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Abstract—We propose an appearance-based face recognition method called the Laplacianface approach. By using Locality

Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an

embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The

Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In

this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced.

Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed

Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that

the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition.

Index Terms—Face recognition, principal component analysis, linear discriminant analysis, locality preserving projections, face

manifold, subspace learning.

�

1 INTRODUCTION

MANY face recognition techniques have been developed
over the past few decades. One of the most successful

and well-studied techniques to face recognition is the
appearance-based method [28], [16]. When using appear-
ance-based methods, we usually represent an image of size
n�m pixels by a vector in an n�m-dimensional space. In
practice, however, these n�m-dimensional spaces are too
large to allow robust and fast face recognition. A common
way to attempt to resolve this problem is to use dimension-
ality reduction techniques [1], [2], [8], [11], [12], [14], [22],
[26], [28], [34], [37]. Two of the most popular techniques for
this purpose are Principal Component Analysis (PCA) [28]
and Linear Discriminant Analysis (LDA) [2].

PCA is an eigenvector method designed to model linear
variation in high-dimensional data. PCA performs dimen-
sionality reduction by projecting the original n-dimensional
data onto the kð<< nÞ-dimensional linear subspace spanned
by the leading eigenvectors of the data’s covariance matrix.
Its goal is to find a set of mutually orthogonal basis
functions that capture the directions of maximum variance
in the data and for which the coefficients are pairwise
decorrelated. For linearly embedded manifolds, PCA is
guaranteed to discover the dimensionality of the manifold
and produces a compact representation. Turk and Pentland
[28] use Principal Component Analysis to describe face
images in terms of a set of basis functions, or “eigenfaces.”

LDA is a supervised learning algorithm. LDA searches for
the project axes on which the data points of different classes

are far from each other while requiring data points of the
same class to be close to each other. Unlike PCA which
encodes information in an orthogonal linear space, LDA
encodes discriminating information in a linearly separable
space using bases that are not necessarily orthogonal. It is
generallybelieved that algorithmsbasedonLDAare superior
to those based on PCA. However, some recent work [14]
shows that, when the training data set is small, PCA can
outperform LDA, and also that PCA is less sensitive to
different training data sets.

Recently, a number of research efforts have shown that
the face images possibly reside on a nonlinear submanifold
[7], [10], [18], [19], [21], [23], [27]. However, both PCA and
LDA effectively see only the Euclidean structure. They fail
to discover the underlying structure, if the face images lie
on a nonlinear submanifold hidden in the image space.
Some nonlinear techniques have been proposed to discover
the nonlinear structure of the manifold, e.g., Isomap [27],
LLE [18], [20], and Laplacian Eigenmap [3]. These nonlinear
methods do yield impressive results on some benchmark
artificial data sets. However, they yield maps that are
defined only on the training data points and how to evaluate
the maps on novel test data points remains unclear.
Therefore, these nonlinear manifold learning techniques
[3], [5], [18], [20], [27], [35] might not be suitable for some
computer vision tasks, such as face recognition.

In the meantime, there has been some interest in the
problem of developing low-dimensional representations
through kernel based techniques for face recognition [13],
[33]. These methods can discover the nonlinear structure of
the face images. However, they are computationally expen-
sive. Moreover, none of them explicitly considers the
structure of the manifold on which the face images possibly
reside.

In this paper, we propose a new approach to face analysis
(representation and recognition), which explicitly considers
the manifold structure. To be specific, the manifold structure
is modeled by a nearest-neighbor graph which preserves the
local structure of the image space.A face subspace is obtained
by Locality Preserving Projections (LPP) [9]. Each face image in
the image space is mapped to a low-dimensional face
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subspace, which is characterized by a set of feature images,
called Laplacianfaces. The face subspace preserves local
structure and seems to havemore discriminating power than
thePCAapproach for classificationpurpose.Wealso provide
theoretical analysis to show that PCA, LDA, and LPP can be
obtained from different graph models. Central to this is a
graph structure that is inferred on the data points. LPP finds a
projection that respects this graph structure. In our theore-
tical analysis, we show how PCA, LDA, and LPP arise from
the same principle applied to different choices of this graph
structure.

It is worthwhile to highlight several aspects of the

proposed approach here:

1. While the Eigenfaces method aims to preserve the
globalstructureof the imagespace,andtheFisherfaces
method aims to preserve the discriminating informa-
tion; our Laplacianfaces method aims to preserve the
local structure of the image space. Inmany real-world
classification problems, the localmanifold structure is
more important than the global Euclidean structure,
especially when nearest-neighbor like classifiers are
used for classification. LPP seems to havediscriminat-
ing power although it is unsupervised.

2. An efficient subspace learning algorithm for face

recognition should be able to discover the nonlinear
manifold structure of the face space. Our proposed

Laplacianfaces method explicitly considers the

manifold structure which is modeled by an adja-

cency graph. Moreover, the Laplacianfaces are ob-

tained by finding the optimal linear approximations

to the eigenfunctions of the Laplace Beltrami

operator on the face manifold. They reflect the

intrinsic face manifold structures.
3. LPP shares some similar properties to LLE [18], such

as a locality preserving character. However, their
objective functions are totally different. LPP is
obtained by finding the optimal linear approxima-
tions to the eigenfunctions of the Laplace Beltrami
operator on the manifold. LPP is linear, while LLE is
nonlinear. Moreover, LPP is defined everywhere,
while LLE is defined only on the training data points
and it is unclear how to evaluate the maps for new
test points. In contrast, LPP may be simply applied to
any new data point to locate it in the reduced
representation space.

