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Abstract

Recently, techniques motivated by human auditory perception are being applied in main-stream speech technology

and there seems to be renewed interest in implementing more knowledge of human speech communication into a design

of a speech recognizer. The paper discusses the author's experience with applying auditory knowledge to automatic

recognition of speech. It advances the notion that the reason for applying of such a knowledge in speech engineering

should be the ability of perception to suppress some parts of the irrelevant information in the speech message and

argues against the blind implementation of scattered accidental knowledge which may be irrelevant to a speech rec-

ognition task. The following three properties of human speech perception are discussed in some detail:

· limited spectral resolution,

· use of information from about syllable-length segments,

· ability to ignore corrupted or irrelevant components of speech.

It shows by referring to published works that selective use of auditory knowledge, optimized on and in some cases

derived from real speech data, can be consistent with current stochastic approaches to ASR and could yield advantages

in practical engineering applications. Ó 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In j�ungster Zeit werden in vielen Bereichen der Sprachverarbeitung Techniken verwendet, die sich an der Vera-

rbeitung im menschlichen Geh�or und den Erkenntnissen des menschlichen Sprachverstehens orientieren. Beim Entwurf

von Spracherkennungssystemen scheint wieder ein verst�arktes Interesse vorhanden zu sein, Wissen �uber das mens-

chliche Sprachverstehen ein¯iessen zu lassen. Dieser Artikel gibt die Erfahrungen des Authors bei der Anwendung

derartigen Wissens zur automatischen Spracherkennung wieder. Als Grund f�ur die Anwendung solcher Erkenntnisse im

Bereich der Sprachverarbeitung ist die F�ahigkeit des menschlichen Sprachverstehens zu nennen, einige unwesentliche

Informationsanteile in einer sprachlichen Nachricht zu unterdr�ucken. Es sollten nicht nur vereinzelt weniger wichtige

Erkenntnisse verwendet werden, die m�oglicherweise keine grosse Bedeutung f�ur die Spracherkennung besitzen. Drei

Eigenschaften des menschlichen Sprachverstehens werden detailliert erl�autert:

· die begrenzte spektrale Au¯�osung,

· die Verwendung von Informationen �uber sprachliche Abschnitte, die etwa der Dauer von Silben entsprechen,

· Die F�ahigkeit, gest�orte oder unwesentliche Merkmale des Sprachsignals nicht auszuwerten.
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Mit Hinweis auf bereits ver�o�entlichte Arbeiten wird aufgezeigt, daû die selektive Verwendung des Wissens �uber das

menschliche Sprachverstehen in Einklang steht mit den derzeitigen stochastischen Ans�atzen zur automatischen Sprach

erkennung und dass dies von Vorteil sein kann in praktischen Anwendungen. Dieses Wissen wird abgeleitet von realen

Sprachdaten und mit Hilfe dieser Daten zur weiteren Optimierung verwendet. Ó 1998 Elsevier Science B.V. All rights

reserved.

ReÂsumeÂ

R�ecemment, des techniques motiv�ees par la perception auditive, sont appliqu�ees dans de principales technologies

courantes de la parole. Il semble y avoir un regain d'int�erêt �a l'exploitation de plus de connaissance du processus de la

parole humaine dans la conception de syst�emes de reconnaissance de la parole. Le papier discute l'exp�erience de l'auteur

dans l'application de connaissances auditives �a la reconnaissance automatique de la parole. Il avance l'id�e que la raison

d'appliquer des connaissances de la perception auditive humaine �a l'ing�enierie de la parole devrait être la capacit�e de la

perception �a supprimer quelques parties de l'information contenue dans le message de la parole. L'article plaide contre

l'exploitation aveugle de connaissance accidentelle dispers�ee qui peut être non pertinente pour une tâche de recon-

naissance de la parole. Trois propri�et�es de perception humaine de la parole sont discut�ees:

· re�solution spectrale limite�e,

· utilisation de l'information contenue dans des segments de longueur d'une syllabe environ,

· possibilit�e d'ignorer les composantes alt�er�ees ou non pertinentes de la parole.

L'auteur montre, en se r�ef�erant �a certains travaux publi�es, que l'utilisation s�elective de la connaissance auditive opt-

imis�ee en fonction et dans certains cas provenant de vraies donne�es de parole, peut être compatible avec les approches

stochastiques actuelles de la reconnaissance automatique de la parole et pourrait avoir des avantages pour des appli-

cations pratiques d'ing�enierie. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Knowledge-based ASR ± Again?

Human speech communication is a highly spe-
cialized task constrained by speci®c organs in-
volved in the process. Speech production and
perception has been and is being studied. How-
ever, not much of the acquired knowledge is seen
in the design of current automatic speech recog-
nizers (ASRs).

There is no doubt that ASR technology needs
further improvement and some believe that the
improvement could come from using more speech-
speci®c knowledge in the design of ASR. Whether
this is true is a topic of discussion.

Most of successful stochastic ASRs derive their
capabilities from extensive training data. Rela-
tively little permanent knowledge is built into the
untrained recognizer. Any new application domain
requires new training data.

To know more may mean having to learn less.
The knowledge built into a design of a recognizer

is the knowledge which does not have to be re-
acquired from the data every time the recognizer is
used for a new task.

1.1.1. Some history
Early attempts for large vocabulary continuous

speech recognition emerged from noble beliefs that
a variability observed in distributions of parame-
ters of phonetic classes could be dealt with by
complete understanding of the sources of extra-
linguistic variability. Intuitively determined fea-
tures 1 were derived from the signal and elaborate
systems were used to combine information for the
®nal classi®cation. These (sometimes called
``knowledge-based'') techniques were typically
hand-crafted on a particular problem and were
mostly applicable only in extremely controlled
environments.

1 Throughout this paper we use the term ``feature'' to any

parameter derived from the speech waveform.
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An important paradigm shift occurred in the
early 1980s when statistical ``ignorance-based'' 2

Hidden Markov Model (HMM) based ASR
started to dominate the ®eld. A typical HMM
ASR system is powerless without extensive train-
ing. However, when exposed to a su�cient amount
of training data, it typically outperforms know-
ledge-based ASR approaches.

The dominance of statistical approaches is
partly due to the fact that the knowledge of the
human speech communication processes is at best
incomplete and sometimes outright wrong.
Therefore, starting with only a very weakly struc-
tured system and letting the training data to pro-
vide the rest yields better results than attempts to
hardwire the prior knowledge into the design.

Hence, the statistical approaches are not igno-
rant at all. They recognize the inherent uncertainty
of classi®cation, and attempt to derive class deci-
sion boundaries from training data. When de-
signed and trained well, they contain true
knowledge acquired from real speech data without
(possibly wrong) preconceptions about the speech
communication process.

When statistical approaches to ASR were in-
troduced, it appeared that the road to progress
was to get hands on as much speech data as pos-
sible and to be able to process the training set in a
reasonable amount of time. Only recently, the
speech community is being challenged by the
availability of large amounts of ``found speech''
data 3 and a few problems with current statistical
approaches are emerging.
· A classi®er trained on large-variance data is

only globally optimal and does not necessarily
perform too well on any of the particular sub-
problems. 4

· To optimize the performance, the underlying
models are relatively weak (multi-Gaussian).
Systems grow large and demands on training da-
ta are extensive. Generalization on new unseen
problems is quite poor.

