on a logarith- 
mic scale, rather than a linear scale, to match the resolution 
of the human auditory system. For reference purposes, let 
us define a measure of the fundamental frequency as 

F ( n )  = log,, (fo(n>) (3) 

where n represents discrete time. 
Normally, 50 Hz 5 fo 5 500 Hz for voiced speech. 

For unvoiced speech, fo is undefined, and by convention 
F 0. Often, fundamental frequency is normalized by 
the speaker's average fo value, or some physiologically 
motivated transformation of a nominal value during the 
corresponding voiced segment of speech. 

B.  Power 
The use of some sort of power measure(s) in speech 

recognition is fairly standard today. Power is rather simple 
to compute 

P ( n )  = - N s - l (  w(m)s  ( n - - N5 + m  ) ) 2  (4) 
2 

N5 m=O 

where N, is the number of samples used to compute the 
power, s (n )  denotes the signal, w(m)  denotes a weighting 
function, and n denotes the sample index (discrete time) of 
the center of the window. Rather than using power directly, 
many speech recognition systems use the logarithm of the 
power multiplied by 10, defined as the power in decibels, in 
an effort to emulate the logarithmic response of the human 
auditory system 1461. 

The weighting function in (4) is referred to as a window 
function. Window theory was once a very active topic of 
research in digital signal processing [31], [32]. There are 
many types of windows including rectangular, Hamming, 
Hanning, Blackman, Bartlett, and Kaiser. Today, in speech 
recognition, the Hamming window is almost exclusively 
used. The Hamming window is a specific case of the Han- 
ning window. A generalized Hanning window is defined 
as 

( 5 )  
a, - (1 - a,) cos (27rn/(N, - 1)) 

PW 
w(n)  = 

for 0 5 n < N,, and w(n)  0 elsewhere. a, is defined 
as a window constant in the range [0,1], and N ,  is the 
window duration in samples. To implement a Hamming 
window, a, = 0.54. 

P, is a normalization constant defined so that the root 
mean square (rms) value of the window is unity. P, is 
defined as 
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Fig. 5. Temporal and frequency-domain responses of the Hanning 
window are shown for a range of values. In this window design, the 
objective is to make the main lobe width small, and the stopband 
attenuation large, and also to have the window response near zero 
at the edge of the window. cyLL, = 0.54 is the most common value 
used in speech recognition systems today. (a) Temporal response. 
(b) Frequency response. 

In Fig. 5 we show various realizations of the Hanning 
window. 

In practice, it is desirable to normalize the window so 
that the power in the signal after windowing is approxi- 
mately equal to the power of the signal before windowing. 
Equation (6) describes such a normalization constant. This 
type of normalization is especially convenient for imple- 
mentations using fixed-point arithmetic hardware. Note that 
the computational burden of a window is relatively small, 
because the window coefficients are precomputed at system 
initialization. 

The purpose of the window is to weight, or favor, samples 
towards the center of the window. This characteristic, 
coupled with the overlapping analysis discussed next, per- 
forms an important function in obtaining smoothly varying 
parametric estimates. It is important that the width of the 
main lobe in the frequency response of the window be as 
small as possible, or the windowing process can have a 
detrimental effect on the subsequent spectral analysis. (See 
[31], [32], [47] for good discussions of this topic.) 

Power, like most parameters in a speech recognition 
system (including fundamental frequency mentioned in 
the last section), is computed on a frame-by-frame basis. 
Frame duration Tf is defined as the length of time (in 
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Fig. 6. A frame-based overlapping analysis is depicted. In this 
case, a 33% overlap is shown. One-third of the data used in each 
analysis frame is shared with the previous frame. Note that only 
one-third of the data are unique to the current frame-the remaining 
two-thirds are shared between adjacent frames. 

seconds) over which a set of parameters is valid. Frame 
period is a similarly used term that denotes the length 
of time between successive parameter calculations. Frame 
rate, yet another common term, is the number of frames 
computed per second (hertz). 

In (4), n is updated by the frame duration in samples. 
Frame duration typically ranges between 20 and 10 ms, in 
practical systems. Values in this range represent a tradeoff 
between the rate of change of spectrum and system com- 
plexity. The proper frame duration is ultimately dependent 
on the velocity of the articulators in the speech production 
system (rate of change of the vocal tract shape). While some 
speech sounds (such as stop consonants or diphthongs) 
exhibit sharp spectral transitions which can result in spectral 
peaks shifting as much as 80 Hz/ms [31], frame durations 
less than approximately 8 ms are normally not used. 

Equally important, however, is the interval over which 
the power is computed. The number of samples used to 
compute the summation N ,  is known as the window 
duration (in samples). Window duration T, is normally 
measured in units of time (seconds). 

Window duration controls the amount of averaging, or 
smoothing, used in the power calculation. The frame du- 
ration and window duration together control the rate at 
which the power values track the dynamics of the signal 
[32]. Frame duration and window duration are normally 
adjusted as pair: a window duration of 30 ms is most 
common with a frame duration of 20 ms, while a window 
duration of 20 ms is used with a frame duration of 10 ms. 
Generally speaking, since a shorter frame duration is used 
to capture rapid dynamics of the spectrum, the window 
duration should also be correspondingly shorter so that the 
detail in the spectrum is not excessively smoothed. 

The process of frame based analysis is depicted in Fig. 6. 
This type of analysis is often referred to as an overlapping 
analysis, because with each new frame, only a fraction of 
the signal data changes. The amount of overlap to some 
extent controls how quickly parameters can change from 
frame to frame. The percentage overlap is given by: 

%Overlap = (Tw - Tf) x 100% (7) 
TW 

where T, is the window duration (in seconds) and Tf  is the 
frame duration. If T, < T f ,  the percentage overlap is zero. 

The combination of a 20-ms frame duration and a 30- 
ms window duration correspond to a 33% overlap. Some 
systems use as much as 66% overlap. One goal of such 
large amounts of overlap is to reduce the amount of noise 
introduced in the measurements by such artifacts as window 
placement and nonstationary channel noise [32]. On the 
other hand, excessively smoothed estimates can obscure 
true variations in the signal. 

Frame-based power computations can also be computed 
recursively [32]. This technique is most easily viewed as a 
filtering operation of the squared amplitude of the signal 

N ,  

P(n)  = - upw(i )P(n  - i) 
i = l  
N b  

+ b p w ( j ) s 2 ( n  - j )  (8) 
j=0 

where {up,} and { b p w }  represent the coefficients of a 
digital low-pass filter. Most often, a first-order filter (leaky 
integrator) N,  = 1, Nb = 0 or a second-order filter 
(biquad section) N,  = 2,Nb = 2, are used. The design of 
the system represented in (8) to produce smoothed power 
estimates is a classical control problem. A good discussion 
of the design of such controllers can be found in [48]. 

In Fig. 7, we demonstrate the use of these parameters. At 
the bottom of the figure, a speech signal is shown. The first 
four waveforms starting from the top of the figure show 
power contours for: (a) Tf  = 5 ms, T, = 10 ms; (b) 
Tf  = 10 ms, T, = 20 ms; (c) Tf  = 20 ms, T, = 30 ms; 
(d) Tf  = 20 ms, T, = 30 ms, and a Hamming window was 
used; (e) Tf  = 20 ms, T, = 60 ms; (f) a recursive filter 
approach in which a 50-Hz low-pass filter was implemented 
using a second-order section. 

The application of a Hamming window, as shown in 
Fig. 7(d), helps produce a smoothed estimate of the power 
through regions where the power changes rapidly (note the 
point in the waveform marked by an arrow). Note that at 
t = 0.3 s there is a subtle rise in power. This rise in power 
is reproduced only in (a) and (e), the two analyses with the 
greatest ability to respond to rapid changes in the signal’s 
power. 

The recursive technique in Fig. 7(f) produces an oscil- 
latory power contour. The second-order filter used in the 
implementation is not capable of sufficiently damping high 
frequencies in the signal’s amplitude/instantaneous power 
contour. Hence, the output tends to be too sensitive to the 
short-term power level of the signal. For this reason, such 
filters are often used only as postprocessors to frame-based 
analyses, in which case the power contour is extremely 
smooth to begin with. Careful design of these circuits are 
required to make sure the adaptation speed is appropriate 
for the given application. 

Recursive formulations are used to implement algorithms 
for adaptive gain control, peak signal power estimation, and 
signal endpoint detection. Equation (8) can also be applied 
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Fig. 7. Various power computations are shown for the speech signal (the word “tea”) in (g). In (a), 
a rectangular window analysis using a 5-ms frame duration and IO-ms window is shown. In (b), a 
rectangular window analysis with 10-ms/20-ms parameters are shown. In (c), a rectangular window 
analysis with 20 ms/30 ms are shown. In (d), a Hamming window has been used with 20-ms/30-ms 
values. In (e), heavy smoothing is demonstrated by using a window duration of 60 ms, while the 
frame duration is held fixed at 20 ms. Finally, in (0, the power is computed using a recursive-in-time 
approach using a second-order 50-Hz low-pass filter. The arrow indicates a point where the power 
changes rapidly. Note that the Hamming window applied in (d) helps smooth this transition. 

as a postprocessor to (4) to provide additional smoothing 
of the power estimates. 

C .  Spectral Analysis 
There are six major classes of spectral analysis algorithms 

used in speech recognition systems today. The procedures 
for generating these analyses are summarized in Fig. 8. 
Filter bank methods (implemented in analog circuits) were 
historically the first methods introduced. Linear prediction 
methods were introduced in the 1970’s, and were the dom- 
inant technique through the early 1980’s. Currently, both 
Fourier transform and linear prediction techniques enjoy 
widespread use in various speech processing applications. 
In this section, we will discuss each of these techniques, 
beginning with the digital filter bank. 

1) Digital Filter Bank: The digital filter bank is one of 

the most fundamental concepts in speech processing. A 
filter bank can be regarded as a crude model of the initial 
stages of transduction in the human auditory system. There 
are two main motivations for the filter bank representa- 
tion. First, the position of maximum displacement along 
the basilar membrane for stimuli such as pure tones is 
proportional to the logarithm of the frequency of the tone. 
This hypothesis is part of a theory of hearing called the 
“place theory” [49]. 

Second, experiments in human perception have shown 
that frequencies of a complex sound within a certain band- 
width of some nominal frequency cannot be individually 
identified. When one of the components of this sound falls 
outside this bandwidth, it can be individually distinguished. 
We refer to this bandwidth as the critical bandwidth [50]. A 
critical bandwidth is nominally 10% to 20% of the center 
frequency of the sound. 
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Fig. 8. The six major spectral analysis algorithms are shown. Cepstral parameters derived from 
either a Fourier transform or linear prediction model are by far the most popular of these 
approaches. The Fourier transform methods have traditionally been considered robust in severely 
noisy environments, and are popular for their similarity to the initial stages of the human auditory 
system. 

We can define a mapping of acoustic frequency f to a 
"perceptual" frequency scale as follows [5 11: 

Bark = laatan( =) 0.76 f + 3.5atan( -) f2 (9) (7500)2 ' 

The units of this perceptual frequency scale are referred to 
as critical band rate, or Bark. The Bark scale is shown 
in Fig. 9(a). 

A more popular approximation to this type of mapping 
in speech recognition is known as the me1 scale [51] 

me1 frequency = 2595 log 10( 1 + f /700.0). (10) 

The me1 scale attempts to map the perceived frequency of a 
tone, or pitch, onto a linear scale. This scale is displayed in 
Fig. 9(b). It is often approximated as a linear scale from 0 
to 1000 Hz, and then a logarithmic scale beyond lo00 Hz. 

An expression for critical bandwidth is 

BWcritical = 25 + 75[1 + 1.4(f/1000)2]0.69. (1 1) 

This transformation can be used to compute bandwidths 
on a perceptual scale for filters at a given frequency on 
Bark or me1 scales. The critical bandwidth function is 
also displayed in Fig. 9(c). 

