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Research in face recognition has largely been divided between those projects 
concerned with front-end image processing and those projects concerned with 
memory for familiar people. These perceptual and cognitive programmes of 
research have proceeded in parallel, with only limited mutual influence. In this 
paper we present a model of human face recognition which combines both a 
perceptual and a cognitive component. The perceptual front-end is based on 
principal components analysis of face images, and the cognitive back-end is 
based on a simple interactive activation and competition architecture. We 
demonstrate that this model has a much wider predictive range than either 
perceptual or cognitive models alone, and we show that this type of combina- 
tion is necessary in order to analyse some important effects in human face rec- 
ognition. In sum, the model takes varying images of “known” faces and 
delivers information about these people. 

I. INTRODUCTION 

Face recognition attracts interest from a very broad range of scientists. The issues sur- 
rounding this ability have been studied by neurophysiologists (Perrett, Hietanen, Oram, & 

Benson, 1992; Gross, 1992; Sergent, Ohta, MacDonald, & Zuck, 1994). cognitive psychol- 
ogists (Bruce, & Young, 1986; Rhodes, Brake, & Atkinson, 1993; Ellis, 1992), social psy- 
chologists (Ekman, & Friesen, 1976; Shepherd, 1989) and computer scientists (Kohonen, 
Oja, & Lehtio, 1981; Pentland, Moghaddam, & Stamer, 1994; Lades, Vorbruggen, Buh- 
mann, Lange, von der Malsburg, Wurtz, & Konen, 1993; for reviews see Chellappa, Wil- 
son, & Sirohey, 1995, Valentin, Abdi, O’Toole, & Cottrell, 1994). These various 

disciplinary groups have brought converging evidence to the problem of how faces are rec- 

ognized. In this article we explicitly attempt to bring together work from two previously 
rather disparate fields. 
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The two areas of research on which we will concentrate are perceptual and cognitive 
aspects of face recognition. We use the term perceprual as a short-hand to denote those 

processes which allow mapping of a visual image onto a given representation or label. In 

these terms, the problem of face recognition is how to individuate a face in different situa- 

tions despite variability in the image, due (for example) to differences in viewpoint, size or 

lighting. This is normally captured in artificial systems by postulating some core canonical 
representation for each known face, against which input patterns are matched in some way. 

The cognirive aspects of the system are those which follow analysis of the image. Once the 
face is individuated, we need to ask how information about that particular person is 

retrieved. To answer this question various cognitive models have been proposed, and we 
will discuss some of these below. 

These two (perceptual and cognitive) research programmes have proceeded largely in 

parallel. For many researchers concerned with the perceptual aspects of the system, the 

problem is solved once an image has been given the appropriate label. In contrast, many 
researchers who explore the cognitive aspects of face recognition simply assume some ini- 

tial processing, and construct models of person recognition which are agnostic with respect 

to early processing of images. This paper proposes a new model of face recognition which 

attempts to combine perceptual and cognitive aspects of the ability. We do this by attaching 
a “front-end” to an existing cognitive model of person recognition. We show that the 
resultant model provides the facility to examine phenomena outside the range of either per- 
ceptual or cognitive models which have preceded it. 

We should note that the attempt to combine the perceptual and cognitive processes is 

common in some other areas of psychological investigation. A good example is speech 
perception, in which a number of models integrate what is known about early perceptual 

features of speech with higher-order representational concepts such as phonemes and 

words (Oden & Massaro, 1978; McClelland & Elman, 1987). These models have been 
very successful in making explicit the issues involved in interactions between perceptual 

and cognitive domains (Massaro & Oden, 1995). However, in face recognition, models 

typically concentrate either on image-processing or on abstract memory representations. 
Examples of promising image processing approaches to face recognition are Principal 

Components Analysis of images (Turk & Pentland, 1991; Kirby & Sirovich, 1990) and 
wavelet decompositions of images (Daugman, 1985; Wiskott, Fellous, Kruger, & von der 

Malsburg, 1997). These systems are used to analyse images of faces, and attempt to pro- 

vide a unique label. However, in neither case is there any interaction with stored knowl- 
edge about people. In contrast, cognitive models of various aspects of face and person 
recognition have been provided by Hay and Young (1982), Ellis (1986), Bruce and Young 
(1986), Burton, Bruce, and Johnston (1990), and Valentine (1991). Each of these models 
assumes some processing of images which delivers information in a form suitable for later 
analysis. However, none specifies the nature of this processing. 

The outline of the article is that Section II provides a brief review the interactive activa- 
tion and competition (IAC) model of face recognition. This is a model of the cognitive 
aspects of the processes which the authors have been developing over a number of years. 
Section III briefly reviews the available candidates for providing a front-end, image-pro- 
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cessing capability for this model. We describe in detail the chosen front-end architecture, 

which is based on Principal Components Analysis of images. Section IV describes the con- 
struction of the complete model. Section V tests the model against some human data on 

face recognition. Section VI answers some frequently asked questions about this model, 
and attempts to set out just what is and is not captured by the model. 

II. REVIEW OF THE IAC MODEL 

The IAC model of person recognition (Burton et al., 1990; Burton, Young, Bruce, 
Johnston, & Ellis, 1991; Burton & Bruce, 1993; Bruce, Burton, & Craw, 1992) is shown in 

Figure 1. The architecture is interactive activation and competition (McClelland, 1981). 
This is a very simple form of connectionist architecture comprising pools of simple pro- 

cessing units. Within pools all units inhibit one another (these links are not shown in Figure 

l), and there ate excitatory links connecting individual units across pools (these links are 
shown). Activation passes between units along these links, and in accordance with a stan- 
dard unit update function (see Appendix). Following other IAC models, all links are ini- 

tially of equal strength, and are bi-directional. There is also a global decay operation on 
units, which drives activation towards a standard resting state. The effect is to eliminate 

unit activation (over time) in the absence of input, and to stabilize unit activation in the 

presence of input. 

We have used this architecture to extend previous functional accounts of face recogni- 

tion, and in particular, that of Bruce and Young (1986). Following these early models, we 

propose a pool of units corresponding to classification of a face, these are called Face Rec- 
ognition Units (FRUs). There is one FRU for each known face, and the notion is that these 

units are view-independent, meaning that any recognizable view of the face will cause acti- 
vation in the appropriate FRU. The next level of classification occurs at the Person Identity 

Nodes, or PINS. This is classification of the person rather than the face, and once again there 
is one unit for each known person. At this level all domains for recognition converge. Figure 
1, taken from Burton and Bruce (1993) shows convergence of face and name recognition. 

We would also expect other domains (e.g., voice recognition) to converge at the PIN. 

A great deal of research in face recognition has examined the processes which allow 

people to decide that a face is familiar. Many experiments use the face familiarity decision 
task (Bruce, 1983) in which subjects make speeded familiar/unfamiliar judgements to a 

succession of faces. Similarly, research on naturalistic and laboratory-based breakdown 
has studied circumstances in which people can only state that they recognize a person as 

familiar, but cannot recall any further information (Young, Hay, & Ellis, 1985; Hay, 
Young, & Ellis, 1991). We propose that the locus for familiarity decisions is the PINS. 
When any PIN reaches a common activation threshold, familiarity is signalled. This has the 
implication that the same decision mechanism is used for all person familiarity judge- 
ments, regardless of whether they are made to faces, names or other kinds of information. 
Note that the threshold is merely a device for signalling familiarity. There are no thresholds 

for passing activation within the model. Instead activation is passed in a cascade fashion 

throughout. 
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Figure 1. The IAC model of face and name recognition. From Burton & Bruce (1993). 