· The way the knowledge is represented in the sys-
tem is not always transparent. Techniques for
re-use of the acquired knowledge are not well
developed.

· In striving for the best performance, hand-craft-
ing of the model structure and empirical ``fudg-
ing'' of probabilities from sub-systems is
common.

The underlying original philosophy of statistical
ASR is that ``the data should speak''. However,
since there is currently no principled way to derive
the structure of the model from the data, the hand-
crafting of the HMM model is in some way rem-
iniscent of procedures from knowledge-based
ASR, and makes it vulnerable to similar problems.

It appears that not much of reusable and widely
available knowledge comes out from the current
extensive ASR research. More time should be de-
voted to discussing and interpreting the obtained
results, reporting e�orts which failed to perform to
expectations and discuss reasons for such failures.
A premium in rewarding ASR research should be
paid on e�orts and achievements which aim for
advancing general knowledge applicable to future
ASR problems.

1.1.2. A light at the end of the tunnel
At the moment it seems that at least some

sources of undesirable variability can be identi®ed
and their e�ects alleviated. In particular, the e�ects
of variable communication environments are bet-
ter understood. In some cases, the e�ect of the
undesirable variability in a given feature space is
trivial and relatively simple techniques are e�cient
in reducing it. This leads to works in robust feature
extraction, and feature and model adaptation
which, by using the knowledge of the problem, to
some extent alleviate needs for extensive training
on di�erent environments.

However, not all sources of undesirable vari-
ability are simple to model and easy to identify and
stochastic classi®cation techniques present power-
ful means for dealing with such sources of random
variability. As such stochastic approaches need to
be respected, studied, and utilized. However, they
should not entirely substitute for better under-
standing and better utilization of speech-speci®c
knowledge. Today's explosive developments of

2 The origin of this term is claimed by at least two speech

researchers.
3 Speech recorded from radio and TV broadcasts.
4 One could in principle compete in both down-hill and cross-

country using the same back-country telemark skis, but would

it be an optimal strategy?
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computing and data acquisition technology should
be used for acquiring permanent and reusable
knowledge of human speech communication pro-
cess which could be used in improving practical
ASR.

1.2. Where to start?

There is a number of suspicious points in a
structure of a typical main-stream large-vocabu-
lary continuous-speech ASR which are inconsis-
tent with the knowledge about speech process.

This paper focuses only on one source of
knowledge which is being frequently neglected in
ASR and which imposes powerful constraints on
human speech communication process, the know-
ledge of human speech perception.

It is unlikely that signi®cant amounts of lin-
guistic information could be found in speech
components which are not heard by an average
listener. Thus, better knowledge of the process of
human speech perception may point to natural
constraints for sensible speech processing. The fact
that we communicate by voice suggests the speech
signal interpreted by a system of human speech
perception may carry enough information for a
reasonable self-normalization and practical pho-
netic classi®cation in the presence of nonlinguistic
variability.

1.2.1. Why human speech perception?
The human speech communication process, il-

lustrated in Fig. 1, involves a source (organs of
speech production), a channel (environment), and
a receiver (organs of speech perception). Com-
munication theory teaches that for optimal com-
munication, all three components should be in
tune with each other. It is quite likely that simi-
larly, forces of nature found a way to optimally
allocate available resources for human speech
communication through an imperfect acoustic
communication channel. The historically younger
speech signal (generated by organs of speech pro-
duction which today serve multiple purposes and
evolved from organs which originally provided
only more basic life-supporting functions) might
have evolved to accommodate properties of hu-
man auditory perception.

2. Analysis in ASR

2.1. The task

As illustrated in Fig. 1, the information rate in
the speech signal is by some estimates [24] of the
order of 40 kbits/s. The written equivalent of the
linguistic message in the signal is less that 60 bits/s
[24]. The general task of ASR is to identify the
linguistic information in the signal in presence of
other nonlinguistic variability. That is, in e�ect, to
reduce the amount of information by about 3 or-
ders of magnitude! The analysis for ASR should
support this goal.

One of the most signi®cant sources of nonlin-
guistic variability in speech are speaker-dependent
factors such as a length of the vocal tract, funda-
mental frequency of the voice, or acquired habits
of a given speaker. Another source is the envi-
ronment in which the speech is produced, trans-
mitted, and received ± the communication channel.
The channel introduces additive noise, as well as
linear and nonlinear distortions. Ideally, the
analysis in ASR should deliver features consistent
with the underlying linguistic message without re-
gard for such nonlinguistic factors.

2.2. A typical approach

ASR typically uses features based on a short-
term spectrum of speech. Such a representation

Fig. 1. The information rate in human speech communication

process is highest on a speech signal level. An important role of

speech perception is to reduce this rate by alleviating some of

nonlinguistic variability.
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describes the time-varying speech signal by a se-
quence of short-term feature vectors. Each vector
re¯ects properties of a relatively short (10±20 ms)
segment of the signal. Each individual feature
vector is usually treated as independent of its
neighbors.

A majority of stochastic ASR systems attempt
to capture temporal aspects of the signal by con-
catenating individual context dependent phoneme
models, each model typically having three di�erent
states, representing piecewise approximation of the
internal phoneme dynamics. Within each state, the
parameters are assumed to be stationary, identi-
cally distributed, and independent of the neigh-
boring analysis frames. This assumption implies
no constraint on a particular temporal order of
speech parameters within each state. Such a
piecewise stationary model is a rather crude ap-
proximation of the rich temporal dynamics of
speech.

2.3. Some of the problems of short-term analysis

We suggest that the concept of short-term
analysis as a feature extraction technique for ASR
should be revisited.

Firstly, there is some evidence that attention to
spectral detail required for high-quality coding of
speech may be excessive and not required for ASR
applications.

Further, there is a recent notion (discussed later
in this article) that robust feature extraction, in
order to extract reliable information for classi®-
cation of sub-word units of speech, needs access to
at least about syllable-length (around 200 ms)
spans of the speech signal. This may allow for
distinguishing between stationary and speech-like
nonstationary events in the speech signal and to
alleviate some coarticulation e�ects.

Finally, global features such as cepstral coe�-
cients of spectral envelopes are easily a�ected by
common frequency-localized random perturba-
tions which have hardly any e�ect on human
speech communication. It may be that local des-
criptors of spectral properties of speech (see e.g.
[73]) should be used in conjunction with missing
data techniques to avoid catastrophic failures in
realistic communication environments.

The short-term speech representation is histor-
ically inherited from speech coding applications.
Needs in ASR and in speech coding are clearly
di�erent. Generally speaking, in speech coding,
speaker-dependent and environmental informa-
tion need to be preserved to permit high-quality re-
synthesis of speech. In ASR, there is no need to
reconstruct the original speech, and most often,
the goal is to extract the linguistic message, and
alleviate other nonlinguistic factors present in the
signal. Therefore, speech analysis techniques for
ASR could be 5 quite di�erent from the ones used
in speech coding.

Overall, we agree with Allen [2] in speculating
that the ``across-frequency'' processing is one of
the causes of the extreme fragility of current ASR
in realistic situations and that (consistently with
the properties of human speech perception) more
attention needs to be paid to the temporal struc-
ture of the speech signal in the analysis of speech.