Both the Bark scale and the me1 scale can be regarded as 
a transformation of the frequency scale into a perceptually 
meaningful scale that is linear. The combination of these 
two theories gave rise to an analysis technique known as 
the critical band filter bank. A critical band filter bank 
is simply a bank of linear phase FIR bandpass filters that 
are arranged linearly along the Bark (or mel) scale. The 
bandwidths are chosen to be equal to a critical bandwidth 
for the corresponding center frequency. 

One such filter bank, originally defined in [52] has 
become somewhat of a standard, and is shown in Table 1. 
The center frequencies and bandwidths for these filters 
are shown in the second and third columns of Table 1. 
The center frequencies correspond to those frequencies 
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Fig. 9. The Bark and me1 scales are shown as a function of 
acoustic frequency in (a) and (b), respectively. In (c), critical 
bandwidth as a function of frequency is shown. The me1 scale 
is a popular approximation to the Bark scale, and is widely used in 
speech recognition. (a) The Bark scale transformation. (b) The me1 
scale transformation. (c) The critical bandwidth transformation. 
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Table 1 
bank (columns 2 and 3) is a design based on the Bark scale. The 
second (columns 4 and 5 )  is a design based on the me1 scale. The 
shaded entries are shown only for comparison purposes. Usually, 
these bins are not included in the design. For the Bark scale filter 
bank, telephone grade speech is often processed using a 
filter bank consisting of 16 bands: indices 2-17.) 

Two Critical Filter Banks are Shown. (The first filter 

for which (9) yields the integer index value in the table 
(for example, the frequency corresponding to an index of 
2 produces a Bark  value of 2). The bandwidth is then 
computed using (1 1). 

In many speech processing applications, the first filter 
is omitted, because its range is beyond the capabilities of 
the A P  converter. Often the sampled data collected in 
the corresponding frequency range are extremely noisy. 
Telephone grade speech is often processed using a filter 
bank consisting of 16 bands (indices 2-17). 

Another equally important filter bank in the speech 
recognition literature is a filter bank based on the mel 
scale. The frequencybandwidths for this filter bank [26] 
are given in fourth and fifth columns of Table 1. In this 
design, ten filters are assigned linearly from 100 to loo0 
Hz. Above 1000 Hz, five filters are assigned for each 
doubling of the frequency scale (octave). These filters are 
spaced logarithmically (equally spaced on a log scale). The 
bandwidths are assigned such that the 3-dB point is halfway 
between the current bin and the previous/next bin. The 
shaded entries in the table are shown only for comparison 
purposes. Normally, only the first 20 samples from the filter 
bank are used. 

Each filter in the digital filter bank is usually implemented 
as a linear phase filter so that the group delay for all filters 
is equal to zero, and the output signals from the filters will 
be synchronized in time. The filter equations for a linear 

phase filter implementation can be summarized as follows: 

( N F B , - ~ ) / ~  

s;(n) = aFB, ( d s ( n  + j )  (12) 
~ = - ( N F E %  - 1 ) / 2  

where ~ F B ~  ( j )  denotes the j th coefficient for the ith critical 
band filter. The filter order is normally odd for a linear 
phase filter. 

Processing of speech through two filters in this type of 
filter bank is demonstrated in Fig. 10. A speech signal is 
shown, along with the outputs from two bandpass filters, 
one centered at 250 Hz, and one centered at 2500 Hz. Note 
that the power of the outputs varies depending on the type 
of sound spoken. This is the basic merit of the filter bank: 
certain filter outputs can be correlated with certain classes 
of speech sounds. 

The filter outputs are normally processed using any of the 
power estimation methods previously discussed. The digital 
filter bank is most frequently used in systems that attempt 
to emulate auditory processing [53], [54]. Recursive-in-time 
computations are particularly convenient for postprocessing 
in these applications. 

The output of this analysis is a vector of power values 
(or power/frequency pairs) for each frame of data. These 
are usually combined with other parameters, such as total 
power, to form the signal measurement vector. The filter 
bank attempts to decompose the signal into a discrete set 
of spectral samples that contain information similar to what 
is presented to higher levels of processing in the auditory 
system. Because the analysis is largely based entirely on 
linear processing (as opposed to the nonlinear techniques 
discussed in Section III-C4), the technique is generally 
robust to ambient noise. 

We conclude this section with one historical note. Long 
before computer hardware was capable of performing com- 
plex mathematical operations in real time, analog filter 
banks similar to the digital filter bank previously discussed 
were used in speech recognition. The filter banks were often 
built from discrete components and needed to be carefully 
tuned by adjusting resistors and capacitors. At that time, 
researchers dreamed of the days when speech recognition 
system parameters could be adjusted from software. The 
analog filter bank is one of the oldest approaches used in 
speech recognition. Ironically, the analog filter technique 
has generated some of the lowest cost implementations of 
speech recognizers to date. 

2 )  The Fourier Transform Filter Bank: We have previ- 
ously discussed the advantages in using nonuniformly 
spaced frequency samples. One of the easiest and most 
efficient ways to compute a nonuniformly spaced filter bank 
model of the signal is to simply perform a Fourier transform 
on the signal, and sample the transform output at the desired 
frequencies. The Discrete Fourier Transform (DFT) of a 
signal is defined as 

N , - 1  

S(f) = s ( n ) e - j ( w f 3 ) n  (13) 
n=O 
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Fig. 10. Digital filter bank outputs for a speech signal shown in (a), consisting of the word 
“speech.” In (b), the output from a filter with a center frequency of 250 Hz and a bandwidth of 100 
Hz is shown. In (c), the output from a filter centered at 2500 Hz is shown. Note that the amplitude 
of the output for each filter varies depending on the nature of the sound. The final “ch” sound, for 
example, is mainly composed of high-frequency information. 

where f denotes the frequency in hertz, f, denotes the 
signal sample frequency, and N ,  denotes the window 
duration in samples. 

The filter bank can be implemented by using (13) to 
sample the spectrum at the frequencies listed in Table 1. 
However, often the spectrum is oversampled at a finer 
resolution than that described in Table 1, and each output 
of the filter bank (a power spectral magnitude) is computed 
as a weighted sum of its adjacent values 

No, 

s a v g ( f )  = - x W F B ( n ) S ( f  + b f ( f i n ) )  (14) 
Nos n=O 

where No, represents the number of samples used to 
obtain the averaged value, W F B ( ~ )  represents a weight- 
ing function, and 6 f (f, n) represents some function that 
describes the frequencies in the neighborhood of f to be 
used in computing the average. Note that the averaging 
method presented in (14) is just one particular method of 
implementing a spectral smoothing function. 

Averaging is often performed in the me1 scale frequency 
domain if a DFT is used (since the added computational 
burden is minimal). Averaging also is usually performed 
in the log domain (log power values) rather than on 
spectral amplitudes. The benefit of using averaged values 
for spectral analysis is demonstrated in Fig. 11. 

A Fast Fourier Transform (FFT) [55 ]  also can be used 
as an altemate method of computing the spectrum of the sig- 
nal. The FFT is a computationally efficient implementation 
of the DFT under the constraint that the spectrum is to be 
evaluated at a discrete set of frequencies that are multiples 
of f , / N .  These frequencies are referred to as orthogonal 
frequencies. The principal advantage of the FFT is that it 
is very fast: approximately N log N additions and N log 
N / 2  multiplications are required. (The DFT requires on 
the order of N 2  operations.) The principal disadvantage is 
that nonlinear frequency mappings, such as the filter bank 

Magnitude (dB) 

I Center Frequency t 
x5 Oversampling 

Signal Spectrum 
-2 

- 
1975 2150 2325 

Frequency (Hr) 

Fig. 11. An oversimplified example of the benefit in oversam- 
pling the spectrum. A spectrum of a signal (computed by a DFT to 
be precise) is shown along with the frequency values at which it 
would be sampled using a filter bank consisting of five samples per 
bin (index 14 from Table 1 is shown). If the spectrum is sampled 
exactly at the center of the critical band the output value would be 
0 dB. If an average of the spectrum across the critical band were 
used, the value would be - 1 dB. Oversampling the spectrum often 
results in more stable, or smoothed, amplitude estimates. 

in Table 1, must be adjusted to match the FFT orthogonal 
frequency constraints. 

One additional processing step is often added. Based 
in part on our sketchy knowledge of human perception, 
we hypothesize that high-amplitude areas of the spec- 
trum are weighted more heavily in the auditory system 
than low-amplitude regions. In noisy environments, noise 
often disproportionately degrades our estimates of the low- 
amplitude areas of the spectrum. Stated another way, we 
are more confident of the reliability (and repeatability) of 
our estimates of the high-amplitude areas of the spectrum. 

For this reason, we often impose a limit on the dynamic 
range of the spectrum. This is depicted in Fig. 12. We 
refer to this lower limit as the dynamic range threshold. 
Rather than use noisy estimates of low-amplitude regions 
of the spectrum, we simply clip, or discard, estimates below 
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Fig. 12. Low-energy areas of the spectrum are often clipped in 
an effort to emphasize high-energy portions of the spectrum in the 
signal model and limit the effect of areas of the spectrum that 
are not necessarily perceptually relevant. This clipping is normally 
executed after pre-emphasis so that high-frequency components of 
the speech spectrum are not excessively truncated. 

a certain threshold from the peak in the spectrum. For 
Fourier transform-based techniques, this is straightforward 
to implement as a thresholding function on the spectral 
magnitude (measured in decibels). 

It is important that the spectral envelope be relatively flat 
before implementing such thresholding algorithms. Other- 
wise, useful low-energy portions of the spectrum can be 
mistakenly eliminated. Recall that since the spectrum of 
the speech signal inherently drops 20 dB per decade, a 
threshold based on low-frequency energies, where the peak- 
to-valley spectral amplitude difference is large, can easily 
remove useful signal energy at higher frequencies. Later, we 
will discuss more sophisticated methods for implementing 
thresholding of the spectrum based on parametric modeling 
techniques. For the moment, the reader might ponder the 
utility of letting the dynamic range threshold vary as a 
function of the background noise level in the spectrum or 
as a function of the local spectral peak to local background 
noise level. 

3) Cepstral Coefficients: Since their introduction in the 
early 1970’s, homomorphic signal processing techniques 
[27] have been of great interest in speech recognition. 
Homomorphic systems are a class of nonlinear systems 
that obey a generalized principle of superposition. Linear 
systems, such as those previously discussed, are a special 
case of a homomorphic system. The motivation for homo- 
morphic processing in speech analysis is summarized in 
Fig. 13. 

In speech processing, the homomorphic system we seek 
should have the following property: 

mh(.)1” . [~z(n)lP1 = 4 4 n ) l  
+ PD[zz(n)l. 

This is a superposition-type operation with respect to mul- 
tiplication, exponentiation, and addition. A logarithm func- 

(SubGlottal System) Speech 

Fig. 13. In the linear acoustics model of speech production [32], 
the speech signal is produced by filtering an excitation signal 
(produced in the subglottal system) with a time-varying linear 
filter (the vocal tract). The vocal tract can be decoupled from the 
excitation signal using homomorphic signal processing techniques. 
It should be noted that this model is not valid for all classes of 
speech sounds, such as frication, where excitation occurs above 
the glottis. 

tion, of course, obeys the generalized superposition prop- 
erty. 

Homomorphic systems were considered useful for speech 
processing [27] because they offered a methodology for 
separating the excitation signal from the vocal tract shape. 
Current approaches to speech recognition are primarily 
concerned with modeling the vocal tract characteristics. 
In the linear acoustics model of speech production, the 
composite speech spectrum, as measured by a Fourier 
transform, consists of the excitation signal filtered by a 
time-varying linear filter representing the vocal tract shape. 

The process of separating the two components, often 
referred to as deconvolution, can be described as follows: 

4n) = d n )  c3 4.1 
where g ( n )  denotes the excitation signal, w(n) denotes the 
vocal tract impulse response, and “@” denotes convolution. 
The frequency domain representation of this process is 

S(f) = G(f )  . V U ) .  

log(S(f)) = log(G(f) . V U ) )  

If we take the logarithm (complex) of both sides, we have 

= log(G(f)) + log(V(f)). 