The rest of the paper is organized as follows: Section 2
describes PCA and LDA. The Locality Preserving Projections
(LPP) algorithm is described in Section 3. In Section 4, we
provide a statistical view of LPP. We then give a theoretical
analysis of LPP and its connections to PCA and LDA in
Section 5. Section 6 presents the manifold ways of face
analysis using Laplacianfaces. A variety of experimental
results are presented in Section 7. Finally, we provide some
concluding remarks and suggestions for future work in
Section 8.

2 PCA AND LDA

One approach to coping with the problem of excessive
dimensionality of the image space is to reduce the dimen-
sionality by combining features. Linear combinations are

particular, attractive because they are simple to compute and
analytically tractable. In effect, linear methods project the
high-dimensional data onto a lower dimensional subspace.

Considering the problem of representing all of the vectors

in a set of n d-dimensional samples x1;x2; . . . ;xn, with zero

mean, by a single vector y ¼ fy1; y2; . . . ; yng such that yi
represents xi. Specifically, we find a linearmapping from the

d-dimensional space to a line. Without loss of generality, we

denote the transformation vector by w. That is, wTxi ¼ yi.

Actually, the magnitude of w is of no real significance

because it merely scales yi. In face recognition, each vector xi

denotes a face image.
Different objective functions will yield different algo-

rithms with different properties. PCA aims to extract a
subspace in which the variance is maximized. Its objective
function is as follows:

max
w

Xn
i¼1

yi � yð Þ2; ð1Þ

y ¼ 1

n

Xn
i¼1

yi: ð2Þ

The output set of principal vectors w1;w2; . . . ;wk is an
orthonormal set of vectors representing the eigenvectors of
the sample covariance matrix associated with the k < d
largest eigenvalues.

While PCA seeks directions that are efficient for repre-
sentation, Linear Discriminant Analysis seeks directions that
are efficient for discrimination. Suppose we have a set of
n d-dimensional samples x1;x2; . . . ;xn, belonging to l classes
of faces. The objective function is as follows:

max
w

wTSBw

wTSWw
; ð3Þ

SB ¼
Xl
i¼1

niðmðiÞ �mÞðmðiÞ �mÞT ; ð4Þ

SW ¼
Xl
i¼1

Xni

j¼1

ðxðiÞ
j �mðiÞÞðxðiÞ

j �mðiÞÞT
 !

; ð5Þ

where m is the total sample mean vector, ni is the number
of samples in the ith class, mðiÞ is the average vector of the
ith class, and x

ðiÞ
j is the jth sample in the ith class. We call

SW the within-class scatter matrix and SB the between-class
scatter matrix.

3 LEARNING A LOCALITY PRESERVING SUBSPACE

PCA and LDA aim to preserve the global structure.
However, in many real-world applications, the local
structure is more important. In this section, we describe
Locality Preserving Projection (LPP) [9], a new algorithm for
learning a locality preserving subspace. The complete
derivation and theoretical justifications of LPP can be
traced back to [9]. LPP seeks to preserve the intrinsic
geometry of the data and local structure. The objective
function of LPP is as follows:

HE ET AL.: FACE RECOGNITION USING LAPLACIANFACES 329



min
X
ij

ðyi � yjÞ2Sij; ð6Þ

where yi is the one-dimensional representation of xi and the
matrix S is a similarity matrix. A possible way of defining S
is as follows:

Sij ¼ expð� xi � xj

�� ��2=tÞ; jjxi � xjjj2 < "
0 otherwise

�
ð7Þ

or

Sij¼
expð� xi�xjk k2

=tÞ; if xi is among k nearest neighbors of xj

or xj is among k nearest neighbors of xi

0 otherwise;

8<
: ð8Þ

where " is sufficiently small, and " > 0. Here, " defines the
radius of the local neighborhood. In other words, " defines
the “locality.” The objective function with our choice of
symmetric weights SijðSij ¼ SjiÞ incurs a heavy penalty if
neighboring points xi and xj are mapped far apart, i.e., if
ðyi � yjÞ2 is large. Therefore, minimizing it is an attempt to
ensure that, if xi and xj are “close,” then yi and yj are close
as well. Following some simple algebraic steps, we see that

1

2

X
ij
ðyi � yjÞ2Sij

¼ 1

2

X
ij
ðwTxi �wTxjÞ2Sij

¼
X

ij
wTxiSijx

T
i w�

X
ij
wTxiSijx

T
j w

¼
X

i
wTxiDiix

T
i w�wTXSXTw

¼ wTXDXTw�wTXSXTw

¼ wTXðD� SÞXTw

¼ wTXLXTw;

ð9Þ

where X ¼ ½x1;x2; . . . ;xn�, and D is a diagonal matrix; its
entries are column (or row since S is symmetric) sums of
S;Dii ¼

P
j Sji. L ¼ D� S is the Laplacian matrix [6].