3. Auditory-like analysis in ASR

3.1. Some reasoning for auditory-like analysis

ASR attempts to access the human speech
communication process (through a microphone)
and to decode the message which was originally
intended for the human listener. Processes of hu-
man and automatic recognition of speech are il-
lustrated in Fig. 2. Both strive for the same goal ±
to get the linguistic message from the signal. Both
appear to use the similar strategy ± to eliminate the
nonlinguistic variability in the signal in order to
derive the message.

If speech developed so that it would optimally
use properties of human auditory perception, it
could make some sense that the machine feature
extraction should attempt to closely emulate the
part of the human communication chain for which
the signal is intended, i.e. human speech percep-
tion.

5 But essentially are not.
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3.2. Why do recognizers not yet have ears?

Thus far, however, auditory models have not
yet found full acceptance in ASR. We speculate
that there are several possible reasons for this
seeming failure. Some of these reasons are listed
below.
· Not respecting nature of current ASR which re-

quires features with certain properties.
± Current ASR prefers features which are inde-

pendent of each other, identically distributed
within a given recognition unit (usually pho-
neme), with statistics easily described by
gaussian mixture distributions. Thus, the au-
ditory-like features may not be suitable for a
conventional recognizer or the rest of the rec-
ognizer may need to be re-optimized for the
new feature representation.

± New techniques are often tested on a well es-
tablished task in a system which is ®nely
tuned to some other technique. In a complex
ASR system, there are many things that can
go wrong, and usually at least one of them
does when new technique is substituted for
an old one.

· Testing on tasks that do not expose weaknesses
of conventional feature extraction techniques.
± Recognizers work well on clean well con-

trolled laboratory data. Applying auditory
models to the tasks where conventional tech-
niques work well may not reveal advantages
of auditory-like approaches. Improvements
should be sought and expected in real envi-
ronments, where conventional ASR tech-
niques fail.

· Modeling properties of hearing which may have
only a minor role in human speech communica-
tion.

± Not everything what human auditory percep-
tion can do is necessarily used in decoding of
speech. Most of existing auditory knowledge
was derived from experiments with arti®cial
stimuli in well controlled environments. We
need more and better knowledge from real
speech stimuli at realistic signal and noise lev-
els.

· Last but not least, one of the main reasons for
the limited success of auditory modeling in
ASR may be a failure to understand the purpose
of the front-end processing in ASR. As discus-
sed earlier in this paper, the very purpose of
phonetic classi®cation in ASR is a signi®cant re-
duction of the information carried by the speech
signal. Thus, the front end processing should be
supportive of this task. This last point is discus-
sed throughout the rest of this paper.

3.3. Ask not what hearing can do for you...

We do not act on all information which is
available around us. What might be important for
ASR is not so much what human speech percep-
tion can get but rather what it does not get or does
not use from the acoustic signal. Following such
logic, the following two principles were found
bene®cial for ASR.
· Human hearing has its limits, and due to such

limits, certain sounds are perceptually less
prominent than others. One reasonable principle
is to eliminate what human listeners cannot hear
while focusing attention on parts of the signal
that are heard well. Later in this paper we dis-
cuss two auditory constraints:
± Limited spectral resolution of the analysis.
± Temporal masking (dependency of perception

of the current sound on preceding sounds).
· The second reasonable principle is to alleviate

parts of the signal which, even when heard well,
do not supply reliable cues for decoding the
message. Some parts of the signal may be cor-
rupted by noise, certain parts of frequency spec-
trum of the signal may not bear information
about identity of a given acoustic segment, etc.

Humans may be able to make decisions about the
reliability of a particular part of the signal based
on semantics and syntax of the linguistic message.

Fig. 2. Role of speech analysis in ASR is similar to a role of

speech perception in human communication.
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We currently do not have many tools for deter-
mining the reliability of the data but e�orts in this
direction are ongoing. Later in this paper we dis-
cuss an emerging multi-band technique which we
believe to be a step towards emphasizing reliable
parts of the available data.

4. Spectral domain

Many well-accepted signal processing algo-
rithms used in ASR emulate some of constraining
properties of human hearing such as the nonlinear
(Bark, Mel) frequency scales [11,48,61,18,34],
spectral amplitude compression [56,37,32,39,34],
decreasing sensitivity of hearing at lower fre-
quencies (equal-loudness curves) [48,34] and large
spectral integration [53,23,22,17] by principal
component analysis [65], by cepstral truncation
[11,61], or by low order autoregressive modeling
[34]. These algorithms, as well as their relevant
properties, are discussed in some more detail in
[42]. Even the most ardent opponents of auditory-
like approaches in ASR use such techniques in
their everyday work.

4.1. Perceptual linear prediction (PLP)

4.1.1. The principle
PLP [34] combined several engineering ap-

proximations to selected characteristics of human
hearing:
1. critical band (Bark) nonlinear frequency resolu-

tion, emulated by integrating the short-term
Fourier spectrum of speech under increasingly
wider trapezoidal curves (sometimes substituted
my Mel-spaced triangular ®lters [75]),

2. asymmetries of auditory ®lters, emulated by a
relatively steep (25 dB/Bark) slope of the trape-
zoidal curve towards higher frequencies and a
more gradual (10 dB/Bark) slope towards lower
ones,

3. unequal sensitivity of human hearing at dif-
ferent frequencies, emulated by a ®xed ap-
proximated Fletcher±Munson equal loudness
curve,

4. intensity±loudness nonlinear relation, emulated
by a cubic root compression, and

5. broader than critical-band integration, hypoth-
esized in perception of speech (see e.g. [53]), em-
ulated by an autoregressive all-pole model.

All these steps contribute to e�ectiveness of PLP
analysis, the most important being the nonlinear
warping of the frequency axis.

4.1.2. The e�ect of the model order
The e�ect of model order of the PLP all-pole

model was studied experimentally on cross-
speaker speech recognition experiments in which
training data from one speaker were used to rec-
ognize speech of another speaker. As indicated in
Fig. 3, the 5th order model was found to be opti-
mal.

Fig. 4 shows that in comparison to the con-
ventional formant based representations, the
broader spectral integration done by low-order
PLP analysis is capable of delivering more similar
results from human and mynah-bird speech. 6

Similarity of PLP results for adult and child speech
has been also reported [34].

Fig. 3. Accuracy of cross-speaker recognition as a function of

number of complex poles of PLP model. When forced to gen-

eralize from speech of a single speaker, a two-peak spectral

representation yields the best results.

6 Evaluating speech analysis on mynah-bird speech may seem

far stretched but argument can be made that the analysis for

ASR should perform reasonably consistently on all kinds of

speech-like sounds acceptable to human listeners.
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4.1.3. PLP in ASR
The 5th order PLP model was used successfully

in speaker-independent recognition of digits [34].
Recently, PLP analysis was reported to be the
most e�cient speech representation in extensive
DARPA evaluations of the large vocabulary con-
tinuous speech ASR technology [16,75]. For such
complex task with a su�cient amount of training
data, a higher model order (DARPA systems
typically use model order 12) is more e�cient.