Hence, in the log domain, the excitation and the vocal 
tract shape are superimposed, and can be separated using 
conventional signal processing (in theory at least). 

To compute the cepstrum, we first compute the log 
spectral magnitudes (averaged if necessary) from (14). 
Next we compute the inverse Fourier transform of the log 
spectrum 

1 N s - 1  

c(n)  = - log,, ISavg(lC)Je(~~”S)kn, 
k=O Ns 

0 5 n 5 N ,  - 1. (15) 

~ ( n )  in (15) is defined as the cepstrum. We refer to 
cepstral coefficients computed via the Fourier transform (or 
analog filter bank) as Fourier Transform-derived cepstral 
coefficients. 

Observe that c(0) in (15) represents the average value 
of the spectrum, or the root mean square (rms) value of 
the signal. Initially, this term was an important part of 
the cepstral parameter vector. Later, it was observed that 
absolute power measures of the signal were somewhat 
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Fig. 14. An example of the computation of the cepstrum is given. In (a), an unvoiced speech 
waveform is shown. In (b), a 1000-point cepstrum is computed. In (c), a voiced speech waveform is 
shown. Finally, in (d), the corresponding cepstrum is shown. Note that the cepstrum in (d) indicates 
periodicity in the waveform by the presence of two local maxima. The low-order terms in the 
cepstrum reflect the smooth spectral structure of the speech signal (vocal tract information). 

unreliable: and use of c(0) was deemphasized. Recently, 
however, since various altemative measures of power are 
explicitly added to the parameter vector in other stages of 
processing, c(0) is no longer used. From this point forward, 
we will EXCLUDE this term from our discussion of the 
cepstral coefficient sequence. 

Equation (15) is also recognized as the inverse DFT of 
the log spectrum. This can be conveniently simplified by 
noting that the log magnitude spectrum is a real symmetric 
function. Hence, (15) can be simplified to 

2 Ns 2lr 
c(n)  = N ,  Savg(I(k)) cos -kn. (16) 

Ns k=l 

c(n)  in (16) is normally truncated to an order much lower 
than N,.  I ( k )  represents a mapping function that translates 
the integer k to the appropriate samples of Savg. For 
efficiency, S,, can also be computed using an oversampled 
FFT, rather than a nonuniformly spaced DFT. 

We note that the cepstrum, as used in speech processing, 
is slightly different than the classical definition of the 
complex cepstrum found in the literature [27], [28]. How- 
ever, the definition presented here conveys all significant 
information needed in speech recognition. The cepstrum 
defined in (16) can be easily modified to be a mel-spaced 
cepstrum by sampling the Fourier transform at appropriately 
spaced frequencies. 

5Some systems [I41 still use some form of absolute power along with 
various normalized power measures. 

The cepstrum of two different speech signals is shown 
in Fig. 14. In Fig. 14(a) and (c), an unvoiced and a voiced 
speech waveform are shown, respectively. In Fig. 14(b) and 
(d), the corresponding cepstra are shown. The low-order 
terms of the cepstrum correspond to short-term correlation 
in the speech signal (smooth spectral shape or vocal tract 
shape). The local maxima in the higher order terms in 
Fig. 14(d) demonstrate long-term correlation, or periodicity, 
in the waveform (excitation information). The cepstrum 
in Fig. 14(b) of the unvoiced segment does not show 
any periodicity. In spectral analysis for speech recognition 
applications, normally only the low-order terms (n 5 20) 
are used. 

Because the cepstrum is computed using a nonlinear 
operator, a logarithm function, it is generally believed to 
be sensitive to certain types of noise and signal distortions. 
While multiplicative. noise processes can generally be dealt 
with, additive noise (such as background acoustic noise) 
can be troublesome. Cepstral parameters derived from high- 
resolution spectral estimators, or parametric fits of the 
spectrum, are often preferred for applications in noisy 
environments. 

4 )  Linear Prediction Coefficients: We now turn from 
Fourier transform methods based on linear spectral analysis 
to a class of parametric modeling techniques that attempt to 
optimally model the spectrum as an autoregressive process. 
It is difficult to overstate the impact parametric models 
have made on speech processing since their introduction 
in the early 1970’s [56], [57]. By the late 1970’s, 
almost every speech processing system used some sort of 
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algorithm that parametrically fitted the spectrum, whether 
for recognition, compression, or verification applications. 
Though parametric models today are less popular in 
recognition, they are still widely used in compression 
systems. Parametric models were the impetus for a 
transition to vastly more powerful statistical modeling 
techniques in speech recognition. In this section, we will 
discuss computation of a parametric model based on least 
mean squared error theory. This technique is known as 
linear prediction (LP). 

The roots of linear prediction, as a least mean squared 
error algorithm can be traced to many diverse areas: system 
identification problems in modem control systems, time 
series analysis for economic applications, maximum en- 
tropy techniques, quantum physics, geophysics, adaptive 
filtering, and spectral estimation in signal processing. Linear 
prediction theory is well-documented in the literature. Some 
of the landmark academic texts include [31], [32], [57]. 
Here, we will (very) briefly review the mechanics of 
computing a linear prediction model, and then discuss the 
implications in speech recognition. 

Given a signal ~ ( n ) ,  we seek to model the signal as a 
linear combination of its previous samples. Let us define 
our signal model as 

NLP 

s (n)  = - a~p(z)s(n - z) + e(.) (17) 

where NLP represents the number of coefficients in the 
model (the order of the predictor), { u ~ p }  are defined as 
the linear prediction coefficients (predictor coefficients), 
and e(.) represents the error in the model (the difference 
between the predicted value and the actual measured value). 

One obvious virtue of this model is that, if it is accurate, 
we should be able to predict future values of the signal 
based on our current set of measuremenh6 The error term 
should tell us something about the quality of our model (if 
the error is small, the model is accurate). It is also possible 
to show that a linear prediction model effectively models 
the spectrum of the signal as a smooth spectrum [31]. 

Equation (17) can be rewritten in 2-transform notation 
and shown to be a linear filtering operation 

i=l 

E ( z )  = H L P ( Z ) S ( Z )  

where E ( z )  and S(z )  are the 2-transforms of the error 
signal and the speech signal, respectively, and 

NLP 

H L P ( Z )  = 1 + a L P ( z ) z - i  
i= l  

or 
NLP 

H L P ( Z )  = aLP(i).-Z (18) 

l . H L p ( z )  is defined as the linear predic- 

i = O  

where a ~ p ( O )  
tion inverse filter. 

6The naive reader will easily imagine uses for such models in predicting 
stock market prices. In fact, economic analysis was one of the earliest 
applications for such algorithms. 

Under the constraint that we would like the mean-squared 
error to be as small as possible (seeking a solution that 
gives us the minimum error energy is reasonable), the 
coefficients (excluding u ~ p ( O ) )  of (18) can be obtained 
from the following matrix equation: 

where 

. N,-I 

The solution presented in (19)-(23) is known as the Covari- 
ance Method. @ is referred to as a covariance matrix, and 
&( j ,  k )  is referred to as the covariance function for s(n). 

There are three basic ways to compute predictor coeffi- 
cients: covariance methods based on the covariance matrix 
(also known as pure least squares methods), autocorrelation 
methods, and lattice (or harmonic) methods. Good dis- 
cussions of the differences in these approaches are given 
in [31], [57]. In speech recognition, the autocorrelation 
method is almost exclusively used because of its computa- 
tional efficiency and inherent stability. The autocorrelation 
method always produces a prediction filter whose zeroes lie 
inside the unit circle in the z-plane. 

In the autocorrelation method, we modify (23) as follows: 

or 
~ N , - 1 - k  
1 

R,(k) = N, s(n + m)s(n + m - k ) .  (25) 
m=O 

Rn(k) is known as the autocorrelation function. This sim- 
plification results by constraining the evaluation interval 
to the range [O, N - 11, and assuming values outside this 
range are zero. 

Because of this finite length constraint, it is important 
in the autocorrelation method to apply a window, such as 
that described in (5) to the signal. Normally, a Hamming 
window is used. Application of the window eliminates the 
problems caused by rapid changes in the signal at the edges 
of the window, In an overlapping analysis, it ensures a 
smooth transition from frame to frame of the estimated 
parameters. 

This simplification allows the predictor coefficients to be 
computed efficiently using the Levinson-Durbin recursion 
t371 
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Initialization: 

E g  = Rn(0) (26) 

For 1 < i < N L p {  
2-1 

R,(i) + a!;l)(j)Rn(i - j )  

&1) (27) 
j=1 kLP(i - 1) = - 

These equations compute the predictor coefficients with 
complexity proportional to Nzp, and allow the entire LP 
computation to be performed with a complexity of approx- 
imately NsN~p  + 3N, + Nzp. 

The signal model is actually the inverse of H L ~ ( z ) ,  and 
is given by 

GLP is the model gain, and is given by 

Note that the gain term is also given by the expression 

NL P 

R,(O) rl[ (1 - k ~ p ( i  - (33) 
2 = l  

The gain term allows the spectrum of the LP model to be 
matched to the spectrum of the original speech signal. The 
LP model computed from (19) is a normalized model (the 
values of the predictor coefficients are independent of the 
power of the signal). 

There are three important observations to make about 
this form of the LP solution. First, the intermediate vari- 
ables used in the computation { k ~ p }  are called reflection 
coefficients. They are bounded 

This is an extremely useful result for storage and compres- 
sion applications involving LP models. For example, LP 
coefficients for speech applications can be compressed to 
as few as 30 b/model without significant degradation [58]. 

Magnitude(dB) 

0 1 2 3 4  
Frequency (kHz) 

Fig. 15. A speech spectrum is shown along with LP models of 
order 4 and 8. Note that the model order 4 does not sufficiently 
model the detail in the spectrum. Model orders of 10 and 12 are 
often used in speech recognition systems. 

LP coefficients can normally be stored in such a way that 
we can achieve an order of magnitude compression over the 
original speech data. This is an important consideration for 
speech recognition systems that must store large numbers 
of recognition models. 

Second, the iterative solution computes the solution for 
all model orders 1 < i 5 NLP. This is convenient for signal 
processing applications that require estimation of the model 
order as part of the task. Normally, in speech recognition 
applications, the model order is a fixed system parameter. 

Third, as the order increases, the model fit becomes 
better. Equation (30) represents the energy of the error. 
From this equation, we see that the error is monotonically 
decreasing as the order increases. The model itself attempts 
to match the overall spectrum as well as possible for the 
given order. 

We demonstrate this fact in Fig. 15, where we show a 
speech spectrum, and two corresponding LP models. Note 
that as the order is increased, the model produces a better 
match of the original spectrum. With a low order, only the 
gross spectral shape (or trend) is captured. With a higher 
order, finer detail in the spectrum is represented. 

As we observed in previous sections, the spectral model 
in low-energy areas of the signal spectrum is often in- 
accurate. We would like to somehow impose a dynamic 
range threshold similar to that imposed in Fig. 12. There 
are several ways to do this in an LP model: a stabilized 
covariance method [59] that reduces the dynamic range 
in the spectrum, a perceptual-weighting method [60] that 
broadens the bandwidths of the LP model slightly, or a 
stabilized autocorrelation method [44] in which a small 
amount of noise is added to the autocorrelation function. 

The latter of these approaches is simple and effective. 
The autocorrelation function of (25) is modified before the 
LP computation as follows: 

Rnw(0) = (1 + m w ) R n ( O )  
Rnw(i) = Rn(i) ,  i > 0. (35) 

The dynamic range threshold is normally specified in 
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Fig. 16. Stabilization of the LP model is demonstrated. A speech 
spectrum is shown along with an LP model of order 10, and the 
same LP model with a stabilization factor of -10 dB. Note that 
while the bottom of the spectral model is raised, the performance of 
the model around the spectral peaks is also significantly smoothed. 
In cases where two spectral resonances are close in frequency, 
stabilization sometimes tends to combine these into on broad 
spectral peak (a bandwidth broadening effect). 

decibels 

Y l l W d B  = 10 log,o Ynw. (36) 

A typical value of the dynamic range threshold is -10 dB. 
This stabilization process is equivalent to adding uncor- 

related white noise to the speech signal before LP analysis. 
The effect of this noise is to prevent the LP model from 
modeling sharp nulls (or zeroes) in the spectrum. This is 
demonstrated in Fig. 16. Observe that some distortion in the 
form of spectral smoothing is also introduced into the model 
at higher energy areas of the spectrum (broadening the 
bandwidths of the resonances of the LP model sometimes 
causes neighboring spectral resonances to collapse into one 
broad resonance). 