Matrix D provides a natural measure on the data points.
The bigger the value Dii (corresponding to yi) is, the more
“important” is yi. Therefore, we impose a constraint as
follows:

yTDy ¼ 1

) wTXDXTw ¼ 1:
ð10Þ

Finally, the minimization problem reduces to finding:

argmin
w

wTXLXTw

wTXDXTw ¼ 1:
ð11Þ

The transformation vector w that minimizes the objective

function is given by the minimum eigenvalue solution to

the generalized eigenvalue problem:

XLXTw ¼ �XDXTw: ð12Þ

Note that the two matrices XLXT and XDXT are both

symmetric and positive semidefinite since the Laplacian

matrix L and the diagonal matrix D are both symmetric and

positive semidefinite.
The Laplacian matrix for finite graph is analogous to

the Laplace Beltrami operator on compact Riemannian

manifolds. While the Laplace Beltrami operator for a
manifold is generated by the Riemannian metric, for a
graph it comes from the adjacency relation. Belkin and
Niyogi [3] showed that the optimal map preserving
locality can be found by solving the following optimiza-
tion problem on the manifold:

min
fk kL2ðMÞ¼1

Z
M

rfk k2 ð13Þ

which is equivalent to

min
fk kL2ðMÞ¼1

Z
M

LðfÞf; ð14Þ

where L is the Laplace Beltrami operator on the manifold,
i.e., LðfÞ ¼ divrðfÞ. Thus, the optimal f has to be an
eigenfunction of L. If we assume f to be linear, we have
fðxÞ ¼ wTx. By spectral graph theory, the integral can be
discretely approximated by wTXLXTw and the L2 norm of
f can be discretely approximated by wTXDXTw, which
will ultimately lead to the following eigenvalue problem:

XLXTw ¼ �XDXTw: ð15Þ

The derivation reflects the intrinsic geometric structure of

the manifold. For details, see [3], [6], [9].

4 STATISTICAL VIEW OF LPP

LPP can also be obtained from statistical viewpoint. Suppose
thedatapoints followsomeunderlyingdistribution.Letxand
y be two random variables. We define that a linear mapping
x ! wTx best preserves the local structure of the underlying
distribution in the L2 sense if it minimizes the L2 distances
betweenwTx andwTy provided that jjx� yjj < ". Namely,

min
w

EðjwTx�wTyj2
��jjx� yjj < "Þ; ð16Þ

where " is sufficiently small and " > 0. Here, " defines the

“locality.” Define z ¼ x� y, then we have the following

objective function:

minEðjwTzj2
���jjzjj < "Þ: ð17Þ

It follows that,

EðjwTzj2
���jjzjj < "Þ

¼ EðwTzzTw
���jjzjj < "Þ

¼ wTEðzzT
���jjzjj < "Þw:

ð18Þ

Given a set of sample points x1;x2; . . . ;xn, we first define an

indicator function Sij as follows:

Sij ¼ 1; jjxi � xjjj2 < "
0 otherwise:

�
ð19Þ

Let d be the number of nonzero Sij, and D be a diagonal
matrix whose entries are column (or row since S is
symmetric) sums of S, Dii ¼

P
j Sji. By the Strong Law of

Large Numbers, EðzzT jjjzjj < "Þ can be estimated from the
sample points as follows:

330 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005



EðzzT
���jjzjj < "Þ

� 1

d

X
jjzjj<"

zzT

¼ 1

d

X
jjxi�xjjj<"

ðxi � xjÞðxi � xjÞT

¼ 1

d

X
i;j

ðxi � xjÞðxi � xjÞTSij

¼ 1

d

X
i;j

xix
T
i Sij þ

X
i;j

xjx
T
j Sij �

X
i;j

xix
T
j Sij �

X
i;j

xjx
T
i Sij

 !

¼ 2

d

X
i

xix
T
i Dii �

X
i;j

xix
T
j Sij

 !

¼ 2

d
XDXT �XSXT
� �

¼ 2

d
XLXT ;

ð20Þ

where L ¼ D� S is the Laplacian matrix. The ith column of
matrix X is xi. By imposing the same constraint, we finally
get the same minimization problem described in Section 3.

5 THEORETICAL ANALYSIS OF LPP, PCA, AND
LDA

In this section, we present a theoretical analysis of LPP and
its connections to PCA and LDA.

5.1 Connections to PCA

We first discuss the connections between LPP and PCA.
It is worthwhile to point out that XLXT is the data

covariance matrix, if the Laplacian matrix L is 1
nI � 1

n2ee
T ,

where n is the number of data points, I is the identity
matrix, and e is a column vector taking one at each entry.
In fact, the Laplacian matrix here has the effect of
removing the sample mean from the sample vectors. In
this case, the weight matrix S takes 1=n2 at each entry, i.e.,
Sij ¼ 1=n2; 8i; j. Dii ¼

P
j Sji ¼ 1=n. Hence, the Laplacian

matrix is L ¼ D� S ¼ 1
nI � 1

n2ee
T . Let m denote the sample

mean, i.e., m ¼ 1=n
P

i xi . We have:

XLXT ¼ 1

n
X
�
I � 1

n
eeT

�
XT

¼ 1

n
XXT � 1

n2
ðXeÞðXeÞT

¼ 1

n

X
i

xix
T
i �

1

n2
ðnmÞðnmÞT

¼ 1

n

X
i

ðxi �mÞðxi �mÞT

þ 1

n

X
i

xim
T þ 1

n

X
i

mxT
i � 1

n

X
i

mmT �mmT

¼ E
�
ðx�mÞðx�mÞT

	
þ 2mmT � 2mmT

¼ E
�
ðx�mÞðx�mÞT

	
;

ð21Þ

where E½ðx�mÞðx�mÞT� is just the covariance matrix of

the data set.

The above analysis shows that the weight matrix S plays a
key role in the LPP algorithm.Whenwe aim at preserving the
global structure, we take " (or k) to be infinity and choose the
eigenvectors (of thematrixXLXT ) associatedwith the largest
eigenvalues. Hence, the data points are projected along the
directions of maximal variance. When we aim at preserving
the local structure, we take " to be sufficiently small and
choose the eigenvectors (of thematrixXLXT ) associatedwith
the smallest eigenvalues.Hence, the data points are projected
along thedirections preserving locality. It is important tonote
that,when " (or k) is sufficiently small, the Laplacianmatrix is
no longer the data covariance matrix and, hence, the
directions preserving locality are not the directions of
minimal variance. In fact, the directions preserving locality
are those minimizing local variance.