4.2. Gross spectral features as carriers of linguistic
information

Results of cross-speaker ASR experiments show
that the spectrum which contains less detail per-
forms better on this task than a representation
with higher spectral resolution (see Fig. 3 adapted
from [34]). Such a result suggests that a speaker-
dependent information (which is harmful in the
cross-speaker ASR) is minimized while a linguistic
information is still su�ciently preserved in the
gross spectral shape of the speech spectrum. This is
further supported by Malayath et al. [59] who re-
ported optimality of low-order spectral represen-

tation in representing a linguistic message using
stochastic Oriented Principal Component tech-
nique on time-aligned multi-speaker data.

Such behavior is consistent with smoothing
regularization in stochastic training (see e.g. [28])
and it would be satisfying to discover that the
forces of nature found a rigorously justi®able way
to deal with the generalization problem in human
speech communication. To support this notion, we
discuss below some historical evidence which
suggests that it is a gross spectral feature structure
rather than the ®ne details of the spectral envelope
which is a consistent indicator of the linguistic
message across di�erent speakers.
· Ladefoged [55] mentions that young Isaac New-

ton observed that as a tall glass is ®lled with liq-
uid (Newton used beer), one hears series of
vowels /u/, /o/, /a/, /e/, /i/ (i.e. ordered by a reso-
nance frequency of an uncoupled front cavity of
the vocal tract in the production of these vow-
els).

· Helmholtz [33] studied vowels by striking tuning
forks with di�erent pitches in front of a mouth
shaped for a proper articulation of a given vow-
el. His general conclusion was that back vowels

Fig. 4. Spectrum of the same sentence produced by human and by mynah-bird obtained by conventional spectral analyses and by low-

order PLP analysis. Peaks in LPC spectra are in quite di�erent positions. Low-order PLP approximates energy clusters in the short-

term spectrum and yields more similar representations.
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could be simulated by a single resonance, while
front vowels are better simulated by two reso-
nances.

· Experiments with a pattern playback vocoder
[15] support the notion of two spectral energy
peaks as the prime carriers of the linguistic mes-
sage.

· Fant and Risberg [22] observed that all Swedish
vowels can be simulated by two spectral peak
synthetic stimuli, provided that their second
spectral peak F2' is in a particular position,
which does not necessarily coincide with any
of the formants.

· Fant's F2' concept is supported by Chistovich
[17] who observed that human speech percep-
tion appears to integrate spectral components
within 3±4 Bark spectral bands, therefore being
capable of merging several speech formants.

· Itahashi and Yokoyama [48] found that a sec-
ond spectral peak of the three-peak (6th order)
Mel-LPC model approximates well the percep-
tual e�ective second formant F2' (Bladon and
Fant, 1978).

· Similarly to the Mel-LPC, the 5th order PLP
analysis of 18 synthetic cardinal vowels yields
results which agree well with Bladon's and
Fant's perceptual experiments [34]. Moreover,
the bandwidths of the PLP model preserve in-
formation about spread of the underlying for-
mant clusters, thus alleviating a fundamental
objection [26,7] to the F2' concept (see [34] for
evidence and discussion).

· Broad and Hermansky [40,12] speculate that
one of reasons for intelligibility of child speech
might be ability of human speech perception to
simplify particular formant structure and to fo-
cus on global and less speaker-dependent spec-
tral properties which carry the information
about the shape of a front part of the vocal
tract. They demonstrate a strong correlation
(r� 0.9) between positions of the second spec-
tral peak of the 5th order PLP model and the
resonance frequency of the uncoupled front cav-
ity of the simulated vocal tract of front vowels,
used in articulatory synthesis of the vowel-like
sounds. They also show its weak correlation
(r�)0.18) with the tract length which indicates
a relative speaker-independence of the second

spectral peak from the low-order PLP analysis.
Later [12] they also show a high correlation of
the PLP-estimated F2' with the front cavity res-
onance estimated from the X-ray micro-beam
data.

We may wish to revisit the notion of formants of
speech as the most important carriers of the lin-
guistic message. It appears that human speech
perception may not be resolving higher formants
and that it rather focuses on positions and shapes
of whole formant clusters in order to extract the
linguistic message from voices of di�erent speakers.

5. Temporal domain

5.1. Current phoneme-based ASR

Standard Hidden Markov Model (HMM)
phone based recognition uses a rather crude tem-
poral model of the speech process ± the speech
signal is assumed to be a sequence of steady-state
segments. The segments represent phonemes of
speech and the temporal structure of speech is
imposed by the built-in structure of the HMM
chains. Data can in¯uence this structure only on
the segmental level by providing boundaries of the
segments.

Within the segments, speech is assumed to be a
sequence of equally spaced independent short-term
acoustic vectors derived from a stationary sto-
chastic process. Each short-term vector represents
about 10±20 ms of speech.

5.2. Beyond 20 ms

In reality, the short-term acoustic vectors within
the phoneme segments are clearly correlated over
time. In spite of well-known powerful speech
production phenomena of coarticulation, auditory
perception phenomena of forward masking, and
linguistic concept of syllable, all of which point to
temporal dynamics over a time interval of the or-
der of several hundreds of ms, the medium-term
temporal properties of speech have not been ex-
tensively studied and utilized in speech processing.

Only recently, techniques such as multi-vector
input [58] combined either with MLP [8,49,72] or
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with linear discriminant analysis (LDA) [46,47,13],
dynamic (delta) features [27], RASTA processing
[38], short-term cepstral mean removal [66], dy-
namic cepstrum [1], or probabilistic optimum ®l-
tering [62], are emerging as post-processing
techniques which operate on sequences of the
short-term feature vectors. It appears that such
post-processing techniques derive their strength
from a ``locally global'' view of speech in which
about a syllable-length segment of the speech sig-
nal is considered in deriving features for the sub-
sequent classi®cation (see [35] for more
discussion).

It is impossible to observe the di�erence be-
tween temporal properties of speech and noise on
the basis of a single 20 ms sample from the signal.
To be able to di�erentiate between the slow and
fast rates of spectral change one needs to compare
spectral information from a relatively large seg-
ment of speech (see Fig. 5). Only then it may be-
come apparent that some spurious spectral
components (such as the F2 spectral peak in
Fig. 5) could exhibit temporal behavior which
would be inconsistent with temporal properties of
speech components.

5.3. Dynamic features

The ®rst widely accepted step towards employ-
ing temporal structure of speech were so called
dynamic cepstral features [27]. The dynamic fea-
tures can be interpreted as estimates of the ®rst
and second temporal derivatives of the time tra-
jectories of cepstral coe�cients. They are most
often computed as the ®rst and the second or-
thogonal polynomial expansion of the feature
trajectory over some short segment of speech
(typically up to 90 ms, although longer segments
were also successfully used [27,31]).

Bene®ts from the use of dynamic features are
widely recognized and their success suggests that
the dynamics of short-term speech features over
extended time intervals provide useful additional
information about the linguistic identity of the
given time instant in speech.