Let us make one more important observation about the 
LP model. By adding power and fundamental frequency 
information to the LP coefficients, it is possible to recon- 
struct an audio version of the speech signal [56]. Listening 
to parametric descriptions of the speech signal, particularly 
speech recognition models, is very useful for diagnosing 
problems [6 I]. Some parametric transformations, such as 
cepstral coefficients, do not have a one-to-one mapping with 
the original LP data. Hence, it is somewhat harder to assess 
the validity of a parameter set. 

Speech recognition systems historically first used LP 
parameters directly in the recognition process. Since then, 
more sophisticated transformations of these parameters 
have been devised. However, it is important to remember 
that generating an accurate LP model is an important first 
step in spectral analysis. Because LP analysis is a nonlinear 
operation, performance in noisy environments is sometimes 
problematic. For this reason, some systems still use a 
Fourier transform-based filter bank analysis. 

In Fig. 17, we summarize the LP modeling process by 
presenting LP models for several analysis conditions in 
the form of a spectrographic display [62]. Note that as 

the frame duration decreases (and the window duration is 
proporbonately decreased) the temporal resolution in the 
spectrogram increases. Frame durations of 20 ms used to 
be most common in speech recognition systems. Recently, 
as the speech recognition research focus has shifted towards 
phonetic recognition, frame durations on the order of 10 ms 
have become common. The movement towards finer time 
resolution will continue as phonetic recognition technology 
matures. 

5 )  LP-Derived Filter Bank Amplitudes: Obviously, we can 
combine the notion of a filter bank, such as that described 
in Section 111-Cl, with the LP model. Linear prediction- 
derived filter bank amplitudes are defined as filter bank 
amplitudes resulting from sampling the LP spectral model 
(rather than the signal spectrum) at the appropriate filter 
bank frequencies. The astute reader might ask: what is the 
benefit of this? 

It has been argued that use of the LP model, or high- 
resolution model as it is often referred to, gives more 
robust spectral estimates [57]. Often, the spectral smoothing 
inherent in the LP model provides more stable parameters 
to subsequent stages of the processing. However, as speech 
recognition and DSP technologies have progressed, the 
differences in these approaches are not as great as they 
once might have been. 

How can we efficiently sample the spectrum given the LP 
model? A straightforward technique to compute filter bank 
amplitudes from the LP model involves direct evaluation 
of the LP model 

i=O 

where f s  represents the sample frequency. This method re- 
quires on the order of 4p+3 multiply/accumulate operations 
per frequency sample. As described in Section 111-C 1. the 
spectrum is typically oversampled and averaged estimates 
are generated for actual filter bank amplitudes. 

Another popular approach is to compute the power spec- 
trum from the autocorrelation of the impulse response of 
H L P ( z ) .  The impulse response of H L P ( Z )  can be computed 
directly from the LP coefficients [32] 

R L P ( ~ )  = U L P ( ~ ) ~ L P ( ~  + Ikl), IkI I NLP 

= 0 ,  Ikl > NLP. 
(38) 

The power spectral density can be efficiently computed 
from the autocorrelation function by observing that the 
autocomelation function is an even real function. Hence, 
its Fourier transform is real, and is given by 

NLP - I k I 

m=O 

SLP(f) =RLP(O) 
NL P 

+ 2 R ~ p ( k )  COS ( S n i k ) .  (39) 
k=l 

Equation (38) requires a total of approximately NZp - 
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Fig. 17. Spectral analysis for a speech signal is demonstrated by showing a wideband spectrogram 
of a speech signal, and three associated LP models. Normally, the analysis presented in (e) is 
sufficient to capture salient aspects of the individual sounds. However, as computational power 
increases, and phonetic recognition technology improves, 10 ms frame durations may become more 
common, because of the need for better characterizations of dynamic sounds such as consonants. 
(a) A speech waveform (the word “speech) and its power contour. (b) A wideband spectrogram 
(6-ms window). (c) A spectrogram of the LP model (Tf = 5 ms, Tu. = 10 ms). (d) A spectrogram 
of the LP model (Tf  = 10 ms, T,. = 20 ms). (e) A spectrogram of the LP model (Tf  = 20 
ms, Tcr = 30 ms). 

( 3 / 2 ) N ~ p  multiply/accumulate operations, while (39) re- 
quires NLP multiply/accumulate operations per frequency 
sample. 

With either approach, nonlinearly warped spectra can be 
easily implemented by appropriate choices of the filter bank 
sample frequencies. Also, even though the LPC model sup- 
plies a smoothed spectral fit, it is often still advantageous 
to oversample the spectrum so that sharp peaks in the 
frequency response will be accurately characterized by the 
filter bank (which tends to coarsely quantize the spectrum). 

6 )  LP-Derived Cepstral Coefficients: Finally, we discuss 
our last signal measurement technique. Recall that in the 
last section, we leveraged the LP model to compute LP- 
derived filter bank amplitudes. Another logical step in this 
direction would be to use the LP model to compute cepstral 
coefficients. Again, the astute reader might wonder: can 
cepstral coefficients be computed directly from the LP 
model? 

If the linear prediction filter is stable (and it is guaranteed 
to be stable in the autocorrelation analysis), the logarithm 
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of the inverse filter can be expressed as a power series in 
z-l [63] 

N ,  

i = O  

= log H (  z )  

We can solve for the coefficients by differentiating both 
sides of the expression with respect to z-', and equating 
coefficients of the resulting polynomials. This results in the 
following recursion [321, [561, [641: 

Initialization: 

C L P ( 1 )  = - a L P ( l )  (41) 

For 2 5 i I Nc{ 

CLP(Z') = - ULP(Z') 

The coefficients { c ~ p }  are referred to as LP-derived cep- 
stral coefficients. 

Historically, c ~ p ( 0 )  has been defined as the log of the 
power of the LP error [31]. For now, we note that since 
power will be dealt with as a separate parameter, there is 
no need to include it in the equations above. We can regard 
the cepstral model as a normalized model, much like an LP 
model, in which c ~ p ( 0 )  = log 1 = 0. We will discuss this 
issue in more detail later (Section V-B) when we consider 
comparison of signal models. 

There is one minor complication in the cepstral coeffi- 
cient recursion. We do not specify the number of cepstral 
coefficients N ,  to compute. Since they are, in fact, an 
inverse Fourier transform of the impulse response of the LP 
model, and the LP model of the signal is an infinite impulse 
response filter, we can, in theory, compute an infinite 
number of cepstral coefficients. However, the number of 
cepstral coefficients computed is usually comparable to the 
number of LP coefficients: 0 . 7 5 ~  I Nc 5 1.25~.  

The cepstral coefficients computed with the recursion 
described above reflect a linear frequency scale. One draw- 
back to the LP-derived cepstral coefficients is that we must 
work a little harder to introduce the notion of a nonlinear 
frequency scale. The preferred approach is based on a 
method used to warp frequencies in digital filter design. 
This method uses a very important transform in digital 
signal processing: the bilinear transform [27]. 

A bilinear transform is defined as 

Frequency (Log - Hr)  

loo00 

lo00 

100 
100 200 500 1000 2000 5000 10000 

Frequency (Log - Hz) 

Fig. 18. The bilinear transform is compared to the me1 scale for 
a range of values. The bilinear transform was computed using a 
sample frequency of 16 kHz. Note that positive values of a b t  
produce compression of the frequency scale (shown here) while 
negative values produce expansion. 

where is the frequency warping parameter. When 0.4 I 
f f b t  5 0.8, the frequency warping of the bilinear transform 
is similar to the me1 scale. This is demonstrated in Fig. 18. 
A common value of Qbt is 0.6. 

We can use this transformation at one of several places 
in the LP-derived cepstral coefficient computation: on the 
autocorrelation function, on the predictor parameters, or on 
the LP-derived cepstral parameters. In [20], it was shown 
that postprocessing the cepstral coefficients was the most 
effective method (and the simplest). 

Equation (43) describes a frequency-domain procedure. 
If implemented using a sampled 2-transform approach. the 
computation would involve an inverse Fourier transform of 
the cepstral coefficients. Instead, we would prefer a direct 
recursive computation using the cepstral coefficients. Such 
a recursion fortunately exists [65]. 

This recursion can be viewed as a sequence of cas- 
caded linear shift-invariant filtering operations, and can be 
implemented recursively as follows: 

where all initial conditions are zero. Since c ~ p ( 0 )  = 0, 
processing can begin with c L p ( 1 )  at n = 0. 

In this recursion, we iterate over all c b t ( k )  first, and 
update these values for each n (the second iteration). 
The results after N ,  iterations are the final transformed 
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Fig. 19. A speech spectrum along with its LP model are shown. 
In addition, the log magnitude spectrum of the LP-derived cepstral 
coefficients, and the log magnitude spectrum of the corresponding 
warped cepstral coefficients ( a b t  = 0.25) are shown. Similar 
results can be obtained for the LP spectrum by processing either the 
LP coefficients or the autocorrelation function through the iterative 
transform. 

coefficients. This recursion requires on the order of N, x 
Nbt multiply/accumulate operations. It is about the same 
complexity as the LP solution. 

Again, we need to consider truncation. The bilinearly 
transformed cepstral sequence, which is the result of a 
truncated cepstrum being processed through a nonlinear 
frequency translation, is also inherently infinite in duration. 
However, practically speaking, if the cepstral sequence is 
of finite duration, the resulting transformed sequence will 
asymptotically exponentially decay (poles inside the unit 
circle). Hence, it is possible to truncate the transformed 
sequence with little distortion. Normally, Nbt 5 1.25NC. 

In Fig. 19 we demonstrate the combined effects of 
cepstral analysis and bilinearly transformed coefficients. A 
speech spectrum for an 8-kHz sampled signal is shown, 
along with its 10th-order LP model. The log magnitude 
spectrum of the cepstral coefficients is also shown for a 
12th-order cepstral analysis. Similarly, a log magnitude 
spectrum for the bilinearly transformed cepstrum is shown. 
In this example, 12 cepstral coefficients were converted to 
16 bilinearly transformed coefficients. 

The proper amount of compression for the bilinear trans- 
form is to some degree a function of the sample frequency. 
In several studies involving a 16-kHz sample frequency 
[20], [66], a compression factor of 0.6 was used. The 
effective bandwidth of the speech signal at a 16-kHz sample 
frequency is small (the majority of the energy appears in 
the lower quarter of the frequency scale for sonorants). 

We speculate that for a number of reasons, the bilinear 
transform is not as useful at a sample frequency of 8 kHz. 
First, the speech signal now occupies the majority of the 
available bandwidth. There is less “empty space” (the only 
available space is between approximately 3.0 and 4 kHz) 
to utilize in stretching the spectrum. Useful information 
can be de-emphasized if extreme amounts of scaling are 
performed. 

Second, the compression factor must more than likely be 
lowered to maintain the me1 scale approximation. Yet, as 
this factor is lowered, the amount of compression performed 

decreases. This leads one to speculate that this transform 
may not be the best way to approximate the mel scale. 

We have now discussed all major signal measurement 
techniques used in speech recognition systems today. Next, 
we will discuss how these parameters are smoothed and 
concatenated to form signal parameters. 

IV. PARAMETER TRANSFORMS 
In the previous section, we discussed several methods of 

computing absolute measurements. In this section, we will 
discuss the next step in the chain of operations depicted 
in Fig. 1: parameter transformations. Signal parameters are 
generated from signal measurements through two funda- 
mental operations: differentiation and concatenation. The 
output of this stage of processing is a parameter vector con- 
taining our raw estimates of the signal. An overview of the 
operations that constitute the parameter vector construction 
is given in Fig. 20. 