5.2 Connections to LDA

LDA seeks directions that are efficient for discrimination.
The projection is found by solving the generalized
eigenvalue problem

SBw ¼ �SWw; ð22Þ

where SB and SW are defined in Section 2. Suppose there are
l classes. The ith class contains ni sample points. Let mðiÞ

denote the average vector of the ith class. Let xðiÞ denote the
random vector associated to the ith class and x

ðiÞ
j denote the

jth samplepoint in the ith class.Wecan rewrite thematrixSW

as follows:

SW ¼
Xl
i¼1

Xni

j¼1

x
ðiÞ
j �mðiÞ

� �
x
ðiÞ
j �mðiÞ

� �T !

¼
Xl
i¼1

 Xni

j¼1

�
x
ðiÞ
j ðxðiÞ

j ÞT �mðiÞðxðiÞ
j ÞT

� x
ðiÞ
j ðmðiÞÞT þmðiÞðmðiÞÞT

�!

¼
Xl
i¼1

Xni

j¼1

x
ðiÞ
j ðxðiÞ

j ÞT � nim
ðiÞðmðiÞÞT

 !

¼
Xl
i¼1

XiX
T
i � 1

ni
x
ðiÞ
1 þ � � � þ xðiÞ

ni

� �
x
ðiÞ
1 þ � � � þ xðiÞ

ni

� �T
 �

¼
Xl
i¼1

XiX
T
i � 1

ni
Xi eie

T
i

� �
XT

i


 �

¼
Xl
i¼1

XiLiX
T
i ;

ð23Þ

where XiLiX
T
i is the data covariance matrix of the

ith class and Xi ¼ ½xðiÞ
1 ;x

ðiÞ
2 ; � � � ;xðiÞ

ni
� is a d� ni matrix.

Li ¼ I � 1=nieiie
T
ii is a ni � ni matrix where I is the

identity matrix and eii ¼ ð1; 1; . . . ; 1ÞT is an ni-dimensional
vector. To further simplify the above equation, we define:

X ¼ ðx1;x2; � � � ;xnÞ; ð24Þ

Wij ¼
1=nk if xi and xj both belong to the kth class
0 otherwise;

�
ð25Þ
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L ¼ I �W: ð26Þ
Thus, we get:

SW ¼ XLXT : ð26Þ

It is interesting to note that we could regard the matrixW as
the weight matrix of a graph with data points as its nodes.
Specifically, Wij is the weight of the edge ðxi;xjÞ. W reflects
the class relationships of the data points. The matrix L is
thus called graph Laplacian, which plays key role in LPP [9].

Similarly, we can compute the matrix SB as follows:

SB ¼
Xl
i¼1

ni mðiÞ �m
� �

mðiÞ �m
� �T

¼
Xl
i¼1

nim
ðiÞðmðiÞÞT

 !
�m

Xl
i¼1

ni mðiÞ
� �T !

�
Xl
i¼1

nim
ðiÞ

 !
mT þ

Xl
i¼1

ni

 !
mmT

¼
Xl
i¼1

1

ni
x
ðiÞ
1 þ � � � þ xðiÞ

ni

� �
x
ðiÞ
1 þ � � � þ xðiÞ

ni

� �T !

� 2nmmT þ nmmT

¼
Xl
i¼1

Xni

j;k¼1

1

ni
x
ðiÞ
j x

ðiÞ
k

� �T !
� 2nmmT þ nmmT

¼ XWXT � 2nmmT þ nmmT

¼ XWXT � nmmT

¼ XWXT �X
1

n
eeT


 �
XT

¼ X W � 1

n
eeT


 �
XT

¼ X W � I þ I � 1

n
eeT


 �
XT

¼ �XLXT þX I � 1

n
eeT


 �
XT

¼ �XLXT þ C;

ð28Þ

where e ¼ ð1; 1; . . . ; 1ÞT is a n-dimensional vector and C ¼
XðI � 1

nee
T ÞXT is the data covariance matrix. Thus, the

generalized eigenvector problem of LDA can be written as
follows:

SBw ¼ �SWw

) ðC �XLXT Þw ¼ �XLXTw

) Cw ¼ ð1þ �ÞXLXTw

) XLXTw ¼ 1

1þ �
Cw:

ð29Þ

Thus, the projections of LDA can be obtained by solving the
following generalized eigenvalue problem,

XLXTw ¼ �Cw: ð30Þ

The optimal projections correspond to the eigenvectors
associated with the smallest eigenvalues. If the sample
mean of the data set is zero, the covariance matrix is simply
XXT which is exactly the matrix XDXT in the LPP
algorithm with the weight matrix defined in (25). Our
analysis shows that LDA actually aims to preserve

discriminating information and global geometrical struc-
ture. Moreover, LDA can be induced in the LPP framework.
However, LDA is supervised while LPP can be performed
in either supervised or unsupervised manner.

Proposition 1. The rank of L is n� c.

Proof. Without loss of generality, we assume that the data

points are ordered according to which class they are in, so

that fx1; � � � ;xn1
g are in the first class, fxn1þ1; � � � ;xn1þn2

g
are in the second class, etc. Thus,we canwriteL as follows:

L ¼

L1

L2

. .
.

Lc

2
6664

3
7775; ð31Þ

where Li is a square matrix,

Li ¼

1� 1
ni

� 1
ni

� � � � 1
ni

� 1
ni

. .
. . .