5.4. RASTA processing of speech

5.4.1. The principle
The RelAtive SpecTrAl (RASTA) technique

was originally developed as a purely engineering
technique for dealing with ®xed or slowly varying
nonlinguistic components of speech features. Lin-
ear distortions or additive noise in the speech sig-
nal may show up as biases in appropriately
transformed short-term spectral parameters. Since
the rate of such extra-linguistic changes is often
outside the typical rate of change of linguistic
components, Hermansky et al. and Hirsch et al.
[41,44] have proposed that ®ltering the temporal
trajectories of speech parameters might alleviate
the extra-linguistic spectral components from the
speech representation. This technique came to be
known as RASTA speech processing.

The RASTA band-pass ®ltering is typically
done either on the logarithmic spectrum (or cep-
strum, which is a linearly transformed logarithmic
spectrum) or on the spectrum compressed by
ln �1� const � x� nonlinearity.

Recently Hermansky et al. [39] have reported
that RASTA ®ltering on root-compressed power
spectrum (with ®lters designed from the training
data) is also e�ective for perceptual enhance-
ment of noisy telephone speech. Interestingly, the

Fig. 5. A single frame from the short-term analysis does not

give enough information to determine whether the second

spectral peak in the short-term spectrum represents useful

spectral component or noise. Only when looking at spectral

dynamics on a larger segment of speech it becomes obvious that

in the ®rst case the second spectral peak is due to random noise

(which characteristics vary faster than speech), in the second

case the spectral peak comes from a steady tone which char-

acteristics are constant (or vary slower than speech).
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data-derived ®lters appear to be enhancing the
syllabic rate of speech and supressing components
with lower and higher modulation frequencies [6].

5.4.2. The e�ect of the ®lter time constant
Series of recognition experiments were run with

di�erent RASTA ®lters to determine the optimal
®lter structure. Results of one of these experiments
are shown in Fig. 6. The optimal ®lter for recog-
nition of noisy speech is a bandpass ®lter with the
pass-band between about 1 and 12 Hz. The time
constant of the integrator in the ®lter is about 170
ms. RASTA processing enhances dynamic events
in the signal and suppresses the steady or slowly
varying ones. Fig. 7 illustrates the e�ect of RAS-
TA processing. Comparing to a conventional
short-term analysis such as PLP, RASTA em-
phasizes changes in the signal.

Fig. 6. Dependency of recognition accuracy in presence of lin-

ear distortions on a time constant of integrator of RASTA ®l-

ter. The accuracy is highest when the e�ective length of impulse

response of RASTA ®lter spans approximately over a syllable.

Fig. 7. Spectra of ®ve sustained Czech vowels obtained by PLP and RASTA-PLP analyses. Note enhanced transitions resulting from

RASTA processing. The vowels are extra long (about 70 ms each) for the purpose of illustration of the e�ect.
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Even though RASTA is neither the ®rst nor the
only auditory model which explicitly emulates
temporal properties of human hearing (see e.g.
[14,67]), it utilizes larger time-spans of the signal
than most of the other models do (impulse re-
sponse of the whole original RASTA ®lter [38] has
e�ective length about 220 ms). Use of such rather
large time spans points to the whole so far rela-
tively untapped domain of the so-called modula-
tion spectrum of speech and to new possibilities
o�ered there [43,38,35,30]. This is discussed to
some extent in the following section.

5.4.3. RASTA in ASR
RASTA works very well with ASRs based on

whole-utterance units. With a conventional pho-
neme-based systems, the bene®ts are mixed: the
system becomes more robust in presence of chan-
nel variability but it may slightly deteriorate in
good conditions because of the increased depen-
dency on the context of a given speech segment.

In addition, one needs to realize that IIR
RASTA ®lter has in principle an in®nite memory
(and in practice the ®lter initializes only after some
250 ms). This causes no principal problems when
continuously processing natural speech but can be
of concern when processing end-pointed speech
without its natural surroundings where the ini-
tialization of the RASTA ®lter is an issue. This
may be disturbing to those who are used to a
standard short-term analysis where every analysis
frame is independent from its neighbors. 7

However, human auditory perception is not
being switched on only when speech comes either
and the percept of a current phoneme very much
depends on its surroundings too (see e.g. [74] and
its companion papers for an excellent evidence).
Thus, it is not RASTA which should be blamed.
Rather, one should re-design the recognizer to
con®rm to properties of new feature extraction. 8

5.5. Modulation spectrum of speech

The prime carrier of the linguistic information
are changes of the vocal tract shape. Such changes
are re¯ected in changes of the spectral envelopes of
the speech signal. The spectral envelope is repre-
sented by speech parameters used in ASR (e.g.
cepstral coe�cients). The patterns of speech pa-
rameters vary gradually within each distinct seg-
ment of speech and their particular dynamics is an
important cue to the identity of a given segment.

Spectral analysis of temporal trajectories of
spectral envelopes of speech yields the modulation
spectrum of speech [45]. Dominant components of
the modulation spectrum indicate the dominant
rate of change of the vocal tract shape. The
modulation spectrum of speech is dominated by
components between 2 and 8 Hz, re¯ecting the
syllabic and phonetic temporal structure of speech
[45,30]. The whole concept of the modulation
spectrum of speech is illustrated in Fig. 8.

Human auditory system is most sensitive to
modulation frequencies around 4 Hz (see e.g. [35]
for the review of evidence available in the litera-
ture). Thus, human hearing in perception of
modulated signals acts as a band-pass ®lter. The
impulse response of such a band-pass ®lter would
need to span at least 150±250 ms. It is tempting to
speculate that dominance of components around
4 Hz in the modulation spectrum of speech is a
consequence of properties of human hearing.

To obtain su�cient spectral resolution at low
modulation frequencies, rather large time spans of
speech (of the order of at least several hundreds
ms) are required to compute the modulation
spectrum of speech.

5.5.1. Perception of speech with modi®ed dynamics
of spectral envelopes

Drullman [20,21] shows the dominant impor-
tance of the modulation frequencies around 4±6 Hz
for speech communication. Inspired by Drull-
man's experiments, Arai et al. [3] have initiated a
series of similar experiments using a slightly dif-
ferent signal processing paradigm which is based
on the residual-excited LPC vocoder and aiming
for band-pass processing of trajectories of spectral
envelopes [3]. Their results con®rm and extend

7 As it was initially disturbing to us too.
8 That does not imply we currently know exactly how to do

that.
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Drullman's. It appears that the modulation fre-
quencies between DC and 1 Hz, as well as those
above 15 Hz, play only secondary roles in speech
communications.

5.5.2. ASR with modi®ed dynamics of spectral
envelopes

Arai's perceptual experiments were a starting
point for a similar series of ASR experiments
using narrow band-pass ®ltering of time trajecto-
ries of cepstral coe�cients of speech [51]. Results
of both the perceptual and ASR experiments are
summarized in Fig. 9, which is adopted from [52].
This ®gure shows the relative importance of var-
ious components of the modulation spectrum of
speech for human and machine communication.
Details of the technique used for obtaining this
data are given elsewhere [51,52] but the overall
conclusion from the experiments is that the 2±8 Hz
part of the modulation spectrum is the most
important for speech communication while the
0±1 Hz band, as well as components higher than
16 Hz play only a secondary role in human
communication and might be harmful for ASR,
especially when contaminated by environmental
noise.