A. Differentiation 
As computational power increased in the 1980’s, the use 

of auxiliary measures of the speech spectrum in dynamic 
time warping systems became feasible. As part of a contin- 
uing trend to better characterize temporal variations in the 
signal, higher order time derivatives of signal measurements 
[14], [18], [21] were added to the signal model. The 
absolute measurements previously discussed can be thought 
of as zeroth-order derivatives. Here, we investigate the 
addition of the time derivatives of these measurements to 
our signal model. 

In digital signal processing, there are several ways in 
which a first-order time derivative can be approximated. 
Three popular approximations are [271, [671, [681 

d 
d t  i ( n )  - s (n)  M s (n )  - s ( n  - 1 )  

d 
dt 

i (n )  = -s(n) M s (n  + 1) - s (n )  

(47) 

(48) 
Nd a 

d t  
i ( n )  = -s(n) M 2 ms(n + m). (49) 

m=-N, j  

(Note that we have dropped superfluous normalization 
factors in these equations.) The first two equations are 
known as backward and forward differences, respectively. 
Equation (49) represents a linear phase filter approximation 
to an ideal differentiator. This is often referred to as 
regression analysis. 

The signal output from this differentiation process is de- 
noted a delta parameter. The second-order time derivative 
can be similarly approximated by reapplying (49) to the 
output of the first-order differentiator. This is shown in 
Fig. 20. This output is often referred to as a delta-delta 
parameter. Obviously, we can extend this process to higher 
order derivatives. 

We have seen (47) before in the form of a pre-emphasis 
filter in the spectral shaping portion of our system (see (2)). 
Recalling the primary purpose of the pre-emphasis filter 
was to amplify high-frequency portions of the spectrum, 
we must be cognizant of the reality that differentiation 
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Fig. 20. Conversion of signal measurements to a signal parameter vector usually consists of two 
steps: differentiation (optional) and collation. Most speech recognition systems today use the absolute 
measurements and an estimate of the first derivative of the measurements. Recently, estimates of 
the second derivative have been incorporated. The output of this stage of processing is a single 
parameter vector which is the concatenation of all parameters. 

is inherently a noisy process. Differentiation filters tend 
to amplify noise in the signal measurements. Often, it is 
desirable to compute derivatives of smoothed parameters, 
rather than the raw measurements, so that the noise level 
in the output measurement is decreased. 

There are several popular ways to achieve this result. 
Regression analyses, as shown in (49), spline interpolation, 
and band-limited differentiation are a few of the common 
techniques. We observe that since (49) computes differences 
symmetrically placed around the sample at time 71, it is 
using a combination of Nd previous samples in each direc- 
tion to compute the current value. Hence, some measure of 
smoothing is inherent in this calculation. 

There are two trends emerging in the use of (49). Many 
systems today [ 2 ] ,  [66], [113] use a simple first-order 
difference: Nd = 1. These systems typically operate at 
frame durations in the range of 10 ms _< Tf 5 20 ms. 
The range of time over which the derivative is computed is 
relatively small: AT, i: 40 ms. A second group of systems 
[ 111, [67] uses a larger number of terms: 5 5 Nd 5 7. 
In these systems, 8 ms 5 T, 5 10 ms. The period over 
which the derivative is computed is rather large: 56 ms 
5 ATd 5 75ms. 

The frequency responses of several realizations of a dif- 
ferentiation filter are shown in Fig. 21. The low-frequency 
portion of each filter is designed to approximate a linear 
function (a ramp function) that favors higher frequency 
information (indicative of temporal variation). Observe that 
as the order of the differentiator increases, the filter begins 
to de-emphasize high frequencies, and introduces more 
ripple in the spectrum. The property of attenuating high fre- 
quencies is considered a form of noise reduction--beyond 
a certain point high-frequency information is considered 
unreliable and needs to be attenuated. 

B.  Concatenation 
The common thread throughout most of the measurement 

techniques we have discussed is the use of linear filtering 
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Fig. 21. The frequency responses for three different realizations 
of a differentiator are shown. In (a), -1-d = 1. In (h), -1-d = 3. 
In (c). .\-d = 5. Note that an ideal differentiator has a frequency 
response proportional to the log of the frequency. It is desirable, 
however, to attenuate high frequencies (it is important to not 
excessively amplify these components) because higher frequency 
components tend to be noisy. Hence, each of these designs atten- 
uates high frequencies. The first-order difference, as shown in (a), 
is most common. 

to achieve parameter smoothing. Most systems postprocess 
the measurements in such a way that the operations can 
be easily explained in terms of linear filtering theory. In 
this section, we will generalize this notion in the form of 
a matrix operator. 

Let us define a signal measurement matrix for a signal 
as follows: 

X =  

1 x(O.0) x ( 0 , l )  . .. Z(0,NZ - 1) 
.( 1 , O )  X ( 1 , l )  . . .  Z(1, NZ - 1) 

Z(Nf - 1 , O )  Z(Nf - 1, l )  ' . .  Z ( N f  - l ,NZ - 1) 
. . .  . . .  . . .  . . .  

(50) 
[ 
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where z(71,m) denotes the mth signal measurement at 
frame n (or time (n  + !j)Tj), N j  denotes the total number 
of frames in the signal, and N, denotes the total number 
of signal measurements for each frame. 

The signal measurement matrix X contains all mea- 
surements of a signal for all time. In many practical 
systems, the signal is processed frame by frame in real 
time. Accumulation of the signal into one large matrix 
adds delay to the system. However, for research purposes, 
it is convenient to view the signal model as a matrix of 
measurements. 

Note that the signal measurement matrix usually contains 
a mixture of measurements: power and a set of cepstral 
coefficients. N, represents the dimension of the vector 
that is the composite of these measurements. From this 
point on, we will consider these measurements as a group, 
rather than individually, and not refer to specific types of 
measurements. In some analyses, it is nevertheless useful 
that common measurements be grouped together in adjacent 
columns in X (to facilitate submatrix operations). 

We will define two auxiliary matrices related to the 
parametric smoothing process. First, we define a matrix of 
lags (delays), denoted T that will represent a time delay (or 
advance) from the current time 

r =  

1 T(0 ,O)  T(0, l )  ... T(O,N,, - 1) 
T(110) 7(1,1) ’ . .  T(l>NTl - 1) 

. . .  . . .  . . .  . . .  
T ( N p  - 1,o)  T(Np - 1,1)  . . .  T(Np - - 1) 

t (51) 

[ 
= [To 71 ” ’  FNp-l] 

where 7; denotes the ith lag vector, and Np denotes the total 
number of signal parameters. The lag vectors can be of dif- 
ferent dimensions, depending on how many measurements 
will be used in each particular signal parameter computation 
(the lag matrix is actually a vector of vectors). Hence, we 
denote the dimension of each row by the term NTt. 

Next, we define a weighting matrix W that holds the 
weights of filters to be applied to the measurements. These 
weights have a one-to-one correspondence with the lag 
matrix. The weight matrix is defined as follows: 

(52) 

where Wi denotes the ith coefficient vector whose dimen- 
sion is equal to the corresponding vector in r. 

We also define an indexing vector f that for each row in 
W defines a corresponding column in X 

1 .=[ . . .  ... . . .  
W ( 0 , O )  _ ’ ’  W ( 0 , N T O  - 1) 

w(Np - 1,O) . . . w(Np - 1, N., - 1) 
= [2(10 6 ” ’  - t  WNp-l] 

(53) 

We define the process of filtering the measurement vector 
as a pseudo-convolution operator: 

V = X * W  

where the operator * is defined as follows: 

For 0 5 n 5 N j  - 1{ 
For 0 5 i 5 N, - 1{ 

Equation (54) simply represents a sequence of linear fil- 
tering operations iterated over each element of the signal 
parameter vector for each frame of signal measurement 
data. This is expressed using a flexible indexing scheme 
to account for the fact that different types of features will 
require different filters. (This is more of an implementation 
issue than a conceptual issue.) 

Note that through the use of the indexing array f we 
can derive multiple parameters from the same measurement 
(e.g., average power and delta power from the same power 
value). Also, the coefficient matrix W can be used to 
realize all of the filtering operations previously discussed, 
including differentiation, averaging, and weighting. We 
refer to the operation described in (54) as concatenation: 
the creation of a single parameter vector per frame that 
contains all desired signal parameters. 

Some parameters, such as power, are often normalized 
before the computation in (54). It is common to simply 
divide the power by the maximum value observed over an 
utterance (or subtract the log of the power). This approach 
has a drawback that one must wait until the utterance 
has been identified (or completed) before such a value 
is available. This delay is often unacceptable in real-time 
applications. 

Peak power values can also be computed using recursive- 
in-time filtering approaches such as those described in 
Section 111-B. In this case, the frame-based power estimate 
is often postfiltered by an adaptive gain control circuit that 
attempts to dynamically monitor the peak power level. This 
adds delay to the system because the algorithm needs time 
to react to changes in the signal (and settle). Adaptation 
times for such estimators are typically on the order of 
0.25 s [66]. 

Historically, when recognition systems were very simple, 
signal models often consisted of heavily smoothed parame- 
ters. “Noisy parameters,” that is, parameters that amplified 
dynamics in the spectrum, were believed to be unreliable. 
With the emergence of Markov modeling techniques that 
provide a mathematical basis for characterizing sequential 
(or temporal) aspects of the signal, the reliance upon 
dynamic features has grown. Today, dynamic features are 
considered essential to developing a good phonetic recog- 
nition capability [69], because rapid change in the spectrum 
is a major cue in classification of a phonetic-level unit. 

Differential parameters also gained popularity as re- 
searchers struggled to find signal models invariant to drastic 
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Fig. 22. Statistical models in speech recognition are generally divided into two categories: 
parametric models (continuous distributions) and nonparametric models (discrete distributions). The 
types of models range from direct evaluation of the LP model to sophisticated likelihood models 
based on decorrelation transformations. 

changes in the speaker’s behavior (often induced by the 
application) [2], 1701. For example, in command and con- 
trol applications, a speaker’s acoustic data can change 
significantly as the speaker encounters physical or mental 
stress related to the tasks at hand. These changes often 
manifest themselves more in the absolute spectra than the 
differential spectra. Parameters derived from differential 
spectral information are believed to make a system more 
invariant to these types of gross changes in a speaker’s 
data. 

Before we leave this section, let us discuss one particular 
form of parameter weighting used with cepstral coefficients. 
Early research into cepstral processing techniques suggested 
a means of performing linear filtering operations directly 
on the cepstral coefficients to enhance those portions of 
the cepstrum representing vocal tract information [7 11. This 
technique has come to be known as liftering (a term coined 
because of the similarities to linear filter theory). 

The liftering process is simple and is defined as follows: 

(55) CLift ( m )  = c ( m ) w L i f t  (m) 

where 

N c  am 
w L ; f t ( m )  = 1 + - sin -. 

2 Nc 

Equation (55) describes a “time-domain’’ windowing op- 
eration (the time scale of the cepstrum is actually called 
quefrequency). Equation (56) describes the weighting (or 
window) function. At this point, we merely note that this 
is a static weighting function that can be applied directly 
to any set of cepstrum coefficients. In the next section, we 
will discuss a method of computing such a weighting in a 
statistically optimal manner. 

V. STATISTICAL MODELING 
In our last section on signal modeling, we tum our 

attention to the problem of statistical models for the signal 
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Probability 

Codebwk Index 
and 

Probabilii 
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parameters. In this section, we assume the signal parameters 
were generated from some underlying multivariate random 
process. We would like to leam, or discover, the nature of 
this process. Our approach will be to impose a model on 
the data, optimize (or train) the model, and then measure 
the quality of the approximation. The only information we 
will have about the process are its observed outputs, the 
signal parameters that have been computed. For this reason, 
the parameter vector output from this stage of processing 
is often called the signal observations. The collection of 
these vectors for the entire signal is referred to as the signal 
observation matrix. 