Lex 

Following PINS, there is a pool labelled Semantic Information Units (SIUs) which code 

information about known individuals. Information about a person is coded in the form of a 

link between the person’s PIN and the relevant SIU. Note that many SIUs will be shared 
(e.g., there may be many people represented with occupation “actor” or with nationality 
“British”). The notion is that activation of any of these units to a common threshold allows 
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retrieval of that piece of information. Finally, there is a pool of units labelled “lexical out- 
put” which are intended to capture the first stage of processes involved in speech and other 
output modalities. 

This model also includes a recognition route for domains other than faces, and the archi- 
tecture for doing so represents an adaptation and rationalization of an architecture put for- 

ward by Valentine, Bredart, Lawson, and Ward (1991). There is an input lexicon, labelled 
WRUs (Word Recognition Units). Those words which code names (both forenames and 

surnames) have links directly to a pool of Name Recognition Units, or NRUs. These NRUs 

are linked to PINS in the same way as FRUs are linked to PINS. The WRUs which do not 
correspond to names are linked to SIUs. This is intended to capture the idea that words such 
as “Peter” will be processed as names, while words such as “British” will have access 
directly to their meanings. Finally, all WRUs are connected directly to the lexical output 
units. In this way, the model contains the elements of a “dual route” model of reading 

(Coltheart, Curtis, Atkins, & Hailer, 1993). 

The architecture of this model is very simple and it clearly operates at a very coarse 
scale. For example, we have not implemented a detailed model of reading. Instead, we 
have intended to capture gross aspects of the architecture of person recognition which 

allow comparison and integration of recognition through different domains. Despite its 

simplicity, this model is able to capture a large number of previously enigmatic effects in 

the face recognition literature. For example, it offers explanations of semantic and repeti- 
tion priming (Burton et al., 1990), covert recognition in prosopagnosia (Burton et al., 

1991), name recall (Burton & Bruce, 1992), name recognition (Burton 8t Bruce, 1993), and 
(with some additions which we will discuss later) learning of new faces (Burton, 1994). 

Readers are referred to original sources for details of these various accounts. However, 
we will give a very brief overview of two of these phenomena in order to provide a flavor 

of theorizing in the model. Consider the phenomena of priming in face recognition. Like 
word recognition, face recognition gives rise to two types of priming, semantic (or associa- 
tive) priming and repetition priming. Associative priming is most often demonstrated using 

the face familiarity decision task. Many researchers have shown that a face is recognized 

faster if immediately preceded with the face of an associated person (Bruce & Valentine, 
1986). For example, Stan Laurel’s face is recognized faster if immediately preceded by 

Oliver Hardy’s face. The IAC account of this phenomenon is as follows. First Oliver 
Hardy’s face is perceived, and the FRU corresponding to that face becomes active. This 
FRU activation causes activation in the relevant PIN, and then in the SIUs related to that 
PIN. Now, many of the SIUs related to Hardy will also be related to Laurel. As links are bi- 
directional, some activation passes back from these SIUs to Laurel’s PIN. If we subse- 

quently activate Laurel’s FRU, his PIN (which now has some above-rest activation) will 
rise to the recognition threshold faster than would be the case had the unit started at rest. 
This is the simple account of semantic priming: recognition of a person causes sub-thresh- 

old, but above-resting, activation of the PIN of an associated person, and this is exploited 

by subsequent presentation of the primed person’s face. 
This account of semantic priming has two attractive features. First, it predicts that prim- 

ing will cross domains. As the effect relies on activation in the PINS, at the point where 
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domains converge, recognition of a face should be primed by prior recognition of either a 
name or a face. Indeed, this is the pattern found in empirical studies (Young, Hellawell, & 

de Haan, 1988; Young, Flude, Hellawell, & Ellis, 1994). Further, we would expect the 
effect to be short-lived. Transient activation of a PIN is obliterated by subsequent recogni- 

tion of other people. The within-pool competition ensures that this is the case. We therefore 

predict that priming will be attenuated by an intervening stimulus item, and will be short- 

lived. Again, this is the pattern found in the literature (Bruce, 1986). 

Now consider repetition priming. This refers to the fact that a face is recognized faster 

if that same face has been seen previously (Bruce, & Valentine, 1985; Ellis, Young, Flude, 
& Hay, 1987a). This effect is comparatively long-lasting (experiments standardly use at 

least a 20 minute gap between prime and test phases), and is strongest when the prime and 

target are the same image, but still present when different images of the same person are 
used as prime and target (Bruce & Valentine, 1985; Ellis, Young, Flude, & Hay, 1987a). 
We have proposed that this phenomenon can be captured by global Hebbian strengthening 

in the model. When a face is recognized as familiar, the person’s FRU and PIN will both 

become active. If we allow simple Hebbian updates, then the link between the FRU and 

PIN will become strengthened. This means that the next time that person’s face is seen (i.e., 

the person’s FRU is activated), it will take a shorter time for the person’s PIN to become 

active. Note that this account does not predict cross domain priming: strengthening an 
FRU-PIN link will not aid subsequent recognition of a name (which uses the NRU-PIN 

route). This pattern has been demonstrated many times: at the intervals used in this type of 

research, repetition priming does not cross domains (Ellis et al., 1987a; Ellis, 1992; Ellis, 
Flude, Young, & Burton, 1996). 

This brief account of priming is intended to provide a flavour of the level of theorising 
available in this model. Full details of simulations demonstrating these two priming effects 

can be found in Burton et al. (1990) and a fuller description can be found in Burton (1998). 

In summary, the model, simple as it is, provides a coherent account of a number of phe- 

nomena. It has also been predictive. Researchers have used it to derive hypotheses about 

effects in cognitive neuropsychology (de Haan, Young, & Newcombe, 1991), priming 
between part faces (Ellis, Burton, Young, & Flude, 1997), self-semantic priming (Young 

et al., 1994), priming of different decision processes (Burton, Kelly, & Bruce, 1998) and 
the development of face recognition (Scanlan, & Johnston, 1997). 

Finally, we should also note that some peripheral aspects of the model remain the sub- 
ject of debate. We have used a variant to provide an account of the difficulty people expe- 
rience in retrieving names from faces (Burton, & Bruce, 1992; Bruce, Burton, & Walker, 
1994). Briefly, we proposed that name units for name retrieval should be stored alongside 
other personal information, and be treated just as any other SIU. The particular difficulty 
in retrieving names from face input arises as a side-effect of the fact that names tend to be 

unique (most of us know only one Margaret Thatcher) in comparison to other information 
typically used in experimental tests (e.g., we know many politicians, and many singers). 
Although this account is computationally tractable (see Burton & Bruce, 1992, for simula- 
tions) other researchers have challenged our explanation of this phenomenon (Bredart, 
Valentine, Calder, & Gassi, 1995; Hanley, 1995) and have proposed that name retrieval 
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mechanisms would be better located elsewhere in the model. These researchers have pro- 

posed that units for name retrieval should be stored in a separate pool, either in parallel 
with the SIUs, or following them. This debate continues, and we will not rehearse it here. 

The important point to note is that the debate centres on the appropriate location of units 

which all agree are down-stream of the integration of perceptual and cognitive processes. 

In this paper we will concentrate on relatively early phenomena in face processing, none of 

the effects we describe below would be handled differently under any of the currently 

available models of name retrieval. The integration we describe is therefore independent of 
the resolution of this debate, and we will not pursue it further here. 