5.6. Data-driven design of RASTA ®lters

The initial ad hoc form of the RASTA ®lters
was optimized on a relatively small series of ASR
experiments with noisy telephone digits. The

Fig. 9. Relative importance of components of modulation

spectrum of speech for human and machine communication.

Both intelligibility of speech and performance of ASR are most

severely degraded when components in a vicinity of 4 Hz are

attenuated. Extremely low (below 1 Hz) and high (above 16 Hz)

components of the modulation spectrum have only minor role

in human speech communication. Alleviating components be-

low 1 Hz appears to be bene®cial in ASR.

Fig. 8. Modulation spectrum of speech describes spectral components of time trajectory of spectral envelope of speech. The modu-

lation spectrum of continuous uninterrupted speech is dominated by a syllabic rate of speech which is typically close to 4 Hz.
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optimizations using ASR experiments are costly
and there is no guarantee that the solutions ob-
tained will not be speci®c to a given ASR system.
Therefore, we designed a data-based optimization
which avoids using a speci®c ASR paradigm.
Such a technique is based on the linear discrim-
inant analysis (LDA) which is a stochastic tech-
nique, that attempts to optimize the linear
discriminability between classes in the presence of
undesirable within-class variability (see e.g. [46,13]
for some examples of previous use of LDA in
ASR). There is a way to structure the LDA
problem in such a way that the LDA solution
can be interpreted as a set of FIR RASTA-like
®lters which are applied on time trajectories
of spectral energies. The process of deriving
FIR RASTA ®lters by LDA is illustrated in
Fig. 10.

The input vector was formed from segments of
a time trajectory of a single logarithmic critical-
band energy over a relatively long (about 1 s)

span of time. Each vector typically spans more
than a single phoneme, and is labeled by the
phoneme at the center of the vector. Having
formed such 101-dimensional (each vector spans
about 1 s at 100 Hz sampling) vector space with
vectors labeled by their respective phoneme
classes, LDA analysis yields a 101 ´ 101 scatter
matrix, decomposed into its principal compo-
nents. Then the principal vectors represent FIR
®lters which most e�ciently (with respect to the
within-class and the across-class variability) map
the 101-dimensional input space to several points
of the output space.

The ®rst discriminant vector, the most impor-
tant for the discrimination, typically explains
about 80±90% of the variability in the data. The
second discriminant vector then explains anywhere
between 10±15% of the variability, and the third
discriminant vector still explains more than 5% of
the variability. Thus, the properties of those higher
discriminant vectors are also of interest.

Fig. 10. Data-driven design of FIR RASTA ®lters using Linear Discriminant Analysis. In such a setup, each column vector of the

LDA-derived discriminant matrix is a RASTA-like FIR ®lter applied to a time trajectory of a short-term critical-band spectral energy.
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In initial experiments we have used about 30
min of hand-labeled conversational telephone
speech (switchboard database). To allow the data-
driven RASTA ®lter to compensate for harmful
source of variability, the ®xed convolutional dis-
tortion (which shows as an multiplicative constant
in the spectrum of speech) was simulated in the
training data by multiplying each spectral energy
value by a constant, emulating the 9 dB linear
distortion. This arti®cially distorted data were
added to the original database. So, the database
contained both the undistorted and the distorted
speech.

Frequency characteristics of the ®rst three dis-
criminant ®lters from this design are shown in the
upper part of Fig. 11 by full lines. Frequency
characteristics of the original RASTA ®lter, and of
the third and second orthogonal polynomials ap-
proximating the time trajectory of the feature
within a nine frame (90 ms) time interval as pro-
posed by Furui [27] are shown in the bottom part
of the ®gure by dotted lines. The impulse responses
are shown in Fig. 12. Only the ®lters operating on

the critical band with a center frequency of 5 Bark
are shown here but the ®lters for other critical
bands are very similar. The peak at 1 Hz in the
frequency response of the second discriminant ®l-
ter appears to be a consequence of a slight DC bias
in its impulse response.

So far we have been using as classes context-
independent phonemes from the three-hour OGI
Stories hand-labeled database, 20 min of the hand-
labeled Switchboard database, and 6 h of the
forcefully aligned Switchboard database. The
general characteristics of the data-derived RASTA
®lters are relatively independent of the particular
database used for their design.

It appears that for the optimal linear discrimi-
nation of speech into context-independent pho-
netic classes one needs to use features derived from
at least 250 ms long segments of the signal. The
most important discriminant feature is derived by
weighting such speech segment by a function
which can be reasonably well emulated by a dif-
ference of two gaussians [60] with r1 about 100 ms
and r2 about 20 ms. Such function implies a mild

Fig. 11. Frequency characteristics of ®rst three discriminant vectors from LDA design using about 30 min of phoneme-labeled

Switchboard data with simulated additional linear distortions (full lines at the top) and of the original RASTA ®lter, the second

orthogonal polynomial (slope) over 90 ms of time trajectory combined with the RASTA ®ltering, and the third orthogonal polynomial

over 90 ms (curvature) combined with the RASTA ®ltering (dotted lines at the bottom).
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temporal lateral inhibition. The second most im-
portant weighting function is reasonably well ap-
proximated as a time-derivative of the ®rst one and
the third one can be obtained by a double tem-
poral di�erentiation of the impulse response of the
®rst ®lter. All three weighting functions suppress
steady and slowly varying components, as well as
fast changing components of the time trajectories
of spectral energies. Such functions are consistent
with recent ®ndings in neurophysiology of audi-
tory cortex [73,4,19].

Quite di�erent constrained optimization tech-
nique was also applied with similar aims and
similar results to the design of RASTA ®lters from
data [5].

The data-driven RASTA ®lters yield an ad-
vantage in ASR over the conventional RASTA
®lter [71].

5.7. ``Sluggishness'' could be good

The argument is that speech parameters should
re¯ect instantaneous con®gurations of the vocal
tract. Therefore, temporal resolution of a con-

ventional short-term speech analysis is typically of
the order of tenths of ms so that the frame-by-
frame analysis can closely follow changes in the
vocal tract shape. We are suggesting above that
speech features should be derived from time in-
tervals of at least an order of magnitude larger.
Such a notion deserves a short discussion.

The instantaneous properties of the speech sig-
nal may be important in current techniques for
speech synthesis and coding. However, what
counts from the communication point of view is
the e�ect of the acoustic event on the receiver, i.e.
on the human speech perception system (or the
ASR).

The e�ect of even short acoustic event on hu-
man auditory perception is likely to last for a
rather substantial amount of time. It appears that
the short-term memory of the auditory periphery
in mammals (exhibited by forward masking (see,
e.g., [76]), or the buildup of loudness (see, e.g.,
[68])) is of the order of about 200 ms. Recent
physiological measurements from the auditory
cortex of mammals are consistent with these psy-
chophysical observations [73,4,19]. This means

Fig. 12. Impulse responses of the ®rst three vectors from LDA and of the original RASTA ®lter, the second orthogonal polynomial

(slope) over 90 ms of time trajectory combined with the RASTA ®ltering, and the third orthogonal polynomial over 90 ms (curvature)

combined with the RASTA ®ltering (dotted lines at the bottom).
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that the human auditory system could in principle
utilize rather large (about syllable sized) time spans
of the audio signal, just as do the speech analysis
techniques discussed here.