This last processing step is, ironically, just the first step in 
statistical modeling in speech recognition. Often, this step 
is contained entirely within the speech recognition system 
[ 141, [ 181. The techniques described here only represent the 
most basic approaches. Speech recognition systems use ex- 
tremely sophisticated statistical models-this is one of the 
fundamental functions of a speech recognizer. Nevertheless, 
the techniques presented here have been found to be useful 
in a wide variety of speech processing applications, and 
form the basis for the more sophisticated algorithms. An 
overview of the various types of transformations discussed 
in this section is given in Fig. 22. 

A. Multivariate Statistical Models 

As we have previously mentioned, in a typical set of 
heterogenous signal parameters, we mix quantities such 
as power and cepstral coefficients that have completely 
different numerical scales: the range and variance of the 
power term will be much larger than the range and variance 
of a cepstral coefficient. Variances of the time derivatives 
of the cepstral coefficients will be larger than the cepstral 
coefficients. If we compare two parameter vectors using a 
simple operator such as a Euclidean distance, the result will 
likely be dominated by the terms with large amplitudes and 
variances, even though the true information may lie in the 
smaller amplitude parameters. 
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Similarly, if we consider a measurement such as a filter 
bank amplitude, it is easy to understand that filter bank 
amplitudes from adjacent bins are likely to be correlated 
with one another. The filter bank, in fact, is specifically 
designed to produce this type of correlation. This is similar 
to the way human hearing operates: a group of hair cells 
on the basilar membrane will respond to a given tone and 
produce correlated outputs. 

We can illustrate the problem with performing direct 
comparisons in a vector space in which the dimensions 
have unequal variances with the simple two-dimensional 
example shown in Fig. 23(a). In the original coordinate 
system, the distance between points a and b is equal to the 
distance between points c and d (both are one unit). Yet, 
from a signal processing perspective, we would consider 
the former distance to be greater than the latter distance, 
because it is a larger percentage of the variance of the 
parameter. One cautionary note: the argument presented 
in Fig. 23 assumes that the observed variance is not due 
to a large noise component, and that it, in fact, represents 
meaningful variation in the parameter. 

While the solution to the above problem of variance 
weighting is straightforward, elimination of correlation is 
more subtle. We would like to remove correlation from 
our measurements for two reasons. First, correlation im- 
plies redundancy. The actual number of “true” parameters 
required to describe the information might be much less 
than the number of measurements. We might be able 
to achieve some level of compression or reduction by 
selecting a subset of the features (or linear combinations of 
the features). Extraneous dimensions in signal processing 
problems are often the source of trouble (the problem 
becomes less well-conditioned). Second, we would like to 
use simple techniques to compare vectors. The presence of 
correlated parameters makes the development of an optimal 
statistical metric much more difficult. 

1)  Prewhitening Transformations [72]: There is a straight- 
forward method of decorrelating parameters in a statistically 
optimal sense for a multivariate Gaussian process. Let 
us define a multivariate Gaussian probability distribution 
as 

We will assume that our parameters obey this type of 
statistical model (or stated another way, that our parameters 
can be modeled sufficiently accurately by such a process). 

We can compute a linear transformation that will simul- 
taneously normalize and decorrelate the parameters. Let us 
define a transformed vector as 

where V denotes the input parameter vector, and ,& denotes 
the mean value of the input parameter vector. We define 9 
as a prewhitening transformation [ 181, [72], based on the 

Distribution X1 

Distribution #2 

Y 
A 

0 1 2 3 4  

Fig. 23. (a) The elliptical region shows the range of allowable 
values of an order pair (s, y) (assume all points in this region are 
equally likely). Which distance is greater: (a) the distance from 
point a to point b, or (b) the distance from point c to point d? The 
answer is (a). Since the distance from a to 6 is a larger percentage 
of the variance in the vertical direction, we would have to believe 
this distance is “perceptually” larger than the distance from point c 
to point d.  (Note that the distances as shown are exactly one unit.) 
(b) An important variation of the problem in (a): which distribution 
does the data point belong to? The distance from the center of 
each distribution to the data point are the same. However, since 
the shapes of the distributions are different, on what scale do we 
compare the two distances? [72]. 

fact that we desire the output of this transformation to be an 
uncorrelated (or white) Gaussian random vector. To achieve 
this result, it can be shown that !P is given by 

where A denotes a diagonal matrix of eigenvalues, and @ 
denotes a matrix of eigenvectors of the covariance matrix 
of v. 

A complete discussion of the significance of (59), the 
“true meaning” of eigenvectors, and other deep mysteries of 
life related to (59) would take us too far afield from our task 
at hand. However, we cannot understate the importance of 
appreciating the need to statistically normalize parameters. 
This concept has been a recurring theme throughout modem 
speech recognition systems [73], [74]. The eigenvalues and 
eigenvectors described above are the key to the whole 
computation, in that they describe a linear transformation 
of the input vector space to a new space in which normal 
Euclidean distances can be computed. 
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The eigenvalue and eigenvectors can be shown to satisfy 
the following relation: 

C, = @A@t (60) 

where C, is the covariance matrix for v. Each element in 
C,, C,(i , j) ,  can be computed as follows: 

N f - 1  

N f  m=O 

1 
Cu( i , j )  = - ( ~ m ( i ) - ~ u ( z ) ) ( ~ ~ ( j ) - ~ u ( j ) ) .  (61) 

We have delayed disclosing the computation of the eigen- 
values and eigenvectors (for good reason). This computa- 
tion is algorithmically complex. While the procedure has 
a simple interpretation in linear algebra, it is somewhat 
of a nasty thing to program. We do point out that, since 
a covariance matrix is a real, symmetric matrix, and that 
covariance matrices for speech parameters usually are well- 
conditioned, the solution is normally well-behaved. 

As pointed out in [75] (an excellent discussion on this 
topic), this is one of those problems in life best left to 
“canned software.” One version we recommend, despite the 
fact that it is written in a very Fortranish-looking C, is a 
function based on the Jacobi transformation of a symmetric 
matrix. This function can be found in the widely distributed 
software package Numerical Recipes in C [75], and is 
namedjucobi. This widely used software is very stable and 
has generally provided satisfactory performance on this task 
for many years. 

There is one VERY important simplification of (60) that 
needs to be discussed. If the parameters are uncorrelated, 
then the covariance matrix in (60) reduces to a diagonal 
matrix. In this case, the transformation in (60) simplifies to 
a diagonal matrix 

1 0  0 0 - q  N u - l )  

where o,(i) is the standard deviation of the ith component 
of the parameter vector U. This is readily recognized as 
normalizing the parameters by their standard deviations, 
thereby making each parameter count equally in the calcu- 
lation. We alluded to this in our discussion of Fig. 23. 

It has been observed over the years that certain pa- 
rameter sets, namely cepstral coefficients, can be regarded 
(to an approximation) as uncorrelated [66], [74]. This 
is convenient, because it significantly reduces the num- 
ber of parameters one needs to estimate in the system. 
The so-called “variance-weighted cepstral coefficients” are 
very popular in speech recognition systems today. Other 
parameters, such as filter bank amplitudes, display very 
strong correlations of the first off-diagonal components. 
Sometimes it is advantageous in such situations, in an effort 
to reduce computational noise in the system and to reduce 
the complexity of the system, to approximate the covariance 
matrix as such a banded matrix [18]. 

A noise reduction technique that is often incorporated 
in this context is a procedure in which we discard the 

least significant features. If we define Nu eigenvalues 
Xo, X I ,  . . . , A N ,  - 1  ordered in decreasing order, an impor- 
tant relationship can be shown to hold true 

N u - 1  

= tr C, 
i = O  

N u - 1  

= .P 
i = O  

From this relationship, we see that the eigenvalues and the 
variance of the process are related. 

We can define the amount of the variance accounted for 
by each eigenvalue/eigenvector pair as 

and the total percentage of the variance accounted for by 
the first NY dimensions (one dimension corresponds to an 
eigenvector/eigenvalue pair) as 

N , - 1  

4 
< N u  = ~ j = O  x 100%. N . .  - 1 

In this case, the transformation matrix P is an NY x Nu 
rectangular (but not square) matrix. Equations (64) and 
(65) are often used to guide decisions about how many 
dimensions to retain. 

If a single Gaussian distribution is not a sufficient model, 
we note that we can model the data as a weighted sum 
(or mixture) of Gaussian distributions [74]. We will not 
discuss this issue in great detail here, but will observe that 
we can get an asymptotically good match to the parameter 
distribution with such a linear combination of Gaussian 
density functions. 

We can gain some intuition into the prewhitening trans- 
formation from Fig. 24. Three eigenvectors from a transfor- 
mation designed for telephone bandwidth speech are shown. 
These were computed for filter bank amplitude outputs from 
a mel scale filter bank. Note that each eigenvector attempts 
to model a different aspect of the speech spectrum. The first 
few eigenvectors of the transformation matrix often tend to 
model gross spectral characteristics of the channel (which 
is constantly changing in telecommunications applications). 
Note that this weighting function, when applied to filter 
bank amplitudes, can be viewed as a filtering operation in 
the time domain (frequency-domain windowing is equiva- 
lent to time-domain filtering). 

Before we unilaterally invoke the power of this multi- 
variate Gaussian model, remember the associated cost: we 
must learn (or train) this transformation matrix. Usually, 
this is done by collecting mean and covariance statistics 
across a large amount of speech data. Often this can 
be an art, because we must insure that statistics of the 
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Fig. 24. An example of a transformation computed over speech 
data collected over the telephone. The original data were sampled 
at 8 kHz. The first curve corresponds to an eigenvector that weighs 
low-frequency filter bank amplitudes heavily and deemphasizes 
high frequencies. The second curve depicts a dimension that 
focuses on the 1-kHz region of the spectrum. Both of these 
dimensions attempt to track first formant information for vowels. 
The third curve represents a dimension that favors high-frequency 
sounds, such as sibilants. Use of these types of transformations 
to model specific classes of speech sounds is an area of on-going 
research in speech recognition. 

training data accurately match the underlying statistics of 
the process we are modeling. Insufficient training data sets 
(i.e., too little data or recording conditions that do not 
match the application environment) can lead to inaccurate 
transformations. 

2) Vector Quantization [22]: In the previous section we 
alluded to the fact that parametric fits based on multivariate 
Gaussian statistics might not be appropriate. Recall that 
in a Gaussian process, all moments other than the first- 
or second-order moments (mean and variance) are zero. 
For speech parameters, higher order moments are often 
significant? providing evidence that a Gaussian model of 
the source may not always be sufficient. We can perform 
a nonparametric fit of the data by simply hypothesizing 
a discrete probability distribution of arbitrary shape, and 
by forcing the system to leam the shape of this distribu- 
tion. This does not come without an associated cost-we 
introduce another learning (or training) phase. 

This type of discrete distribution model is referred to as 
a vector quantizer [22], a reference to the fact that the 
procedure can be regarded as a compression, or quantiza- 
tion, technique. One of the most convincing arguments for 
the use of such a technique is based on a model of speech 
production [77] that proposes the vocal tract shape as the 
key measurement. In this view of speech production, there 
is a small set of physically realizable vocal tract shapes (or 
elementary sounds) in a language. Hence, we should be able 

'Higher order moments have yet to make a significant impact on speech 
processing, though it is clear these calculations produce moments that 
are nonzero. Application of higher order spectral estimates and statistical 
estimates to speech recognition is still an area of active research. We 
conjecture that higher order moments might contain information about 
long-term spectral behavior of the signal. This information could be useful 
for a wide variety of applications such as speaker normalization and 
speaker identification. 

to model our continuous-valued vector with a finite set of 
vectors representing these unique vocal tract shapes. If we 
can use measurements that are normalized with respect to 
individual speaker physiology (vocal tract length, volume, 
etc.), we should be able to model all vocal tract shapes 
across all speakers with a small codebook. 