III. A FRONT-END TO THE IAC MODEL 

The model described so far has been useful in exploring cognitive effects in familiar face 

recognition. However, its scope is clearly limited. In particular, the model makes no state- 

ments about processing of visual images. The scope of this model is consistent with a num- 

ber of other functional approaches to the problem (Bruce & Young, 1986; Hay & Young, 
1982; Ellis, Young & Hay, 1987b). However, there are many phenomena in face recogni- 

tion which require an understanding of the image processing aspects of the problem, and 

we will describe some phenomena below which require understanding across both percep- 

tual and cognitive domains in combination. We are therefore faced with the problem: how 

do the FRUs become active in the first place? How might we implement a system in which 
FRUs act as localized units for individual faces, independent of image characteristics such 
as size, viewing angle or lighting? 

In previous work (Burton, 1994; Ellis et al., 1997) we have suggested that faces are 
parameterized in some way. We proposed that the set of faces is represented by some com- 

bination of a set of elements. However, we have not made any commitment to the nature 

of these elements. The simplest way to think about this is to imagine a photofit tool of the 
type developed for police work. In such systems, individuals’ faces are represented as a 

combination of a set of elements. By combination in this way, it is possible to represent a 

very large number of faces with a relatively small number of constituent elements. The 
problem which remains is specifying the nature of the elements: what are the primitives of 
face recognition? 

We have argued elsewhere that certain candidates for the primitives of face recognition 
are unlikely on the basis of available evidence. In particular, we have argued (Burton, 

Bruce, & Dench, 1993; Bruce, Burton, & Dench, 1994; Bruce, 1994) that descriptions 

based upon simple 2D measures in the picture plane are unlikely to form the basis for 

human face recognition. 2D picture plane measures remain constant over transformations 

which render face recognition almost impossible for humans. For example, recognition of 
people represented in photographic negative is extremely poor (usually at floor) in studies 
of human perception (Galper, 1970; Phillips, 1972; Bruce & Langton, 1994). Moreover, 
line drawings made by careful tracing of the outlines of face features such as eyes, brows 
and hairline are extremely difficult to recognize (Davies, Ellis, & Shepherd, 1978; Rhodes, 
Brennan, & Carey, 1987) even though such drawings should preserve all the measurements 
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that might form the basis of facial descriptions. Line drawings of faces become recogniz- 

able when information about the pattern of light and dark from the original is added (Bruce, 

Hannah, Dench, Healy, & Burton, 1992). This observation, together with effects of nega- 

tion and dramatic effects of changes in lighting direction (Hill & Bruce, 1996) suggest that 

face descriptions are based upon imuge features rather than edge features. Section IV 
explores one such description scheme based on image features. 

IV. PRINCIPAL COMPONENTS ANALYSIS 

The use of PCA on images has developed as a technique in engineering image processing. 
The advantage of the technique is that it delivers a radical data compression, and hence 

allows narrow-bandwidth communications channels to carry a large amount of information. 

The aim of PCA is to deliver a new basis to a set of multidimensional data. The most 

commonly used form of PCA in psychology is the Factor Analysis technique developed for 

multivariate statistics. In factor analysis one has typically taken a number of measures on a 

set of cases. One then needs to know whether the variability in the measures can be coded 
on fewer dimensions. This is the same procedure as is used in PCA on images. Imagine an 

image represented in a computer. Such an image is simply an array of pixels, for example 
10000 pixels for a 100x100 image. For each of these pixels a single number is stored in 
memory, representing the grey-scale value of that pixel (or its intensity). It is possible, 
therefore, to think of any image of this size as a point in lOOOO-dimensional space. If we 

take many of these images, we can then perform a PCA treating each image as a case. The 

aim is to establish whether there is a smaller number of dimensions (smaller than 10000) 

on which the set can be described. PCA delivers a new set of axes, each of which can be 

displayed in an image of the same size as the originals. These new axes are called “eigen- 

faces” (Kirby & Sirovich, 1990). The original cases can be reconstructed by a weighted 
sum of these new axes (eigenfaces). The coefficients for this weighted sum are the new 

representation for that image, and the goodness of the reconstruction can easily be com- 
pared with the original image-i.e., it is possible to measure how well the new dimensions 

code the faces. 

This technique was introduced into face recognition by Kirby and Sirovich (1990) and 

by Turk and Pentland (1991). They showed that faces could be represented in very few 
dimensions. In many subsequent studies researchers have used as few as 50 eigenfaces. 

This represents a radical data compression, reducing the storage requirement per face from 
ItlOO numbers (say) to 50 numbers. A good introduction and review of the technique can 
be found in Valentin, Abdi, and O’Toole (1994). 

PCA is currently a popular image-processing approach to face recognition, but its 
potential as a psychological model is not instantly apparent. PCA was developed as a sta- 
tistical image description, but does it have psychological importance? Our initial choice is 
based on two factors. First, PCA encodes the whole face image, rather than a symbolic 
description such as edge-based distances. Second, PCA delivers information about the 
ways in faces vary. It seems plausible that whatever representational scheme is used by 
humans in recognising faces, the scheme captures the variance among its input. Of course, 
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this does not mean that we assert that humans perform PCA on each face they see. Instead, 

we hypothesize that some of the information delivered by PCA shares in common some of 

the information used by the human face recognition system. We return to this issue in Sec- 

tion VII. 

Recently, other researchers have begun to ask whether the PCA approach to face recog- 

nition might have some correspondence with human face perception. O’Toole, Deffen- 

bather, Valentin, and Abdi (1994) have demonstrated that it provides a natural account of 

the other race effect. This refers to the fact that people show more errors in differentiating 

between members of another race than for their own race. O’Toole et al’s PCA account 

suggests that one’s eigenfaces, generated to capture variation in the population of faces 

from one’s own experience (and hence race) do not code faces from another race well. In 

short, one’s eigenfaces will reflect the dimensions of variation in the faces one encounters. 

However, these dimensions of variation may not reflect the dimensions of variation of 

faces from another race. This makes these faces confusable. In our own laboratory, we 

have examined the psychological phenomenon of distinctiveness in relation to an eigenface 

coding. Like O’Toole et al. (1994) we found that there is a large and reliable correlation 

between these measures: faces which humans find distinctive also tend to have extreme 

eigenface values (Hancock, Burton, & Bruce, 1996). 

PCA, like any image-based recognition technique, is prone to influence by spurious 

image factors such as the size and position of a face within the image. The general visual 

system must solve problems such as the perceptual invariances across (for example) size, 

translation, viewpoint and lighting. Simple processing (e.g., by PCA) on raw pictures of 

faces would be subject to these effects, and so most researchers side-step issues of general 

image processing by performing some standardization of images before subjecting them to 

PCA. This typically takes the form of standardizing eye-position for all faces. However, 

Craw (1995; Craw & Cameron, 1991) has provided a more effective standardization. 

Craw’s technique is to standardize the shape of the face before PCA. This is achieved by 

overlaying each face with a standard grid, with key points at the eyes, nose mouth and 

round the shape of the face. The faces are all then morphed to a standard shape, typically 

the average of all the images used. The resultant images, called “shape-free faces” by Craw 

(1995) are then subject to PCA. This means that the eigenfaces are completely independent 

of background-as all faces have the same shape, only those pixels within the shape are 

analyzed. Second, it means that gross features of each face (e.g., mouth and nose) are in the 

same position for each face. An example of a manipulation to a shape-free face is shown in 

Figure 2. Third, the resulting eigenfaces can be combined in linear form and will give rise 

to face-like objects. To see this, imagine taking the image average of two faces with differ- 

ent shapes. The average will be a ghostly image with no clear boundaries. However, if the 
shape-free manipulation is performed first, the “average” of the two faces will itself be a 

face, with a standard boundary. These considerations have led various researchers inter- 

ested in image-based face recognition to develop techniques for treating the shape of a face 

separately from the intensity information in the face, usually called its “texture” (Beymer, 

1995; Vetter & Troje, 1995; Troje & Btilthoff,1995). 
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Figure 2a. An original face, showing the set of control points and triangulations used in the 
transformation to shape-free representation. 