The access to and utilization of about a syllable-
length segments of speech does not necessarily
mean that the analysis would lose an ability to act
upon short events in the signal. It merely means
that features derived by such analysis at any given
time instant would re¯ect information from a
larger segment of speech and that even very short
event in the signal would show in the speech rep-
resentation for an extended length of time. This is
illustrated in Fig. 13 which shows spectrograms of
a word containing the unvoiced stop /k/ from both
conventional PLP analysis (which is a conven-
tional short-term analysis technique with temporal
resolution of about 10 ms) and RASTA-PLP (with
its temporal resolution of the order of about 200
ms). In RASTA-based ``sluggish'' analysis, short
acoustic events such as stop-bursts spread their

in¯uence over a longer time, thus possibly aiding
in the identi®cation of such short acoustic events.

Allowing for access to larger segments of speech
during analysis could be also advocated using
speech production-based arguments [54,69] since it
may allow for use of mechanical constraints and
principles guiding the underlying speech produc-
tion process.

5.8. Forward masking and RASTA processing

This section shows consistency of RASTA
processing with some auditory e�ects of forward
masking.

If a loud sound is followed closely in time by
weaker sound, the perceptability of the weaker
sound is diminished. This e�ect, called forward
masking, seems to last (independently of the
masker amplitude) for about 200 ms (see e.g. [76]).
Forward masking e�ect is typically measured by
presenting a masker (tone or band-passed noise for

Fig. 13. Spectrograms of a word containing unvoiced stop /k/ from the conventional PLP analysis (upper spectrogram) and the

RASTA-PLP (lower spectrogram) with implied time constant about 220 ms. In the ``sluggish'' RASTA-PLP, the short acoustic events

spread their in¯uence into a subsequent speech segment.
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200 ms or longer), followed by a short signal called
probe. Human observers are asked to detect brief
probe presented after a variable delay following
the o�set of the masker. The masking e�ect is
measured by the rise of a threshold of detection of
the probe. The decaying dependence of the mask-
ing e�ect on the log delay is well approximated by
a set of straight lines that intersect at a point
corresponding to the delay of approximately 200
ms [50]. (See the left part of Fig. 16.)

A model of the dependence of the masking ef-
fect on the delay and the masker level (a bilinear
relation) requires an essential nonlinearity. Prior
attempts to account for the data led researchers to
models based on automatic gain control such as
proposed by Pavel [63]. In his model, the e�ect of
the masker was to reduce temporarily the system
gain. A decade later, Pavel and Hermansky [64]
demonstrated that RASTA processing can emu-
late human perceptual data from forward masking
paradigms.

Fig. 14 may help in explaining the process of
masking in RASTA processing. Since the length of
a masker in a typical forward masking experiment
(see e.g. [50]) is comparable to a time constant of
the RASTA ®lter, the level of the RASTA-pro-

cessed masker at the end of the masker is signi®-
cantly diminished. Turning o� the masker causes a
negative shift in the signal. Then, a probe coming
shortly after the end of the masker is on lower level
than it would be if there was no masker. Since the
whole process is sandwiched between compressive
and expansive nonlinearities, the negative shift of
the compressed probe results in its e�ective atten-
uation, as illustrated in Fig. 15.

To evaluate the process quantitatively, we car-
ried out the following experiment. The probe de-
tection was mediated by a comparison of an
Euclidean distance between two spectral repre-
sentations: one representing a loudness 9 temporal
pro®le of the masker alone and another repre-
senting temporal pro®le of loudness of the masker
followed by a probe. If there was no probe, the
distance between these two loudness pro®les of
two identical maskers would be zero. Because of
the probe in one of the signals, the distance is
nonzero. The smaller the processed probe, the

Fig. 14. Mechanism of forward masking in RASTA processing. RASTA ®ltering is done between a compressive and expansive

nonlinearity. RASTA processed masker brings the level of probe down and e�ectively attenuates it (see also Fig. 15). This e�ect is

greater when the probe closely follows the masker.

9 Loudness vectors were computed as a short-term critical-

band power spectral energies compressed by the cubic-root

nonlinearity.
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smaller the distance. Thus, the inverse of the dis-
tance is proportional to the amount of masking of
the probe.

Results, shown in the right part of Fig. 16, are
qualitatively consistent with conclusions from hu-
man forward masking experiments [50] which im-
plications are indicated in the left part of the ®gure.

6. Recognition based on partial information

6.1. A conventional ASR

The ®rst step in most of the current ASR is to
convert the incoming speech signal into a series of
short-term vectors. Each element of the vector

Fig. 16. Extrapolated human data on forward masking (left) and results of experiment with emulation of forward masking using

RASTA processing (right).

Fig. 15. Attenuation of probe by shift of its level between compressive and expansive nonlinearities.
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describes some part of the information carried by
the signal; for example each element of the short-
term spectral vector represents energy of the
speech signal in a given frequency range. Suppose
that some of the elements of the short-term vector
contain corrupted or misleading information,
while the remaining ones are still uncorrupted.
This can occur e.g. when the speech signal gets
corrupted by selective noise. In the current main-
stream ASR the entire feature vector is used as one
entity and even a single corrupted spectral element
can severely degrade the performance of the rec-
ognizer.

6.2. The human way

Fletcher's early work [25] on the Articulatory
Index (see [2] for a review) suggests that human
auditory perception works di�erently from current
ASR. Speci®cally, Fletcher suggests that the lin-
guistic message gets decoded independently in
di�erent frequency sub-bands and the ®nal de-
coding decision is based on merging the informa-
tion from the sub-bands. According to Fletcher,
the probabilities of erroneous recognition in the
sub-bands P{Ei} multiply to yield the overall error
rate P{Error}�QiP{Ei}. One interpretation of
Fletcher's work is that as soon as any sub-band
combination yields su�cient information, the in-
formation from the remaining (possibly corrupted)
sub-bands does not have to be used for subsequent
decoding of the message.

The fact that the spectral envelope can be so
easily corrupted by common distortions such as
linear ®ltering or additive environmental noise,
which have only a minimal adverse e�ect on hu-
man speech communication, may put in a question
the whole concept of spectral analysis for deriving
an internal representation of acoustic signal in
human cognition. Even though there is a strong
evidence that human auditory perception does
some sort of spectral analysis of the incoming
acoustic signal, it may be that the main reason for
frequency selectivity of human auditory system is
not to derive frequency content of a given segment
for phonetic classi®cation but rather to provide
means for optimal choice of high signal-to-noise
(SNR) regions for deriving reliable sub-band

based features by temporal analysis of the high
SNR sub-bands of the signal. Such view would be
supported by some recent ®ndings in physiology of
auditory cortex [73].

6.3. Multi-band ASR

Hermansky et al. [36] and Bourlard et al. [9,10]
examine Fletcher's proposal by subdividing the
available speech spectrum into a number of fre-
quency sub-bands and extracting spectral features
from each of the sub-bands. Recognition is done
independently in each of the sub-bands; each rec-
ognizer yielding conditional probability estimates
for all the classes to be recognized (see Fig. 17).
These estimates are then merged to give the ®nal
result. In our work, merging is done by a multi-
layer perceptron (MLP) trained on the training
data.