Another equally compelling argument is based on rate 
distortion theory [22], and shows that we should be able to 
model our parameter vector using a finite number of discrete 
values with vanishingly small error. The main question 
is: how many symbols will be required? As we will see, 
the number of vectors used for such models in speech 
recognition typically ranges from 32 to 1024, depending 
on the task. 

Let us define a vector quantizer as a composite of two 
items: an N,, x Ny matrix Q, and a discrete probability 
distribution p(7ji). Q is referred to as the vector quanti- 
zation codebook. Its rows are parameter vectors. p(7ji) is 
referred to as the a priori symbol probability distribution. 
Its elements (0 5 i 5 Nvq - 1) are the probabilities of 
observing a given parameter vector (or row) in Q- We will 
refer to this process of vector quantizing an input vector 

We also need to define a distance measure (or similarity 
measure): a means of determining the distance between two 
vectors. Let us defer this issue until the next section, and 
simply define a general distance measure 

5 as Q[d. 

We will see that a Euclidean distance is one common 
function used for (66). 

The vector quantization process consists of two main 
tasks. First, as with the prewhitening transformation pre- 
viously described, there is a training problem: how do we 
estimate Q[ ] such that the distortion introduced by replac- 
ing the input vector by a codebook vector is minimized? 
Second, there is the quantization problem: how do we 
estimate the probability of observing 5 given a codebook? 
This latter problem is essentially a pattem recognition 
problem-we seek to maximize P(JIQ). 

The latter problem is relatively simple: we choose the 
index i according to a nearest neighbor rule 

i = argmin [D(3/,7jj)], 0 5 j < N,, (67) 

and 

P(ylQ) can be estimated by computing the probability of 
each vector in the codebook can occur (this is usually 
estimated on a large training database). 

The first problem is slightly more complicated. A training 
sequence is required-normally the same training database 
of speech used for recognition technology development. No 
closed-form solution exists for computing the optimal set of 
codebook vectors. Fortunately, several iterative techniques 
for finding a codebook exist. 

The most popular of these is the K-MEANS algorithm 
[76]. The name alludes to the fact that this algorithm 
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attempts to organize the data into K groups, and replace the 
data in each group with the mean, or centroid, of the group. 
This process is demonstrated in Fig. 25. Design parameters 
for this algorithm are the number of codebook vectors Nu, 
and some sort of termination condition. Here, we will use a 
limit on the maximum number of iterations, denoted Mmax, 
and a threshold on the change in average distortion At,,. 

Q'") contains the final codebook upon termination. 
The initialization step in this process is somewhat impor- 

tant. The initial guesses for cluster centers should span the 
entire data space. A simple iterative procedure [79] to select 
these centers is to search for Nu, initial vectors in the data 
that are a distance E from each other. Initially, E is set to 
some large number, and then slowly reduced until Nu, vec- 
tors satisfying the minimum distance constraint are found. 

Since the K-MEANS algorithm is an iterative algorithm, 
and since we must provide guesses for the initial cluster 
centers, this algorithm is not guaranteed to converge to an 
optimal solution. The iteration procedure can get trapped in 
local maxima and produce a suboptimal solution. However, 
in practice, on speech problems convergence is usually 
swift and strong. Even for large codebooks, convergence 
is often reached within ten iterations. 

L 

Final Centers 

0- 0 1 2 3 4  

Fig. 25. The K-MEANS algorithm is demonstrated for a 
two-dimensional clustering problem. Input vectors are grouped 
according to a nearest neighbor rule into clusters. The centers for 
these clusters are recomputed based on the data in the cluster. The 
data are then reclassified using the new clusters. The procedure 
is repeated until the quality of the clustering is acceptable. The 
cluster centers then become the vectors in the codebook. 

The algorithm presented here computes the new cluster 
centers as the arithmetic average of the elements in the 
cluster. This is computationally and memory efficient, and 
makes the iteration proceed smoothly towards convergence. 
Other centroid recalculation strategies have been proposed 
[78] based on a min/max criterion. These algorithms, in 
practice, are generally comparable in performance to the 
one described here. 

The quality of the codebook can be computed by aver- 
aging the distortion over the entire training database 

Nr-1 

This value is actually computed at each stage of the K- 
MEANS iteration. The average distortion usually decreases 
logarithmically with the size of the codebook, as shown in 
Fig. 26. 

The quantization process actually becomes a search prob- 
lem once the codebook has been computed. The nearest 
neighbor rule is a linear search, requiring N,, distance 
comparisons per input vector. It is possible to reduce the 
search time by generating a structured codebook, though the 
codebook in this case is slightly suboptimal. There are two 
popular variants of the K-MEANS algorithm that produce 
structured codebooks. The LBG algorithm [77] produces a 
codebook that is structured as an N-level tree (most often 
a binary tree). Procedures described in [80] produce lattice 
structured quantizers. 

Recently, a new class of neural-network-based algorithms 
has emerged, referred to as Learning Vector Quantizers 
(LVQ) [81]. These algorithms combine the training and 
recognition problems into one massively parallel computa- 
tional structure based on a neural network architecture. The 
LVQ approach has been shown to be theoretically capable 
of producing an optimal quantizer design. Nevertheless. this 
approach has not yet been shown to produce significantly 
better performance on speech problems. 
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Fig. 26. Codebook distortion is displayed as a function of the 
codebook size. Codebook size often ranges between 32 and 256 in 
speech recognition systems today. Beware that codebook distortion 
is at best weakly correlated with speech recognition performance. 

B.  Distance Measures 
In an anticlimactic fashion, we will now discuss the 

problem that is at the root of speech recognition: the 
distance measure. It is most interesting to view this topic 
from an historical perspective. First, however, what is a 
distance measure? A distance measure should obey the 
following properties [82]: 

1) Nonnegativity: 

0(.1,:2) > 0, 
0(.1,:2) = 0, 

z1 # 5 2  

21 = 5 2 .  

2) Symmetry: 

0(.1,.2) = 0(.2,:1). 

3) Triangle Inequality: 

A Euclidean distance measure is perhaps the most famous 
distance measure that satisfies these relations. 

One of the first distance measures introduced into speech 
recognition was a measure based on minimum prediction 
error and spectral matching principles. This measure is 
known as the log-likelihood measure [83]. This measure 
computes the energy of the difference in the spectra of two 
LP parameter sets. It essentially evaluates the likelihood 
of the test data being generated from a statistical model 
based on the reference LP parameter set. (Hence, it is 
often referred to as a probabilistic distance measure.) This 
distance measure is given by 

R 2  represents the autocorrelation matrix used to generate 
the LP parameters for :2. 

When performing a task such as vector quantization (or 
speech recognition) in which repeated comparisons of the 
test data will be made against the entire reference vector 
set, the denominator in (70) can be discarded (or computed 
only once). The numerator has a computationally efficient 

NLP-~ 

Rl(k)RZ(k) 
0(y1,g2) = k=o (71) 

aLp2  R2aLPz t 

where 
N L P - k  

R,(IC) = aLp( i ) aLp( i  + IC). (72) 
i=0 

R, (IC) represents the autocorrelation of the LP inverse filter 
impulse response. 

The log-likelihood measure is readily seen to be an asym- 
metric distance measure (violating our previous definition 
of a distance measure). This asymmetry has not proven 
to be a significant problem, however. The log-likelihood 
measure is not commonly used today. Nevertheless, it 
was a very important tuming point in speech recognition 
research, because it initiated the adoption of a probabilistic 
framework for distance measures in speech recognition. 

While the log-likelihood measure is well-suited to LP 
coefficients, what type of measure should be use for our 
general parameter vector? One of the most elegant deriva- 
tions in statistical signal processing is a derivation of 
the Mahalanobis distance [72]. In this derivation, it is 
shown that the likelihood of a vector belonging to a 
multivariate Gaussian distribution can be expressed as a 
weighted Euclidean distance 

D(Y, p) = (y - p)C-l(g - p ) t  (73) 

where p and C are the mean and covariance of the 
distribution. Obviously, if we operate on vectors that have 
been processed through a prewhitening transformation, the 
covariance matrix will be an identity matrix, and (73) 
degenerates to a plain squared Euclidean distance. 

For this reason, Euclidean distances are the most common 
distance measure used today. Part of the reason for this 
is that many parameter sets used are based on implicitly 
decorrelated parameters, such as cepstral coefficients. Also, 
speech recognition systems today have evolved to invoke 
these types of transformations implicitly 1731, [741. 

In many applications, such as vector quantization, it is 
possible to use a factored form of the Euclidean distance 

0(3/1,372) = 11% - 512112 
t = (I1 - Y2)(3/1 - 512) 

= 11~1112 + 1IY21l2 - 2(Yl .3/2). (74) 

We see a Euclidean distance is the sum of the magnitudes 
of the vectors minus twice the dot product. Suppose we 
wish to vector quantize the input vector Yl. Let y2 denote 
each entry in the codebook (against which the input must be 
compared). The first term is constant with respect to each 
codebook entry, and can be discarded. The second term is 
a scalar, and can be added to the result of the third term. If 
each codebook entry has the same magnitude, the second 
term can be discarded as well. 
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Table 2. Continued 

Notes: 
A. An emlanation of abbreviations: 

Smail: 
Medium: 
Large: 
office: 

Telecom: 
Mil.: 

FD: 
LP: 
PLP: 
FFT: 
FB: 
cep.: 
Power: 

Mel: 
Bark 
Liftered: 
BT: 
D-FB: 
D-D-FB: 
D-Power: 
D-D-Power: 

PWLR: 
VQ: 
MS-VQ: 
PT: 
Variance: 
Identity: 
Fixed: 

HMM: 
NN: 
TD-NN: 

DP: 
CD-HMM: 
DD-HMM: 
FSA: 
CFQ: 
CSQ: 
LVQP: 
MLP: 

Small Sized Vocabulary (usually Dgit Recognition or Alpha Dgit Recognition) 
Medium-Size Vocabulary (usually e 5.000 words) 
Large Vocabulary Speech Recognition (usually > 5,000 words) 
Database was collected in a quiet or typical office environment (noise level is usually aboul 

Telecommunications Data (data collected over standard telephone lines) 
Miliiry applications involving noisy environments and different speaking styles 

Frequency Domain Preemphasis (applied directly to the spectrum - -10-20 dB/decade) 
Linear Prediction (order is shown in parentheses) 
Perceptually-Motivated Linear Prediction 
Fast Fourier Transform 
Filter Bank 
Cepstral Parameters 
Signal Power (usually in dB) 

Me1 Scale Parameters 
Bark Scale Parameters 
Liftered Parameters 
Me1 Scale Parameters Computed Using the Bilinear Transform 
Delta (or lime Derivative 09 Filter Bank 
Delta-Delta Filter Bank Parameters (Second Derivative) 
Delta-Power (T" Derivative of Power) 
Delta-Delta-Power (Second Derivative of Power) 

Perceptually Weighted Log Llkelihood Distance Measure 
Vector Quantization 
Multi-stage Vector Quantization (VQ with multiple codebooks) 
Prewhiiening Transformation 
Variance-Weighted Parameters (Diagonal components of the prewhitening transformation) 
Identity Matrix Weighted Parameters (No Weighting) 
A Fixed (apriorii) Weighting Matrix is wed (sometimes called "Pooled" or "Qrand") 

Hidden Markov Model 
Neural Network 
lime Delay Neural Network 

Dynamic Programming 
Continuous Density Hidden Markov Models 
Discrete Density HMM 
Finite State Automaton (usually a regular grammar) 
Context Free Qrammar 
Context Sensitive Qrammar 
Learning Vector Quantizer (a Neural Network approach to vector quantization) 
Multi-Layer Perceptron Neural Network 

-70 dB SPL) 

B. An explanation of categories: 
Affiliation: CompanyNniversity principally responsible for the cited research 
Application: A brief summary of the type of database used in the cited publication 
Signal Measurements: Sample frequency, preemphasis, frame duration, and window duration of the spectral 

analysis. For some systems, preemphasis is performed directly in the frequency 
domain indicated by a "yes3. Under spectral analysis, the sequence of operations is 
shown. srders of analysis, where applicable, are shown in parentheses. 