Figure 2b. The same face morphed to the average shape. 

As with other techniques, the shape-free pre-processing manipulation allows one to 
examine the shape and the texture separately. It is possible to code a face in terms of shape- 

free eigenfaces, in conjunction with some representation of the original shape-e.g., the 
co-ordinates of the grid used in the original transformation. In the work described below, 

we will examine a system based on both shape-free information and shape, and compare it 

with a system based only on the shape-free information. It is worth noting that in prelimi- 
nary studies Costen, Craw, and Akamatsu (1995) have found that the shape-free informa- 
tion alone gives a good representation, and statistical recognition systems based on this 

information alone perform well. In previous work, we have found that shape-free faces 

give a good account of rated distinctiveness, and of some tests of memory for faces (Han- 

cock et al., 1996; Hancock, Bruce, & Burton, 1998). In fact, the term “shape-free” is per- 
haps unfortunate, as it suggests representations which are independent of a face’s shape. In 

fact, this is not the case. The shape-free transformation (morphing) will produce images 

which nonetheless have residual information arising from the face’s original shape. For 

example, the shading pattern arising from a big chin (say) will be different to the shading 
pattern arising from a small chin. When the two chins are morphed to the same shape, their 
patterns of shading will remain different. In this way, the influence of shape remains in the 
shape-free faces, and so it is perhaps not so surprising that the shape-free faces appear to 
be useful in themselves. 

The shape-free manipulation has effects beyond those of simple outline shape. The 
morph transforms an original image (or polygon set) into a standard shape (or polygon con- 
figuration). This means that some information concerning expression is removed in the 
shape-free process. Furthermore, the manipulation eliminates small differences between 
different viewpoints. These manipulations seem to us to be desirable in a system based on 
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image properties. In what follows we compare the efficiency of different systems based on 
(1) raw images of faces; (2) shape-free images of faces only; and (3) independent contribu- 

tions from shape-free images plus a representation of shape. 

V. DESCRIPTION OF THE MODEL 

The model combining perceptual and cognitive aspects of face recognition is described in 

this section. The simulation was written in C using the Rochester Connectionist Simulator 
(Goddard, Lynne, Mintz, & Bukys, 1989). Implementation details, and a list of global 

parameters are given in the Appendix. Figure 3 shows the outline of the model. The IAC 
component, representing cognitive aspects of face recognition, is much the same as previ- 
ous instantiations, and we will describe it in detail below. We will first describe the PCA 

front-end. 

The model was constructed to “know” 50 people. To provide real face data for these 

representations, 50 young men were photographed. Each person was photographed in full- 
face view with a neutral expression, and a further twice or three times in full-face view with 

another expression. Figure 4 shows an example of one of the faces. Figure 4a is the neutral 

face, while the remaining are labelled “expressive” . Figure 4 shows the amount of varia- 

tion typically present in the faces photographed. By this procedure, we collected 50 neutral 

faces, and a further 136 expressing faces (comprising two or three extra photographs from 

these 50 people). 

All photographs were captured onto grey-level (8 bit) computer images at resolution 
280x240 pixels. Shape-free versions of all the images were generated by specifying the co- 

ordinates of 3 1 points on each face by hand. These co-ordinates were triangulated and used 
to morph all the images to the average shape of the 50 neutral’faces. The triangulation 

shown in Figure 2 shows the grid used for the morphing. Note that this process can be auto- 

mated by feature finding (Craw, Tack, & Bennet, 1992) or by one of the new generation of 

optic flow applications to extract shape (Poggio, & Beymer, 1995). However, in this paper 

we are concerned explicitly with the interface between perceptual and cognitive models, 

and we therefore present the model free from any errors due to an automatic shape extrac- 
tion procedure. 

Three different models were constructed, each taking a different form of PCA input. In 
each case, only the neutral, non-expressing, faces were used to generate the eigenfaces. 
First, a model was constructed based on raw image data (i.e., images not subjected to the 

shape-free transformation). All neutral images were scaled in 2d and aligned such that the 
eyes of each face were coincident. These images were then reduced to 50x66 pixels, and 8- 

bit depth was retained. The images were then subject to PCA, and the first 50 components 

(eigenfaces) were extracted. The reconstruction coefficient for each component (the value 
of each eigenface dimension for the face) was stored for each face and we call this set of 
50 numbers the signature of a face. In essence, we code each face as a set of 50 numbers, 
such that these can be used as coefficients in a weighted sum of eigenfaces which will 
reconstruct the original. Note that once the eigenfaces have been extracted, any new image 
can be coded as a weighted sum of these eigenfaces. We are not guaranteed that this coding 



12 BURTON, BRUCE, AND HANCOCK 

PCA Input 

oeoooeeoeo 
oeoeeeoeoo 
l oeoeoeeeo 
oeoeoeeoeo 
l ooeeoeoeo 

n 

Figure 3. The IAC model with new PCA units 

will give a good representation of the new image, but it is important to note that images 
which were not used to generate the basis (eigenfaces) may nonetheless be coded by them. 
Of particular interest to researchers in this field is the robustness of the representation. Will 
it be the case that two different images of the same face will have a similar signature? 

The second model used the same PCA procedure, but this time using shape-free faces. 
The neutral faces were morphed to a common shape, representing the mean x, y co-ordi- 



FACE RECOGNITION 13 

Figure 4. One of the faces used in the recognition set. 40 shows the neutral face. The remaining 
faces show variations typical of the set. 

nates for each point in the grid. The resulting shape-free faces were reduced to 50x66 pix- 
els (8 bits deep) and subject to PCA, generating a shape-free signature for each face from 

the first 50 components generated. Similarly, a shape-free signature can be generated for 
each expressing face (i.e., those not used to generate the basis of eigenfaces). 

Finally, a model was constructed incorporating the shape itself. This was done by per- 
forming PCA on the individual x and y co-ordinates for each of the 31 points in the grid. 
These co-ordinates were entered separately into a PCA, giving 62 values for each of the 50 
neutral faces. The first 20 components of this analysis were used to code the “shape signa- 
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ture” of each face. The model incorporating shape used this information alongside infor- 

mation from the shape-free analysis. We did not construct a model using only the shape 
information in the absence of texture information, as our previous work (Hancock et 
al.,1996, 1998) has shown models based on this information alone to provide extremely 

poor identification rates. 

In order to code these faces into the various simulations, we stored for each face only 

the coarsest of information about its signature. In the simulations described here we stored 

only the sign of each component coefficient for each face. The PCA procedure delivers 

coefficients of mean zero across all faces for each component (eigenface) and so there is 
large discriminability in this set. For example, in the version of the model which codes 50 

shape-free components, there are a possible 250 patterns. This has the advantage of further 

data reduction, since the original faces are now stored as 50 bits. 

The front-end system is tied to the IAC model through the FRUs. We tested three ver- 
sions of this model. One in which the FRUs code the 50 component signature for the ruw 
image data, one in which the FRUs code the 50 component signature for the shape-free 

faces, and one in which the FRUs code the 50 component values for the shape-free signa- 

ture plus an additional 20 component values representing the shape signature from that 

face. The implementations contain a new set of units, labelled PCA input units. So, in the 

raw image and shape-free models there were 50 PCA input units, while there were 70 in 

the shape-free plus shape model. 