. ..
.

..

. . .
. . .

.
� 1

ni

� 1
ni

� � � � 1
ni

1� 1
ni

2
666664

3
777775: ð32Þ

By adding all but the first column vectors to the first

column vector and then subtracting the first row vector

from any other row vectors, we get the following matrix

0 0 � � � 0

0 1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 1

2
6664

3
7775 ð33Þ

whose rank is ni � 1. Therefore, the rank of Li is ni � 1

and, hence, the rank of L is n� c. tu
Proposition 1 tells us that the rank of XLXT is at most

n� c. However, in many cases, in appearance-based face

recognition, the number of pixels in an image (or, the

dimensionality of the image space) is larger than n� c, i.e.,

d > n� c. Thus, XLXT is singular. In order to overcome the

complication of a singular XLXT , Belhumeur et al. [2]

proposed the Fisherface approach that the face images are

projected from the original image space to a subspace with

dimensionality n� c and then LDA is performed in this

subspace.

6 MANIFOLD WAYS OR VISUAL ANALYSIS

In the above sections, we have described three different

linear subspace learning algorithms. The key difference

between PCA, LDA, and LPP is that, PCA and LDA aim to

discover the global structure of the Euclidean space, while

LPP aims to discover local structure of the manifold. In this

section, we discuss the manifold ways of visual analysis.

6.1 Manifold Learning via Dimensionality Reduction

Inmanycases, face imagesmaybevisualized aspoints drawn

ona low-dimensionalmanifoldhidden inahigh-dimensional

ambient space. Specially, we can consider that a sheet of

rubber is crumpled into a (high-dimensional) ball. The
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objective of a dimensionality-reducing mapping is to unfold

the sheet and to make its low-dimensional structure explicit.

If the sheet is not torn in theprocess, themapping is topology-

preserving. Moreover, if the rubber is not stretched or

compressed, the mapping preserves the metric structure of

the original space. In this paper, our objective is to discover

the face manifold by a locally topology-preserving mapping

for face analysis (representation and recognition).

6.2 Learning Laplacianfaces for Representation

LPP is a general method for manifold learning. It is

obtained by finding the optimal linear approximations to

the eigenfunctions of the Laplace Betrami operator on the

manifold [9]. Therefore, though it is still a linear technique,

it seems to recover important aspects of the intrinsic

nonlinear manifold structure by preserving local structure.

Based on LPP, we describe our Laplacianfaces method for

face representation in a locality preserving subspace.
In the face analysis and recognition problem, one is

confronted with the difficulty that the matrix XDXT is
sometimes singular. This stems from the fact that sometimes
the number of images in the training set ðnÞ is much smaller
than thenumberofpixels ineach image ðmÞ. In suchacase, the
rank ofXDXT is at most n, whileXDXT is anm�mmatrix,
which implies that XDXT is singular. To overcome the
complication of a singular XDXT , we first project the image
set to a PCA subspace so that the resulting matrix XDXT is
nonsingular. Another consideration of using PCA as pre-
processing is for noise reduction. This method, we call
Laplacianfaces, can learn an optimal subspace for face
representation and recognition. The algorithmic procedure
of Laplacianfaces is formally stated below:

1. PCAprojection.Weproject the image set fxiig into the
PCA subspace by throwing away the smallest princi-
pal components. In our experiments, we kept 98 per-
cent information in the sense of reconstruction error.
For the sake of simplicity, we still use x to denote the
images in thePCAsubspace in the following steps.We
denote byWPCA the transformation matrix of PCA.

2. Constructing the nearest-neighbor graph. Let G
denote a graph with n nodes. The ith node
corresponds to the face image xi. We put an edge
between nodes i and j if xi and xj are “close,” i.e., xj

is among k nearest neighbors of xi, or xi is among
k nearest neighbors of xj. The constructed nearest-
neighbor graph is an approximation of the local
manifold structure. Note that here we do not use the
"-neighborhood to construct the graph. This is simply
because it is often difficult to choose the optimal " in
the real-world applications, while k nearest-neighbor
graph can be constructed more stably. The disad-
vantage is that the k nearest-neighbor search will
increase the computational complexity of our algo-
rithm. When the computational complexity is a
major concern, one can switch to the "-neighborhood.

3. Choosing the weights. If node i and j are connected,
put

Sij ¼ e�
xi�xjk k2

t ; ð34Þ

where t is a suitable constant. Otherwise, put Sij ¼ 0.

The weight matrix S of graph G models the face

manifold structure by preserving local structure. The

justification for this choice of weights can be traced

back to [3].
4. Eigenmap. Compute the eigenvectors and eigenva-

lues for the generalized eigenvector problem:

XLXTw ¼ �XDXTw; ð35Þ

where D is a diagonal matrix whose entries are

column (or row, since S is symmetric) sums of S,

Dii ¼
P

j Sji. L ¼ D� S is the Laplacian matrix. The

ith row of matrix X is xi.

Let w0;w1; . . . ;wk�1 be the solutions of (35), ordered

according to their eigenvalues, 0 � �0 � �1 � � � � � �k�1.

These eigenvalues are equal to or greater than zero because

the matrices XLXT and XDXT are both symmetric and

positive semidefinite. Thus, the embedding is as follows:

x ! y ¼ WTx; ð36Þ

W ¼ WPCAWLPP ; ð37Þ

WLPP ¼ ½w0;w1; � � � ;wk�1�; ð38Þ

where y is a k-dimensional vector. W is the transformation

matrix. This linear mapping best preserves the manifold’s

estimated intrinsic geometry in a linear sense. The column

vectors of W are the so-called Laplacianfaces.