Signal parameters used in the system. These are derived from the spectral analysis 
parameters. 

The statistical model used in the speech recognition system. Some affiliations have 
multiple entries. 

Signal Parameters: 

Statistical Model: 

The third term is a dot product and must be evaluated 
once per codebook entry. This is called the dot-product 
form of the Euclidean distance. This type of calculation 
can be used in most speech processing applications, which 
include vector quantization and speech recognition.* 

We have now completed our discussion of techniques for 
signal modeling in speech recognition. We have shown that 

*A consultant from a famous supercomputing company once told me 
that "everything in life reduces to one of two operations: a dot-product or 
a vector multiply/add." He had found through his extensive experience 
optimizing code for supercomputing that 99% of the time the core 
operations required could be shown to be one of these two. 

a signal model can be constructed from a sequence of three 
operations: signal measurement, parameter smoothing, and 
statistical modeling. In the next section, we will discuss how 
these concepts are put to work in state-of-the-art speech 
recognition systems, and comment on the relative merits of 
these approaches. 

VI. PRACTICAL EXAMPLES 
There are, needless to say, a large number of combi- 

nations and permutations of the signal models we have 
discussed in use today. Let us begin our discussion by 
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simply enumerating some state-of-the-art (perhaps modem- 
day is a better way to phrase this) speech recognition 
systems, along with the signal modeling techniques used. 
An overview of this data is given in Table 2. The ta- 
ble is divided into four sections: affiliation (for reference 
purposes); signal measurements, signal parameters, and 
statistical models. We have discussed each of these topics 
in previous sections of this paper. Note that a list of 
abbreviations and their meanings is contained at the end of 
the table. Since this table is fairly lengthy, we will review 
its contents first, and then draw some conclusions about 
the data. 

A.  Table Overview 
The affiliation section of the table is supplied merely as 

an identifier. Institutions are listed in alphabetical order. 
The reference associated with the entry usually contains 
a sufficient amount of detail about the signal model used 
in the most recently published recognition system by the 
institution. Every attempt has been made to keep the 
reference current, so that the data in the table reflect the 
current state of the particular system. Many of the systems 
in Table 2 have evolved over several years. In some cases, 
multiple entries for a given affiliation are shown, usually 
to contrast different types of recognition technology being 
explored at the same institution. 

The second column contains a brief overview of the type 
of application being pursued, at least in terms of vocab- 
ulary size. Obviously, there are other equally important 
dimensions to the problem. “Small” refers to a speech 
recognition task using a small vocabulary, usually less than 
100 words. Continuous digit recognition and recognition of 
spoken letters in English fall into this category. Similarly, 
“Medium” refers to tasks on the order of 1000 words, and 
“Large” refers to tasks greater than 5000 words.9 

We also attempt to quantify the application in terms 
of the acoustic environment. “Office” refers to a system 
developed on a database collected in either a normal office 
environment (typically about 70-dB SPL) or an acoustically 
treated room (such as an anechoic chamber). “Telecom” 
refers to technology developed for telecommunications 
applications using standard analog telephone lines. “Mil.” 
refers to military applications that often involve a wide 
range of ambient noise and speaking styles. 

The signal measurement section is split into five parts. 
First, we show the sample frequency of the system. Though 
most systems today have software-selectable sample fre- 
quencies, this entry represents the sample frequency of the 
experimentation database in the corresponding reference. 
It is provided for comparison purposes. Sample frequency 
is most often dictated by the application (systems for 
telecommunications applications must operate at or below 
8 kHz). 

We readily admit this is an oversimplification of the problem. Confus- 
ability of the words and the complexity of the language model are equally 
important dimensions, but more difficult to concisely quantify. There are 
some major differences between signal models in systems used in ‘‘small’’ 
and ‘‘large’’ vocabulary applications. 

The next three columns specify the spectral analysis 
conditions: upre is the preemphasis filter constant for a 
first-order filter; “Frame Dur.” is the frame duration of the 
analysis; “Wind. Dur.” is the analysis window duration. 
We do not explicitly show the type of window used on the 
signal before spectral analysis, because all of the systems 
presented here use some form of a generalized Harming 
window (most use a Hamming window, while a few use a 
Harming window). 

The last column in this section, titled “Spectral Analysis,” 
refers to the sequence of operations involved in generating 
the measurements. For example, under the entry “AT&T 
[7],” LP(8) and CEP(12) indicate that an LP analysis of 
order 8, followed by a cepstral analysis of order 12, was 
used to generate the cepstral signal measurements. Most 
systems that use LP-derived cepstral coefficients will have 
multiple entries in this column, to indicate that LP and 
cepstral analyses were performed. 

The next section, comprising the eighth column in Table 
2, contains the elements of the signal parameter vector. 
Here, we simply list the salient features (as they might 
be concatenated in the vector) of the type of analysis 
used. These were discussed in Section 111. Usually, an 
entry consists of a set of absolute measurements, such 
as “Mel-Cep.” (denoting mel-warped cepstral coefficients), 
and time derivatives of these absolute measurements, such 
as “D-Cep.” (which denotes the derivative of the cepstral 
parameters). See the abbreviations at the end of the table 
for an explanation of all the terms. 

The last section of the table (columns 9 and 10) contains 
a description of the statistical models used in the systems. 
The type of speech recognition technology used with the 
signal model is shown mainly for reference purposes.” 
The term “VQ” refers to vector quantization. The term 
“Variance” refers to the variance-weighting form of the 
prewhitening transformation. The term “PT” refers to a 
prewhitening transformation in which the full rank of the 
matrix is used. The term “MS-VQ’ refers to multistage 
vector quantization: an approach in which a separate code- 
book is maintained for each type of signal parameter (often 
there are three codebooks: one for absolute measurements, 
one for time derivative measurements, and one for power 
measurements). 

B .  Comments 
There are several conclusions we can draw from the 

agglomeration of data presented in Table 2. First, Neural 
Network (NN) based systems tend to use filter bank ampli- 
tudes directly. We will avoid elaborating on this point-it 
would take us too far afield. It suffices to say that the 
NN systems are attempting to develop models that emulate 
human hearing. Filter bank amplitudes are perhaps the 
simplest type of stimulus to present to such a system that 
will achieve this goal and keep the system complexity low. 

‘OThese technologies have not been discussed in this paper. There are 
two main classes of technology referenced in this table: Hidden Markov 
Model (HMM) and Neural Network (NN). See [27] for more information 
on this topic. 
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Readers interested in this topic are encouraged to pursue 
more rigorous discussions in [87], [91]. 

Second, as previously mentioned several times in this 
paper, cepstral coefficients are by far the dominant acoustic 
measurement. For example, 21 out of the 31 systems in 
Table 2 use some form of cepstral coefficients. This ratio 
is even higher (21 out of 26) if we exclude Neural Net 
based systems. 

Third, FIT-derived mel-scaled cepstral coefficients are 
the most common form of cepstral analysis used. LP- 
derived cepstral coefficients are used by only a third of the 
systems using cepstral analysis. There is a definite prefer- 
ence towards using me2 scaling. Ironically, two institutions 
that are notable advocates of cepstral coefficients are the 
only institutions to use their respective techniques: liftered 
cepstral coefficients and bilinearly transformed cepstral 
coefficients.' 

A fourth observation, somewhat beyond the scope of 
this paper, is that systems performing large vocabulary 
speech recognition tend to use discrete density approaches 
based on vector quantization, while systems performing 
small vocabulary speech recognition in harsh environments 
tend to use some sort of prewhitening filter. The most 
common form of vector quantization today is the multistage 
codebook, used in conjunction with cepstral and time 
derivatives of the cepstral coefficients. The most common 
form of prewhitening filter is the degenerate case: variance- 
weighted coefficients. We find few systems actually using 
a fully populated covariance matrix. 

The popularity of FFT-based spectral analysis continues 
to be based on the FFT's immunity to noise. We find it 
somewhat surprising that a large percentage of systems 
today do not rely on LP analysis for spectral analysis. LP 
analysis was almost exclusively used in the 1970's and early 
1980's. Since then, it seems the trend is towards the FIT- 
based analysis. We speculate that this is due to the ease 
with which the mel scaling can be imposed. 

In the systems reviewed in Table 2, the use of time 
differentiation to postprocess signal measurements can be 
classified into two groups. Most systems use a simple first- 
order difference. Several systems, most notably those in [7] 
and [ 111, use a five-frame regression analysis. It is argued 
that this provides a smoother, more stable representation of 
the parameter. 

Very little comprehensive data exist on comparative 
analyses of signal modeling in speech recognition. There 
are two major reasons for this. First, only recently 
have large-scale speech recognition experiments become 
feasible. Databases are now large enough to support 
statistically significant comparisons; computers are now 
fast enough to do parametric evaluations. Unfortunately, 
software technology lags: many research organizations 
are only able to simulate subsets of many of the 
competing approaches (and have not researched the 
others extensively). Convincing comparative data on large 

" These two institutions have also consistently delivered high- 
performance systems with their signal models, which makes the lack of 
adoption of these techniques interesting. 

speaker-independent continuous speech recognition tasks is 
simply not currently available. Two of the highly referenced 
works in this area are [23], [84]. Other, more recent studies 
include [113], [114]. 

VII. SUMMARY 
We have presented several popular signal analysis tech- 

niques in a common framework that emphasized the impor- 
tance of accurate spectral analysis and statistical normal- 
ization. When viewed in this common framework, the dif- 
ferences amongst these competing approaches seem small 
when compared to the enormous challenges we still face 
in the speech recognition problem. All approaches share 
some important basic attributes: time-derivative informa- 
tion, perceptually motivated transformations, and parameter 
normalization. 

The survey of contemporary systems demonstrated the 
fact that FFT-derived cepstral coefficients seem to be dom- 
inating the field. LP analysis, once the comerstone of speech 
recognition, is now relegated to a secondary role. A signal 
parameter vector consisting of cepstral coefficients, the 
first derivative of the cepstral coefficients, power, and the 
derivative of the power has become a de facto standard. 
Variance-weighting of this parameter vector is the most 
popular normalization technique. 

It will be the subject of further research to quantify the 
differences in these approaches in a reasonable recognition 
task. There still remain some important questions to be 
quantified robustness to noise? invariance to sample fre- 
quency? invariance to recognition task? It is interesting to 
note that despite the seemingly vast algorithmic differences 
in these approaches, many of these approaches have en- 
joyed widespread success. Often, the significant differences 
in the recognition systems lie in details beyond the signal 
model. 

This not to say that the problem of signal modeling is 
solved. Performance of current speech recognition systems 
is still far below human performance. For example, on 
digit recognition tasks, where the vocabulary is small and 
a premium is placed on acoustic modeling, state-of-the- 
art performance is still at least two orders of magnitude 
below human performance on the same task [73], [115]. 
In adverse ambient environments, such as analog telecom- 
munications systems or cellular telephony in an automobile, 
the performance gap between humans and machines is even 
greater. 

As mentioned at the beginning of this paper, we have 
also steered clear of such topics as robustness in noise. 
We have presented some simple approaches for dealing 
with noise that generally work equally well for clean and 
noisy environments. We have not presented techniques 
specifically designed to improve robustness in adverse 
conditions--this is a topic unto itself. Recently, several 
promising algorithms have appeared for improving signal 
models in noisy environments [ 1 161. As speech recognition 
systems are being moved from the laboratory to the field, 
such practical problems are receiving increasing attention. 
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Perhaps this paper will motivate a future tutorial on the 
topic. Clearly, robustness-in-noise issues strongly interact 
with signal model design. 

Finally, a major driving force today in signal model 
design is the minimization of the number of degrees of 
freedom in the system. Because speech recognition sys- 
tems today have a large number of free variables (more 
than loo00 variables is common), insufficient amounts of 
training data are a very real problem. One thing we have 
leamed over the years: badly trained parameters are often 
cited as the major contributor to bad performance. Hence, 
approaches that minimize the number of parameters, like 
variance-weighting, are preferred over approaches that are 
statistically optimal, e.g., prewhitening transformations, but 
require large amounts of training data. 
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