PCA input units are maximally connected to FRUs according to the signature of that 
face. If a face has positive value on component 1, and negative on component 2, a link of 
strength +l is constructed between PCA unit 1 and that FRU, and a link of strength -1 is 

constructed between PCA unit 2 and that FRU. This procedure is followed for all PCA 
units and all FRUs. Input to the model is through the PCA units. A face is parameterized in 

the new PCA basis (into its signature) and converted into 50-bits or 70-bits of information 

(according to the model under test). This signature is presented to the PCA units, and acti- 

vation propagates through to the FRUs. 

A description of the cognitive aspects of the model comprises the IAC component, also 
shown in Figure 1. This is the same implemented model we have used in the past (for 

example Burton, & Bruce, 1993). The implementation codes knowledge about 50 people, 
and so there are 50 FRUs, NRUs and PINS. Each known person is connected to 6 SIUs, one 

coding that person’s name, and a further 5 chosen at random from the available SIUs. 
There are 120 SIUs, with 50 of these coding individuals’ names, and the remaining 70 cod- 
ing other information (for example occupations and nationalities). This link arrangement 
means that some of the SIUs will be quite common, and others quite rare, due to the fact 
that the 70 general SIUs are used to select 5 random semantic links for each person. There 
are a further two pools of units: one coding word recognition units, and one coding lexical 
output units. There are 110 units in each of these pools, 10 coding forenames, 30 coding 
surnames and 70 coding general information. Name WRUs are connected to NRUs and 
non-name WRUs are connected to SIUs. There are also direct, unidirectional connections 
between each WRU and its corresponding lexical output unit. The name units are chosen 
as described in Burton and Bruce (1993): all forenames are equally common, but the fre- 
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quency of surnames is variable. We will not use name frequency in any of the simulations 
described here. 

There are some aspects of this model which are clearly artificial, and which need to be 

mentioned explicitly. First, this model “knows” everybody equally-well. So, the same 

number of facts is known about each person. This is clearly implausible. Second, all exci- 

tatory links and all inhibitory links within the model have equal weight. This means that all 

facts are represented as being equally well-known. Again this is implausible, for example 

the fact that Prince Charles is a royal is likely to be a stronger association for most people 

than the fact that Prince Charles studied in Cambridge. Third, bi-directional links all have 
the same weight in each direction. We have recently argued (Cabeza, Burton, Kelly, & 

Akamatsu, 1997) that bi-directional links should be thought of as two uni-directional links, 
one in each direction. In particular, we have attempted to characterize face recognition as 

using a link from FRU to PIN, but face imaging as using a link from PIN to FRU. However, 

for the sake of simplicity, we have kept the weights of these two links equal in this current 

simulation. The decision to hold all these factors constant in simulations was taken to allow 

examination of the architecture per se. We have discovered in the past that judicious 

manipulation of local parameter values can result in quite differing behaviours. We are not 

interested to demonstrate the power of a particular implementation of this model, with par- 

ticular parameter values. Instead, we would like to demonstrate the architecture in general. 

We have no theoretical reasons for manipulating parameters locally, and so we continue 

with a generic system. For this reason, the results of our simulations are qualitative only. 
This aspect of the model is discussed in the final section, frequently asked questions. 

VI. TESTING THE MODEL 

Face Recognition 

One of the primary aims of the model is to implement a form of face recognition which 

is generalizable over some (certainly limited) range of viewing conditions. In the first test 
we present the model with the PC values (the 50-bit or 70-bit signature) for the various face 

images, and observe behaviour elsewhere in the system. Recall that the PIN level is the 
locus for familiarity decision. We describe as a hit the situation in which the correct PIN 

becomes most active on presentation of an image. 

Table 1 shows the results of tests with the three different versions of the implemented 
model. First note that the implemented system recognizes the neutral faces perfectly in 

each case. This is an unsurprising result (though not in fact necessary), because the models 

were hand-wired to code these neutral-expression faces. Of more interest are the express- 
ing faces. The model based on raw face images, performs reasonably well, though worst of 
all the three versions. Removing shape from the images gives a substantial increase in the 
hit rate, to 95%. We next consider the model which codes both shape-free faces and infor- 
mation about the shape itself. In fact, this performs only very slightly better than the model 
coding the shape-free faces. Only a further two faces are identified. This is a very small 

gain for an extra 20 bits of input. 
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TABLE 1 
Correct Hits (correct maximally active PINS) for Neutral and 

Expressing Faces in the Three Different Versions of the Model 

Raw Image (50 bit) 
Shape-Free (50 bit) 
Shape-Free plus Shape (70 bit) 

Neutral faces (/50) 

50 
50 
50 

Expressing faces (/136) 

113 (83%) 
129 (95%) 
131 (96%) 

These results suggest that the shape-free representation is the most efficient tested, and 

this is the version of the model which we will examine in further simulations. Note, again, 

that the efficiency of shape-free representations does not mean that shape is unimportant, 

We next examine the details of the performance of the shape-free version of the model. 

This model made 7 errors. Examination of these errors showed that no two errors were 

made to any individual person. So, for every individual known, the model was able to rec- 

ognize at least one and usually two images which had not been explicitly coded (i.e., 

expressing faces). In two of the 7 mis-identified faces, the correct FRU became most 

active, but complex interactions between units led to the incorrect PINS becoming most 

active. In a further two, the correct PIN achieved second-most active status among the 

PINS. On the basis of this performance, we progressed to different tests with the shape-free 

(50-bit) version of the model. 

Multimodal Input and Cueing 

It is possible to cue recognition of faces in this model through simultaneous presentation 

of a face and another piece of information. For example, if we activate a name unit (i.e. a 

forename or a surname in the WRU pool), activation will accumulate in the PINS (via the 

NRUs) of people having that name. Similarly, if we activate the WRU corresponding to a 

semantic fact (say “footballer”) some PINS will gain some activation (via the SIUs). To test 

this facility in the model, we examined the seven face images mis-identified in the previous 

section. These faces were each presented simultaneously with their correct forenames, or 
with a single WRU corresponding to a correct fact known about that person. In each of the 

seven cases, this single extra piece of information was sufficient to resolve the mis-identi- 
fication. In each case, the correct PIN became most highly active. 

In order to check for the possibility that WRUs might be having an overpowering effect 

on recognition, we presented 10 expressing images which were correctly recognized in the 
original test of face recognition. We examined recognition of each of these faces in two 
ways: first by presenting it simultaneously with an incorrect forename, and second by pre- 
senting it with an incorrect fact (i.e., a name WRU or a semantic WRU). The forenames 
and facts were chosen at random, and were all units which coded information about other 
people. In none of these simulations was the misleading forename or fact sufficient to sup- 
press access to the correct PIN. In each case, the incorrect cue failed to prevent the PIN cor- 
responding to the face from becoming most active. So, a small amount of information 
appears to be sufficient to resolve a difficult recognition problem, whereas a correspond- 
ingly small amount of information is not sufficient to destroy intact recognition. Of course, 
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there may be situations in which an incorrect cue results in incorrect identification. How- 
ever, these simulations show that this is not a general consequence of multi-modal input. 

