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Background: Traditional ASR

« Tradeoff between Knowledge and Training Data
— Built-in knowledge would make a redundant ASR

— Successful “Traditional” ASRs require:
» Extensive training data for each particular application

» Extremely controlled environment

« “Traditional” Statistical ASRs (ie. Hidden Markov Model)
— Avoid Complete Speech Model
— Pattern Classification based on Training Data



Background: Issues with Statistics

e [ssues associated with “traditional’ statistical ASRs:

— Classifier trained with large variance data will not be optimized
for any particular sub-problem

— Not scalable and not easily flexible for new problems

— Knowledge Representation is not transparent
* Fuzzy behavior, poor re-use of knowledge: No learning
— Optimization requires hand-crafting or “fudging” probabilities

« Hard Coding for specific applications, conditions, and environments.



Background: Traditional ASR

* Traditional ASR Consists of:
— Weak Model
— Require Training Data
— Feature Selection/Extraction
— Pattern Classification (statistical)

— Neighbor independent Spectral Analysis
on short term time slice

* A Better Way:

— Better Understanding and utilization of
speech specific knowdedge

— Understanding Human Speech Perception
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Background: Human Element
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Fig. 1. The information rate in human speech communication
process is highest on a speech signal level. An important role of
speech perception 1s to reduce this rate by alleviating some of

nonlinguistic variability.




Analysis: The Signal

* Speech Signal Variables:
— Vocal Tract
— Fundamental Frequency (FO0)
— Acquired Habits (rate, accent)
— Environment/COM Channel (noise, distortions)

Ideal ASR 1gnores such variables




Analysis: Coding vs. Recognition
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Analysis: Approach

* Reasons for delayed progress
— Statistical Classification is well established and understood
— Fear of change
— Statistical Classifiers perform well with controlled environment

— Lack of understanding of the Speech model:
« Dimensionality Reduction

* Approach:
— Filter out what humans can not hear
— Filter out noise or unneeded frequencies that do not carry msg



Spectral: Overview

» Signal Processing Algos that emulate human hearing
— Non-Linear (Bark, Mel) Freq. Scales
— Spectral Amplitude Compression
— Decreasing Sensitivity of hearing at lower freq. (equal-loudness)

— Large Spectral Integration by:
- PCA
 Ceptstral Trucation

* Low order autoregressive modeling



Spectral: Linear Prediction

“mathematical operation where future values of a discrete-time
signal are estimated as a linear function of previous samples.”

T(n) = Z a;r(n —1i) Prediction

e(n) =x(n) — r(n) Error

Linear Predictive Coding (LPC)

— Compressed Representation of the Spectral Envelope
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Perceptual Linear Prediction (PLP)

— Human characteristics applied to engr. approximations




Spectral: PLP
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Spectral: level of detail

* Message is 1n gross spectral features

— With low-detail spectrum:
* ASR performs better on cross-speaker data

« Speaker dependent information i1s minimized

» Revisit notion of formant significance
— Humans do not resolve higher formants

— Focus on positions and shapes of whole formant clusters to
extract linguistic message



Temporal: Overview

* Traditional ASR (ie. HMM) assume signal as short (10-
20ms) steady-state segments.

— Each segment 1s represented by a vector classified as phoneme

— Issues with short segmenting: - CONTEXT

 Coarticulation, forward masking, syllables, noise
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Temporal: RASTA (1)

* RelAtive SpecTrAl (RASTA)

— Removes fixed (slow varying) nonlinguistic components of
speech features

— Assumes “fixed” noise through time 1n speech

— RASTA band-pass filtering 1s done on the log spectrum
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Temporal: RASTA (2)
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Temporal: Modulation

Primary carrier of linguistic info are changes in the vocal tract

Changes are reflected in the spectral envelope
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Temporal: Data-Driven RASTA (LDA)
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First 3 LDA
discriminant vectors
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Temporal: Data-Driven RASTA (Test)

Test Data 1s 30 min of hand-labeled phone conversations using critical band centered at 5 Bark (450 Hz).
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Temporal: RASTA sluggishness
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Temporal: Masking (1)

Masker with probe
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-Rasta Emulates Human Perception.
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Temporal: Masking (2)
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Partial Information (1)

* Speech signal is easily corrupted or distorted by noise
* Noise has minimal effect on human perception
* Humans split the signal in sub-bands (redundant information in each sub-band)

— Then decode individual sub-bands, drop bands with high noise
— Reliable information from one sub-band is sufficient to discard others
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Partial Information (2)

% error

number of dropped bands

Slow ASR degradation when
omitting information from the signal:
Verifies Redundancy




Conclusions

Perception 1s decoding linguistic message
Understanding the human speech model 1s required
Use and design for “real speech data”

Discourages traditional pattern-matching approach

Speech contains noise and excessive data that provides
no useful information