Experiments with frequency selective noise (re-
ported in [36]) show the potential advantage of the
multi-band approach in ASR of noisy speech. An
important observation from these early experi-
ments, summarized in Fig. 18, was that when
leaving parts of the speech spectrum out of the
ASR process, the ASR accuracy degrades rela-
tively slowly. This may be suggesting that lin-
guistic information in the sub-bands is to some
extent redundant and, consistently with [57], ac-
cess to just a few sub-bands may facilitate rea-
sonable speech communication. Such an
observation is consistent with [29] and is a good
news for robustness in ASR because it means one
can leave out corrupted parts of the speech spec-
trum without severely impairing the ASR process.

Hermansky and Tibrewala [36] investigated
several techniques for determination of corrupted
sub-bands in the multi-band ASR. Sometimes it is
feasible to determine a frequency-dependent sig-
nal-to-noise ratio directly from the signal and then
leave out the sub-bands in which the level of noise
is too high. Otherwise, attempts can be made to
determine reliability of data from outputs of the
sub-band classi®ers. Good estimates of a posterior
probabilities should be low when the data are
unreliable. Bourlard et al. [10] thus used a simple
linear combination of sub-band classi®er outputs
to perform the merging and reported good results
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in ASR of noisy speech without any need for the
prior determination which sub-bands are noisy.
Subsequently, Tibrewala and Hermansky [70] used
a nonlinear classi®er trained on clean speech data
to deal with the corrupted sub-bands. They dem-
onstrated a signi®cant improvement in perfor-
mance (of about 50% in average) in presence of
frequency selective additive noises which corrupt-
ed only some of the frequency sub-bands. The

multi-band was found ine�ective only for noises
which corrupted all sub-bands.

7. Discussion and conclusion

It is perception which ultimately determines
which components of the signal are used for a
decoding of the message. Thus, any gross incon-
sistencies between properties of ASR technology
and properties of human hearing should be viewed
with caution.

Emulation of certain properties of human
hearing in feature extraction for ASR can be useful.
Some of the main-stream techniques such as Mel or
Bark auditory-like frequency warping of speech
spectrum are used virtually by everybody. Some of
the emerging ones were discussed in this paper.

This paper tried to convey the idea that indis-
criminate use of accidental knowledge about hu-
man hearing in ASR may not be what is needed.
Not all properties of human hearing are relevant
to speech communication, and some are not even
well understood. Lessons from the past teach that
using the wrong knowledge can be worse that
using no knowledge at all. So the question is how
to select and how to use the relevant knowledge.

Straight emulation of well established proper-
ties of human hearing into engineering systems is
one way to provide a priori knowledge into the
ASR problem. Reasonable processing constraints

Fig. 18. Accuracy of ASR using partial spectral information.

Performance of ASR degrades relatively slowly even when only

a small part of the available spectrum is used in ASR. The result

shows that e.g. when only 30% of the available spectrum is used

(2 sub-bands out of 7) the minimal error increase is only from

4% to 7%.

Fig. 17. Principle of multi-stream ASR. A potential advantage of this approach is in situations when the individual sub-streams carry

di�erent information about the underlying communication process and are di�erently a�ected by disturbances.
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may be introduced this way. Current dominant
speech analysis techniques in ASR such as Mel
cepstral analysis or PLP make good use of the
prior knowledge about the nonlinear frequency
scale, spectral amplitude compression, and the
equal loudness curve.

Some other powerful properties of human au-
ditory perception, such as temporal masking, or
the ability to e�ciently use corrupted information,
are just starting to be exploited, and we have dis-
cussed initial attempts for their use in this paper.

Proponents of purely engineering approaches to
ASR may ®nd that a proper use of auditory con-
straints may be justi®ed on engineering grounds.
Thus, e.g. reducing the number of free parameters
in low-order PLP is consistent with regularization
theory with limited amount of training data, the
use of multi-stream ASR could be argued from the
point of view of missing features theory in robust
statistical processing, etc.

One should not underestimate the power of real
speech data in deriving and implementing auditory
knowledge. Speech developed to optimally use
properties of human auditory perception and rel-
evant auditory properties are re¯ected in the
structure of the acoustic speech signal. Thus, the
data should not be used as a lazy-man's substitute
for knowledge but rather as a potential source of
permanent and reusable knowledge.

A conventional way to use the data is to adjust
the parameters of the model so that the perfor-
mance of the system on development data im-
proves. Such a technique yielded low-resolution
PLP modeling for deriving speaker independent
features, or the RASTA band-pass ®lter which
reduces e�ects of noise.

However, an other e�ective way is to avoid the
ASR altogether and apply optimization techniques
on a simpli®ed task, relevant to the ASR goal. This
has been done by optimizing phoneme-class sepa-
rability in our LDA-based RASTA ®lter design.

It is gratifying to start to believe that there may
not be a dilemma between data-driven and
knowledge-based approaches after all: the data
carry the relevant knowledge. It has been im-
printed on the data by forces of nature in attempts
to optimize the human speech communication
process.

It is hard to accept that speech technology
could not bene®t from better understanding of
speech communication process. This understand-
ing can come by studying either part of the pro-
cess: the speech production system, the signal,
and the human speech perception. They are all
closely related and properties of one part are re-
¯ected in properties of an another. This paper,
while focusing on human speech perception,
makes an ample use of the signal (e.g. in the data-
driven design of RASTA ®lters), as well as
looking for a possible support in speech produc-
tion (e.g. in the relation between F2' and reso-
nance frequency of the front part of the vocal
tract [40,12]).

While this paper mainly discussed possible
modi®cations of the analysis process, it is possible
that even larger gains can be found in modifying
(or even abandonment) the currently dominant
but perceptually inconsistent pattern-matching
approach to ASR. Such paradigm attempts to
assign each segment of the signal to a class taken
from a close set of classes. Human communication
is not a uniform process in which all parts of the
signal are carrying an equal amount of informa-
tion about the message. Rather, instants of high
information content are interleaved with large
portions of the signal carrying practically no useful
information at all. Attempts for recognizing ev-
erything in the signal may thus be wasteful or even
counterproductive.

But that would be yet another story...

7.1. Should airplanes ¯ap wings?

It is said that car does not need to have legs to
move and airplanes do not need to ¯ap wings to
¯y, ergo ASR does not need to have ears to rec-
ognize speech. We in principle support such view,
believing that progress should be made by the
knowledge of the principle guiding a process rather
than by copying the appearance of the process.

Today's ASR resembles early designs of ma-
chines heavier-than-air: just as those early ma-
chines, it appears clumsy and is seems to consist of
randomly collected pieces of machinery ± no
matter how hard we try, the technology is still not
up to the task.
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Some attempts for auditory modeling in ASR
may resemble the legendary Icarus with bird-like
¯apping wings ± blindly applying observations
from nature but quite obviously not understanding
the basic laws which make the process work.

Only when the Wright brothers and their con-
temporaries came to understand that it is not
¯apping the wings but rather the Bernoulli force
which keeps birds in the air, modern aviation was
born. We as speech technologists should also strive
for understanding which properties of human au-
ditory perception are relevant for decoding the
speech signal and are likely to improve perfor-
mance of ASR in realistic situations.
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