Distinctiveness 

Distinctiveness effects manifest themselves in face recognition in two ways. For unfa- 
miliar faces, those rated as distinctive are subsequently recognized with higher accuracy 
than those rated as typical. For familiar faces, those rated distinctive are recognized faster 
than those rated typical (Valentine & Bruce, 1986a, b). In order to test the model for typi- 
cality, we had the neutral faces rated. Subjects were shown each of the 50 neutral faces in 
turn and asked to rate each on a 15-point scale (where I is “very typical” and 15 is “very 
distinctive” ). These same faces have been used in previous experimental work (Bruce et 

al., 1994) and these ratings were gathered for other purposes. In fact, each face had been 
rated twice, once (by 10 subjects) in their entirety, and once (by a further 30 subjects) with 

the hair concealed. Interestingly, these two ratings correlate significantly, but not very 
highly (r = 0.33, p < 0.05). 

In previous work we have demonstrated a link between human rated distinctiveness and 
PCA values. Hancock et al. (1996) showed that a face’s signature could be used to predict 
distinctiveness, and to predict hits and false positives in a memory test using the same 
images. O’Toole et al. (1994) were the first to show this effect on memorability with pre- 
viously unfamiliar faces. However, in the model presented here we have, for the first time, 

the opportunity to relate PCA signature to distinctiveness effects with familiar faces. 

Recall that distinctive familiar faces’ are recognized faster than typical familiar faces. As 

the model presented here is intended to capture recognition of familiar faces, this effect 

should be within its range. 
To test the performance of the model, we set a standard level of activation for a PIN 

which would act as a threshold for recognition of faces as familiar. We can then take the 
number of processing cycles needed to achieve this threshold as a measure of recognition 
latency. There is no theoretical reason to choose any particular threshold, and the absolute 
values of unit activations would change according to global factors such as the total num- 
ber of units, or the overall strengths of links. We chose a value of 0.45 as the recognition 
threshold simply because it provided a reasonable spread across PINS and did not lead to 

floor or ceiling effects. Using this common threshold, we presented the model with the 50 
known neutral faces, all of which are recognized, and noted the number of processing 
cycles required for the appropriate PIN to reach the recognition threshold level. These 
latency values were correlated with the distinctiveness ratings allocated to these faces by 

human raters. 
The value of the product-moment correlation between number of cycles to reach thresh- 

old and the “without hair” human distinctiveness ratings is -0.3 1, giving a significant neg- 
ative correlation @ < 0.05). The correlation between cycles to threshold and the “with hair” 
ratings is -.0.22, which fails to reach significance. The significant correlation with one of 
these measures strikes us as remarkable. The model was not constructed to analyse distinc- 
tiveness. Indeed, one plausible locus for distinctiveness has been eliminated from the input 
representations. Faces are coded as binary values, so effects of extreme values on particular 
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eigenfaces will not show up. Nonetheless, faces which humans had rated as distinctive 

were recognized faster by the model, exactly as one finds with human subjects. To interpret 

this effect one needs to postulate that there are distinctive partems of binary values across 

the PCA inputs, and the distinctiveness of these patterns is related to human ratings of dis- 

tinctiveness. The non-significant correlation between the “with hair” ratings and perfor- 

mance shows a trend in the predicted direction. These rating data are less reliable as they 

come from a smaller number of subjects, and we note that the two ratings measures them- 

selves are rather weakly correlated. 

Semantic Priming 

The mode1 shows the normal effects of semantic priming. As described above, we have 

previously suggested that semantic priming occurs due to transient activation at a PIN. On 

presentation of a prime face, the relevant PIN and SIUs will become active. The two-way 

nature of the PIN-SIU links ensures that related PINS (those sharing SIUs) also become 

slightly active (i.e., above rest, but below the threshold for recognition). This residual acti- 

vation can be exploited in subsequent recognition of a target. If the target person’s PIN is 

already at above resting levels, then it will take fewer cycles to reach threshold than would 

be the case if an unrelated person had preceded the target. As with human data, semantic 

priming crosses input domains: faces prime names and names prime faces. Note also that 

the mode1 predicts a short time-course for semantic priming: any intervening stimulus item 

tends to force down residual unit activations. This prediction has been confirmed in recent 

experimental work (Calder, & Young, 1996). 

Experiment 

To demonstrate this effect using this model, ten neutral-expression faces were chosen as 

target faces, these were simply faces 1 to 10 from the population of 50. The images of these 

faces were presented to the model under two conditions: (1) following the face of an unre- 

lated person; and (2) following the face of a related person. We defined an unrelated person 

as someone who shares no SIUs with the target. For each target, the first unrelated person 

meeting this criterion was chosen from the remaining population (people 11 to 50). We 

defined a related person as someone who shares two SIUs with the target. For each target, 

the first person meeting this criterion was chosen from the remaining population (people 11 

to 50). In fact, because of the random allocation of semantic units, there were four target 

faces which did not share two SIUs with any other person. For these people we chose as 

“related” stimuli the first person sharing a single SIU with the target. These four pairs are 

therefore related less strongly. 

Procedure. The prime face was presented to the system, and the mode1 was allowed to 

cycle until it settled (we used 100 cycles here). The prime face was then removed, and there 

followed an inter-stimulus interval of 20 cycles, causing some decay in unit activation. The 

target face was then presented. We used the same recognition criteria as chosen in Section 
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TABLE 2 
Mean Cycles for PINS to Reach Threshold for Faces Primed by 

Related and Unrelated Faces and Names 

Unrelated prime Related prime 

Face prime 65 38 

Name prime 63 41 

5.3 to signal familiarity. The dependent variable was therefore the number of cycles 

required for the target PIN to reach threshold (0.45 here). 

Results. The results of this experiment are shown in the first line of Table 2. The mean 
number of cycles to reach threshold is lower in the related condition than in the unrelated 
condition. Related-means t-test showed this difference to be reliable (f(9) = 6.2, p < 0.01). 
In fact the inferential statistics are redundant here, as the faces primed by related faces are 
always recognized faster than faces primed by unrelated faces. 

The bottom line of Table 2 shows the results of a replication of this experiment, using 

the same target faces. However, in this case, faces are primed by names. An exactly similar 
procedure was used. At prime stage, both the forename and surname units of the semanti- 

cally prime person were activated fully. The model was allowed to cycle until it stabilized 

(100 cycles was used). The same 20 cycle ISI as above was used, and the target face pre- 

sentation followed the same procedure as above. Table 2 shows that priming occurs across 

domains, and this difference is reliable (t(9) = 4.0, p < 0.01). 

These data replicate those found in human subjects. Readers are referred to Burton et al. 

(1990, 1991) for a more detailed description of semantic priming. The important point is 
that the model presented here is capable of demonstrating cross-domain effects in priming. 
It is consistent with all our previously demonstrated effects of semantic priming, though in 

the past these were demonstrated in the absence of real face input. Only a model compris- 
ing both perceptual and cognitive components is capable of this demonstration. 

Repetition Priming 

We have described our previous work on repetition priming above. Within the IAC 

model, the proposal is that repetition priming occurs as a result of strengthening links 
between FRUs and PINS. A simple Hebb-like procedure allows this to be performed in an 
unsupervised way. We have developed this theme in simulations of a number of different 
phenomena including face learning (Burton, 1994), part-face priming (Ellis et a1.,1997), 
priming different parts of the system (Ellis, Flude,Young, & Burton, 1996), learning new 

facts about people (Young, & Burton, in press) and imagery priming (Cabeza et al., 1997). 
However, in all previous work, we have had to make some rather arbitrary assumptions 
about the nature of the face input to the system. The lack of a developed front-end has 
meant that some fundamental aspects of repetition priming could not be simulated. In par- 
ticular, it has been shown on very many occasions that repetition priming for faces is stron- 
gest when the same image is used as prime and target, and weaker, though still present, 
when different images of the same person are used as prime and target (Bruce, & Valen- 
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tine, 1986; Ellis et al., 1987a). This is an example of a phenomenon which requires both 

perceptual and cognitive models: we have proposed a cognitive account, but the human 
data show that the effect is moderated by front-end factors (image change). In this section 
we show that the combined model simulates this effect naturally. 