6.3 Face Manifold Analysis

Now, consider a simple example of image variability.

Imagine that a set of face images are generated while the

human face rotates slowly. Intuitively, the set of face images

correspond toa continuous curve in image space since there is

only one degree of freedom, viz. the angel of rotation. Thus,

we can say that the set of face images are intrinsically one-

dimensional. Many recent works [7], [10], [18], [19], [21], [23],

[27] have shown that the face images do reside on a low-

dimensional submanifold embedded in a high-dimensional

ambient space (image space). Therefore, an effective sub-

space learning algorithm should be able to detect the

nonlinear manifold structure. The conventional algorithms,

such as PCA and LDA, model the face images in Euclidean

space. They effectively see only the Euclidean structure; thus,

they fail to detect the intrinsic low-dimensionality.

With its neighborhood preserving character, the Lapla-

cianfaces seem to be able to capture the intrinsic facemanifold

structure to a larger extent. Fig. 1 shows an example that the

face images with various pose and expression of a person are

mapped into two-dimensional subspace. The face image data

set used here is the same as that used in [18]. This data set

contains 1,965 face images taken from sequential frames of a

small video. The size of each image is 20� 28 pixels, with

256gray-levels perpixel. Thus, each face image is represented

by a point in the 560-dimensional ambient space. However,

these images are believed to come from a submanifold with

few degrees of freedom. We leave out 10 samples for testing,
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and the remaining 1,955 samples are used to learn the

Laplacianfaces. As can be seen, the face images are mapped

into a two-dimensional spacewith continuous change inpose

and expression. The representative face images are shown in

the different parts of the space. The face images are divided

into two parts. The left part includes the face images with

openmouth, and the right part includes the face images with

closed mouth. This is because in trying to preserve local

structure in the embedding, the Laplacianfaces implicitly

emphasizes the natural clusters in the data. Specifically, it

makes the neighboring points in the image face nearer in the

face space, and faraway points in the image face farther in the

face space. The bottom images correspond to points along the

right path (linked by solid line), illustrating one particular

mode of variability in pose.
The 10 testing samples can be simply located in the

reduced representation space by the Laplacianfaces (column

vectors of the matrix W ). Fig. 2 shows the result. As can be

seen, these testing samples optimally find their coordinates

which reflect their intrinsic properties, i.e., pose and

expression. This observation tells us that the Laplacianfaces

are capable of capturing the intrinsic face manifold

structure to some extent.
Recall that both Laplacian Eigenmap and LPP aim to find

a map which preserves the local structure. Their objective

function is as follows:

min
f

X
ij

fðxiÞ � fðxjÞ
� �2

Sij:

The only difference between them is that, LPP is linear while

Laplacian Eigenmap is nonlinear. Since they have the same

objective function, itwould be important to see towhat extent

LPP can approximate Laplacian Eigenmap. This can be

evaluated by comparing their eigenvalues. Fig. 3 shows the

eigenvalues computed by the two methods. As can be seen,

the eigenvalues of LPP is consistently greater than those of

Laplacian Eigenmaps, but the difference between them is

small. The difference gives a measure of the degree of the

approximation.

7 EXPERIMENTAL RESULTS

Some simple synthetic examples given in [9] show that

LPP can have more discriminating power than PCA and

be less sensitive to outliers. In this section, several

experiments are carried out to show the effectiveness of

our proposed Laplacianfaces method for face representa-

tion and recognition.

7.1 Face Representation Using Laplacianfaces

Aswe described previously, a face image can be represented

as a point in image space. A typical image of size m� n

describes a point in m� n-dimensional image space. How-

ever, due to the unwanted variations resulting from changes

in lighting, facial expression, andpose, the image spacemight

not be an optimal space for visual representation.

In Section 3, we have discussed how to learn a locality

preserving face subspace which is insensitive to outlier and

noise. The images of faces in the training set are used to learn

such a locality preserving subspace. The subspace is spanned
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Fig. 1. Two-dimensional linear embedding of face images by Laplacianfaces. As can be seen, the face images are divided into two parts, the faces

with open mouth and the faces with closed mouth. Moreover, it can be clearly seen that the pose and expression of human faces change

continuously and smoothly, from top to bottom, from left to right. The bottom images correspond to points along the right path (linked by solid line),

illustrating one particular mode of variability in pose.



by a set of eigenvectors of (35), i.e., w0;w1; . . . ;wk�1. We can

display the eigenvectors as images. These images may be

called Laplacianfaces. Using the Yale face database as the

training set, we present the first 10 Laplacianfaces in Fig. 4,

togetherwithEigenfaces andFisherfaces.A face image can be

mapped into the locality preserving subspace by using the

Laplacianfaces. It is interesting tonote that theLaplacianfaces

are somehow similar to Fisherfaces.

7.2 Face Recognition Using Laplacianfaces

Once the Laplacianfaces are created, face recognition [2],

[14], [28], [29] becomes a pattern classification task. In this

section, we investigate the performance of our proposed

Laplacianfaces method for face recognition. The system

performance is compared with the Eigenfaces method [28]

and the Fisherfaces method [2], two of the most popular

linear methods in face recognition.