Demonstration 

To demonstrate repetition priming in the model, we presented it with a set of faces in 
three conditions: (1) unprimed; (2) primed by the same image; and (3) primed by a differ- 

ent image of the same face. In this simulation only expressing images were used-i.e., not 
the neutral faces hard-wired into the model. The first 10 faces from the population were 
chosen for the experiment, and the first expressing face was used as target in each case, 
with the second expressing face being used as the “different picture” prime. Repetition 

priming is a long-term effect, and we have proposed that it is not due to transitory unit acti- 
vations, but rather to link-strengthening. We therefore presented all faces in the context of 

having just seen an unrelated filler face. The same “filler”face was used for all trials, as this 

shared no SIUs with any of the targets. (In fact, the same pattern of data occurs if the model 
is tested entirely from rest each time.) 

To generate an unprimed “response time,” the filler face was presented and the simula- 

tion allowed to cycle until it settled (100 cycles). There was then an IS1 of 20 cycles with 
no presentation following which the target face was presented. We used the same recogni- 
tion criteria as in previous experiments to signal familiarity. The dependent variable was 

therefore the number of cycles required for the target PIN to reach threshold (0.45 here). 
To generate primed responses the following procedure was used. First the filler face was 
presented and the system cycled, there then followed an IS1 of 20 cycles and then the prime 
face was presented and the system was allowed to settle (100 cycles). At this stage, a Hebb- 
like operation was applied to all FRU-PIN links. This is the same link-update function that 

has been used in all previous work with the model (see Appendix). The system was then 

reset to rest to eliminate all unit activations. The target face was then presented in exactly 

the same manner as for unprimed (i.e., filler face, ISI, target face). As we are interested in 
demonstrating the effect individually for different faces, the model’s links were reset to 
their original strength before each trial. The results are shown in Table 3. 

One-way analysis of variance showed a significant effect of condition (F(2,18) = 12.6, 
p < 0.01). Comparison between conditions showed significant differences between all con- 
ditions, by sign test. For all 10 target faces, unprimed > primed with different image > 
primed by same image. Consistent with human data, the model shows priming for same 
and different images, but the larger effect for the same image. 

TABLE 3 
Mean Cycles for PINS to Reach Threshold for 
Faces Primed by the Same Different Pictures 

Unprimed 

Primed with Primed with 

same image different image 

78.6 60.1 - 64.8 - 
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It is worth considering for a moment why the model behaves in this way. Recall that 
only expressing faces were used in this simulation, i.e. no face is coded perfectly (hence the 
slightly longer latencies in Table 3 as compared to Table 2). When the face is presented to 

the system various FRUs gain some activation, though the “correct” FRU gains most (in all 

recognized faces). Similarly, the correct PIN gains most activation, though others may gain 

a little too. Different images of the same face cause slightly different patterns of activation 
in the FRU pool. This means that when the global Hebb-like update occurs between FRUs 

and PINS, the system can be said to be “learning” a particular pattern. So, a face primed by 

the same image will be using strengthened links corresponding to exactly the pattern which 

was reinforced on a previous occasion. In contrast, a face primed by a different image of 
the same person will be using links which were strengthened only in as much as the two 

images are coded similarly. This means that a localist connectionist system of the IAC-type 

can code not only a central key representation (the neutral faces here) but can also show 

evidence of picture memory. Once again, this seems to us to be an attractive property of the 
model, and one which has not been available in our previous simulations that lack an 

image-based front-end. 

VII. DISCUSSION 

Summary and Range of the Simulation 

We have now demonstrated that this model seems to capture various multi-modal 

effects in person recognition. Our argument has been that the combination of a perceptual 
and cognitive model can provide accounts of phenomena outside the range of models 

which exclusively concentrate on cognitive or perceptual aspects of the system. In particu- 

lar, the effects of cross-modal cueing and distinctiveness seem to reflect interactions 

between perceptual and cognitive processes, and are therefore simply unavailable to previ- 

ous models of face recognition. We have also demonstrated that cross-domain effects such 

as semantic priming and image-dependent effects such as repetition priming are properties 

of the model. In fact, we have previously offered accounts of these last two effects (Burton 
et al., 1990) though always in a model which simply assumes some perceptual input with- 
out specifying its nature. We have now shown that these effects are consistent with a front- 

end based on PCA of images. 

We should also note that there are various other effects of face recognition which have 

previously yielded to explanations in terms of the IAC (cognitive) part of the model. In par- 

ticular, it has been useful in capturing effects from neuropsychology, and especially covert 

recognition. Some prosopagnosic patients demonstrate an apparent recognition of faces 

when tested covertly, but have no experience of familiarity (Bauer, 1984; Bruyer, 1991; 
Farah, O’Reilly, & Vecera, 1993; Young, 1994). So, for example, patient PH (Young et al., 
1988) has been shown to demonstrate normal patterns of semantic priming from faces to 
associated name recognition, despite the fact that he has no experience of recognising the 
face. Indeed, PH scores at chance in a forced-choice test in which he is asked to sort faces 
into known and unknown piles, despite recognising all the “known” people from their 
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names. We have previously argued that covert recognition can be captured by an IAC 

model in which the FRU-PIN links are attenuated (though not deleted). This attenuation 

means that presentation of a face leads to activation in the PIN which is below the recogni- 

tion threshold. However, some activation is present, and this can be passed to associated 

SIUs, and then back to related PINS. Once again, sub-threshold, but super-resting activa- 
tions in PINS can subsequently be exploited by input from another modality--e.g., names. 

We will not present simulations of these effects, as they have been described in detail in 

the original papers. The important point to note is that they remain unaffected by the com- 
bination of perceptual and cognitive models. This combination not only extends the range 

of effects in person recognition which can be captured, but it represents incremental 

progress, in the sense that previous explanations are not damaged by the extension. 

In discussing the range of simulations, it is important to point out that the main focus of 

the work presented here is on face recognition. There are clearly many other purposes for 

face processing, such as deciding a person’s expression, gaze direction, sex, age or attrac- 

tiveness (Bruce, & Young, 1986, 1998). However, computation of a person’s identity is 

independent of some of these transformations, in particular expressive variations. We have 
shown in the simulations above that the technique of morphing to a shape-free image, cou- 

pled with a 50-bit principal component coding, delivers a representation which codes iden- 

tity robustly over a range of expressions. Of course, a related question is whether it would 
be possible to discover a coding which delivers expression, over a range of identities. Psy- 

chological and neuropsychological evidence suggests that human perception of identity is 

dissociable from perception of expression (Young, Newcombe, de Haan, Small, & Hay, 

1993), and so the way is open for computational approaches to try to discover a coding for 

expression. In preliminary work (Miller & Burton, 1998) we have used a PCA-based 

approach to represent expression. A long term goal of many researchers in this field is to 

integrate identity-based systems with analysis of other facial information, such as expres- 

sion. However, computation of expression is not so well-studied as computation of iden- 
tity, and it is likely to be some time before it is possible to attempt a rational synthesis. 

Frequently Asked Questions 

Over the time that we have been constructing this model, we have often been asked the 

same questions of it. We take this to mean that we have not been sufficiently clear on some 

points about the architecture of the system. In this section we attempt to remedy this by list- 

ing the answers to some frequently asked questions. The aim here is to be as explicit as pos- 
sible about what we are and are not claiming for this model. 