In this study, three facedatabaseswere tested.The first one

is the PIE (pose, illumination, and expression) database from

CMU [25], the second one is the Yale database [31], and the

third one is the MSRA database collected at the Microsoft

ResearchAsia. In all the experiments, preprocessing to locate

the faces was applied. Original images were normalized (in

scale and orientation) such that the two eyes were aligned at

the sameposition. Then, the facial areaswere cropped into the

final images for matching. The size of each cropped image in

all the experiments is 32� 32 pixels, with 256 gray levels per

pixel. Thus, each image is repre-sented by a 1,024-dimen-

sional vector in image space. The details of our methods for

face detection and alignment can be found in [30], [32]. No

further preprocessing is done. Fig. 5 shows an example of the

original face image and the cropped image. Different pattern

classifiers have been applied for face recognition, including

nearest-neighbor [2], Bayesian [15], Support Vector Machine

[17], etc. In this paper, we apply the nearest-neighbor

classifier for its simplicity. The Euclidean metric is used as

our distance measure. However, there might be some more

sophisticated and better distance metric, e.g., variance-

normalized distance, which may be used to improve the

recognitionperformance. Thenumber of nearest neighbors in

our algorithmwas set to be 4 or 7, according to the size of the

training set.

In short, the recognition process has three steps. First, we

calculate the Laplacianfaces from the training set of face

images; then the new face image to be identified is projected

into the face subspace spanned by the Laplacianfaces;

finally, the new face image is identified by a nearest-

neighbor classifier.
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Fig. 3. The eigenvalues of LPP and Laplacian Eigenmap.

Fig. 2. Distribution of the 10 testing samples in the reduced representation subspace. As can be seen, these testing samples optimally find their

coordinates which reflect their intrinsic properties, i.e., pose and expression.



7.2.1 Yale Database

TheYale facedatabase [31]was constructed at theYaleCenter

for Computational Vision and Control. It contains 165 gray-

scale images of 15 individuals. The images demonstrate

variations in lighting condition (left-light, center-light, right-

light), facial expression (normal, happy, sad, sleepy, sur-

prised, and wink), and with/without glasses.

A random subset with six images per individual (hence,

90 images in total) was taken with labels to form the

training set. The rest of the database was considered to be

the testing set. The training samples were used to learn the

Laplacianfaces. The testing samples were then projected

into the low-dimensional representation subspace. Recogni-

tion was performed using a nearest-neighbor classifier.

Note that, for LDA, there are at most c� 1 nonzero

generalized eigenvalues and, so, an upper bound on the

dimension of the reduced space is c� 1, where c is the

number of individuals [2]. In general, the performance of the

Eigenfaces method and the Laplacianfaces method varies

with the number of dimensions. We show the best results

obtained by Fisherfaces, Eigenfaces, and Laplacianfaces.

The recognition results are shown in Table 1. It is found

that the Laplacianfaces method significantly outperforms

both Eigenfaces and Fisherfaces methods. The recognition

approaches the best results with 14, 28, 33 dimensions for

Fisherfaces, Laplacianfaces, and Eigenfaces, respectively.

The error rates of Fisherfaces, Laplacianfaces, and eigenfaces

are 20 percent, 11.3 percent, and 25.3 percent, respectively.

The corresponding face subspaces are called optimal face

subspace for each method. There is no significant improve-

ment if more dimensions are used. Fig. 6 shows the plots of

error rate versus dimensionality reduction.

7.2.2 PIE Database

The CMU PIE face database contains 68 subjects with

41,368 face images as awhole. The face imageswere captured

by 13 synchronized cameras and 21 flashes, under varying

pose, illumination, and expression. We used 170 face images

for each individual in our experiment, 85 for training and the

other 85 for testing. Fig. 7 shows some of the faces with pose,

illumination and expression variations in the PIE database.

Table 2 shows the recognition results. As can be seen,

Fisherfaces performs comparably to our algorithm on this

database,whileEigenfacesperformspoorly.Theerror rate for

Laplacianfaces, Fisherfaces, and Eigenfaces are 4.6 percent,

5.7 percent, and 20.6 percent, respectively. Fig. 8 shows a plot

of error rate versus dimensionality reduction. As can be seen,

the error rate of our Laplacianfaces method decreases fast as

the dimensionality of the face subspace increases, and

achieves the best result with 110 dimensions. There is no

significant improvement if more dimensions are used.

Eigenfaces achieves the best result with 150 dimensions. For

Fisherfaces, thedimensionof the face subspace is boundedby

c� 1, and it achieves the best result with c� 1 dimensions.

The dashed horizontal line in the figure shows the best result

obtained by Fisherfaces.
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Fig. 4. The first 10 (a) Eigenfaces, (b) Fisherfaces, and (c) Laplacianfaces calculated from the face images in the YALE database.

Fig. 5. The original face image and the cropped image.

TABLE 1
Performance Comparison on the Yale Database



7.2.3 MSRA Database

This database was collected at Microsoft Research Asia. It

contains 12 individuals, captured in two different sessions

with different backgrounds and illuminations. Sixty-four to

eighty face images were collected for each individual in each

session. All the faces are frontal. Fig. 9 shows the sample

cropped face images from this database. In this test, one

session was used for training and the other was used for

testing. Table 3 shows the recognition results. Laplacianfaces

method has lower error rate (8.2 percent) than those of

eigenfaces (35.4percent) and fisherfaces (26.5percent). Fig. 10

shows a plot of error rate versus dimensionality reduction.

7.2.4 Improvement with the Number of Training

Samples

In the above sections, we have shown that our Laplacian-

faces approach outperforms the Eigenfaces and Fisherfaces

approaches on three different face databases. In this section,

we evaluate the performances of these three approaches

with different numbers of training samples. We expect that

a good algorithm should be able to take advantage of more

training samples.

We used the MSRA database for this experiment. Let

MSRA-S1 denote the image set taken in the first session and

MSRA-S2 denote the image set taken in the second session.

MSRA-S2 was exclusively used for testing. Ten percent,

40 percent, 70 percent, and 100 percent face images were

randomly selected fromMSRA-S1 for training. For eachof the

first three cases,we repeated 20 times and computed the error

rate in average. In Fig. 11 and Table 4, we show the

experimental results of the improvement of the performance

of our algorithmwith the number of training samples. As can

be seen, our algorithm takes advantage of more training

samples. The performance improves significantly as the

number of training sample increases. The error rate of

recognition reduces from 26.04 percent with 10 percent

training samples to 8.17 percent with 100 percent training

samples. This is due to the fact that, our algorithm aims at

discovering the underlying face manifold embedded in the

ambient space andmore training samples help to recover the

manifold structure. Eigenface also takes advantage of more

training samples to some extent. The error rate of Eigenface

reduces from 46.48 percent with 10 percent training samples

to 35.42 percent with 100 percent training samples. But, its

performance starts to converge at 40 percent (training

samples) and little improvement is obtained if more training

samples are used. For Fisherfaces, there is no convincing

evidence that it can take advantage ofmore training samples.
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Fig. 6. Recognition accuracy versus dimensionality reduction on
Yale database.

Fig. 7. The sample cropped face images of one individual from PIE database. The original face images are taken under varying pose, illumination,
and expression.

TABLE 2
Performance Comparison on the PIE Database

Fig. 8. Recognition accuracy versus dimensionality reduction on

PIE database.



7.3 Discussion

Three experiments on three databases have been system-

atically performed. These experiments reveal a number of

interesting points:

1. All these three approaches performed better in the
optimal facesubspace than in theoriginal imagespace.

2. In all the three experiments, Laplacianfaces consis-
tently performs better than Eigenfaces and Fish-

erfaces. Especially, it significantly outperforms

Fisherfaces and Eigenfaces on Yale database and

MSRA database. These experiments also show that

our algorithm is especially suitable for frontal face

images. Moreover, our algorithm takes advantage of

more training samples, which is important to the

real-world face recognition systems.
3. Comparing to the Eigenfaces method, the Laplacian-

faces method encodes more discriminating informa-

tion in the low-dimensional face subspace by

preserving local structure which is more important

than the global structure for classification, especially

when nearest-neighbor-like classifiers are used. In

fact, if there is a reason to believe that Euclidean

distances ðjjxi � xjjjÞ are meaningful only if they are

small (local), thenour algorithm findsaprojection that

respects such a belief. Another reason is that, as we

show in Fig. 1, the face images probably reside on a

nonlinear manifold. Therefore, an efficient and effec-

tive subspace representation of face images should be

capable of charactering the nonlinear manifold struc-

ture, while the Laplacianfaces are exactly derived by

finding the optimal linear approximations to the

eigenfunctions of the Laplace Betrami operator on

the face manifold. By discovering the face manifold

structure, Laplacianfaces can identify the personwith

different expressions, poses, and lighting conditions.
4. In all our experiments, thenumberof training samples

per subject is greater than one. Sometimes theremight

be only one training sample available for each subject.

In such a case, LDAcannotwork since thewithin-class

scatter matrix SW becomes a zero matrix. For LPP,

however, we can construct a complete graph and use

inner products as its weights. Thus, LPP can give

similar result to PCA.

8 CONCLUSION AND FUTURE WORK

The manifold ways of face analysis (representation and

recognition) are introduced in this paper in order to detect

the underlying nonlinear manifold structure in the manner

of linear subspace learning. To the best of our knowledge,

this is the first devoted work on face representation and

recognition which explicitly considers the manifold struc-

ture. The manifold structure is approximated by the

adjacency graph computed from the data points. Using the

notion of the Laplacian of the graph, we then compute a

transformationmatrixwhichmaps the face images into a face

subspace. We call this the Laplacianfaces approach. The

Laplacianfaces are obtained by finding the optimal linear

approximations to the eigenfunctions of the Laplace Beltrami

operator on the face manifold. This linear transformation

optimally preserves local manifold structure. Theoretical

analysis of the LPP algorithm and its connections to PCA and

LDA are provided. Experimental results on PIE, Yale, and

MSRA databases show the effectiveness of our method.
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Fig. 9. The sample cropped face images of eight individuals from MSRA database. The face images in the first row are taken in the first session,
which are used for training. The face images in the second row are taken in the second session, which are used for testing. The two images in the
same column are corresponding to the same individual.

TABLE 3
Performance Comparison on the MSRA Database

Fig. 10. Recognition accuracy versus dimensionality reduction on
MSRA database.



One of the central problems in face manifold learning is

to estimate the intrinsic dimensionality of the nonlinear face

manifold, or, degrees of freedom. We know that the

dimensionality of the manifold is equal to the dimension-

ality of the local tangent space. Some previous works [35],

[36] show that the local tangent space can be approximated

using points in a neighbor set. Therefore, one possibility is

to estimate the dimensionality of the tangent space.
Another possible extension of our work is to consider the

use of the unlabeled samples. It is important to note that the
work presented here is a general method for face analysis
(face representation and recognition) by discovering the
underlying face manifold structure. Learning the face
manifold (or learning Laplacianfaces) is essentially an
unsupervised learning process. And, in many practical
cases, one finds a wealth of easily available unlabeled
samples. These samples might help to discover the face
manifold. For example, in [4], it is shown how unlabeled
samples are used for discovering the manifold structure
and, hence, improving the classification accuracy. Since the
face images are believed to reside on a submanifold
embedded in a high-dimensional ambient space, we believe
that the unlabeled samples are of great value. We are
currently exploring these problems in theory and practice.
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