Surely semantic units should not inhibit one another: Does this not lead to 
absurdities such as “British” inhibiting “actor”? 

The use of inhibition in models of this kind is sometimes confusing. It is important to 
realize that semantic units (SIUs) are connected not only directly, with inhibitory links, but 
also indirectly through PINS which share them. So, “actor” and “British” will be properties 
of very many people, and so will be linked, excitatorily, and bi-directionally, to many 



FACE RECOGNITION 23 

PINS. This means that semantic units which actually are correlated (say “actor” and “come- 

dian”) may have a net connectivity which is positive, despite the fact that there is a single 
within-pool negative link connecting them directly. It is easy to demonstrate this in the 

model. If a WRU coding, say, “actor” is activated, this activation flows to the SIUs, and 

then on to the PINS. Inspection of the SIU pool, following a number of cycles, shows that 
other related SIUs (i.e., those which tend to share people in common with “actor”) will 

have also gained some small activation. This mechanism is exactly like that of semantic 
priming for face and name recognition: despite direct inhibitory links, associated units 

within the same pool can become active during the same presentation cycle. 

We have shown that within-pool inhibitory links are not disadvantageous. In fact, they 

are very advantageous, for two reasons. First, these links allow the model to be dynamic, 

by avoiding hysteresis (Grossberg, 1978; McClelland, & Rumelhart, 1988), the phenome- 
non in which unit activations resist decay. Imagine a comparable model in which SIU units 

were connected excitatorily, reflecting semantic structure (e.g., “actor” and “comedian” 
would have a positive link connecting them). Such networks are subject to a paralysing 

hysteresis. This is best illustrated by an example. Imagine we present the face of Bob Hope. 
This might lead to activation of that person’s FRU, PIN, and SIUs representing, say, 

“actor, ” “comedian” and “American.” We now stop presenting the face, and present 
another, say that of Prince Charles. In the normal course of events, the PIN of Bob Hope 

will decay, as the PIN of Charles rises. However, in the SIU pool the two units “actor” and 

“comedian” are in a circular relation, each receiving activation along excitatory links 

between them. There is therefore great resistance to decay as units within the system can 

bolster each other’s activation in the absence of external input. For this reason (although it 

is rarely stated explicitly) models relying on this semantic network notion are actually reset 
to rest by the experimenter between input trials. There can therefore be no examination of 
transitory effects between items due to residual activation. This problem is true of tradi- 

tional semantic network models (Burke, Mackay, Worthley, & Wade, 1991) but also true 
of some more modem connectionist models (Farah et al., 1993) and is eliminated by 

within-pool inhibitions. An IAC-like system which contains within-pool inhibitions as 

well as excitatory connections via other pools does not suffer from this problem: one can 
present stimuli sequentially, and hence observe dynamic behaviour, ‘rather than resetting 

the whole model before each stimulus presentation. 

The second advantage for within-pool inhibition is that it provides the facility to repre- 

sent exclusives. For example, though many people are both actors and comedians, many 
people can be described as one but not both. A semantic network representation would 

require excitatory links between actor and comedian, which would result in some activa- 
tion for “comedian” on presentation of Richard Burton’s face. This seems inappropriate as 

this actor was not a comedian in any sense. This is a more prosaic reason to prefer the archi- 
tecture we have chosen, but again seems to us to represent a significant advantage over a 
representational scheme in which semantic properties are connected independently of the 
people who instantiate the properties. We must note that this is a model of person recogni- 

tion, not of semantics per se. It is clear that the system must somehow be able to represent 
semantic relations in the absence of personal information (for example to code abstract 
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relations). However, it seems to us that a model of person recognition is best served by a 
person-based semantic system. 

Is the model not inefficient? It seems that there is some duplication of 
structure between the FRUs, NRUs and PINS. 

In this model, there are one-to-one relations between the FRUs and PINS and between 
the NRUs and PINS. However, these pools are intended to represent different levels of clas- 
sification: the face, name and person respectively. In fact, we know many people by only 

one of these routes. The person who serves in a shop we often use, or the person who stands 
next to us in bus queues each morning, may be recognized by face without our needing to 

know the person’s name. Similarly, we know many people by name only. For example 
many of us would be unable to recognize the face of Charles Dickens or Crick and Watson, 

despite knowing a great deal about these people. It is therefore necessary to separate out 
these recognition routes in the model. The fact that we have given everyone represented by 
the model a name and a face is simply to ease modelling (and to avoid behaviour arising 
out of arbitrary architectural decisions). 

Is number of cycles to threshold a good analogue of RT data? 

The dependent variable used in the simulations described here, and in previous work, is 

the number of processing cycles needed for particular units to reach some threshold. There 
is clearly some arbitrariness in this. First, the threshold chosen plays a part. In fact, the 
nature of these systems is such that in almost all cases (and in all cases we present here) 
units which rise fastest, also rise highest. The choice of a particular threshold value there- 
fore does not affect the direction of predictions, only their size. Second, the nature of the 
relation between RT and cycles is important. We take the relation between RT and process- 
ing cycles to be positive and monotonic. This means that the model is restricted in the 
effects it can simulate. Ordinal predictions of the form “the unit will reach threshold faster 
in condition X than condition Y” can be captured. However, predictions which rely on dif- 

ferences in size between effects are not available for modelling. Without a more detailed 
assertion of the relation between RT and cycles, effects such as non-crossover interactions 

cannot be captured in the model. This is, of course, true of any simulation which does not 
spell out the exact nature of the relation of the simulated DV and the DV from human stud- 
ies, though this fact is sometimes ignored. 

The model is static, is this type of architecture suitable for learning? 

We have argued at length elsewhere (Young & Burton, in press) that learning is an 
attractive feature of models only when that learning is consistent with human learning. So, 
for example, connectionist models which require repeated presentation of the entire to-be- 
learned set of stimuli do not capture human learning. Burton (1994) presents a learning 
mechanism for IAC models. This mechanism has some of the features which we take to be 
true of humans learning faces: it is incremental (i.e., learning a new face does not affect 
representations of previously-learned faces); it allows different levels of learning (i.e., rep- 
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resentations can be more or less “known”); it is unsupervised and automatic. The learning 

mechanism is based on exactly the same principles as is repetition priming: ubiquitous 

Hebb-like updates throughout the model. However, the learning mechanism was devel- 

oped in the absence of a front-end perceptual system. 

In the model presented here we have tried to capture a snap-shot of the person recogni- 

tion system, and we have not built in a learning mechanism. We have not wished to con- 

found results of perceptual-cognitive interactions with any effects of learning. We note that 

the system is consistent with the learning mechanism described by Burton (1994), but inte- 

gration of this mechanism with analysis of real image-based input must be the subject of 

further development. Such development will require human experimentation, as there is 

surprisingly little known about the processes by which faces become familiar (though see 

Ellis, Shepherd, Gibling, & Shepherd, 1988, for some preliminary work). 

Surely humans do not do PCA on pixel-like properties of images 

This model claims that input from images forms a suitable front-end for a model of face 

recognition. This apparently uncontentious statement, in fact, represents a theoretical posi- 

tion which, though growing in popularity, is not universally held. In the past, researchers 

have often looked for representations of a more abstractive type. So, for example, many 

researchers have assumed that faces are represented in memory in terms of some set of dis- 

tance measures in the picture plane. In choosing PCA we are claiming that faces are repre- 

sented in terms of the patterns of light across the whole image, rather than in some abstract 

form. Principal components analysis is one way to capture the regularities in this image- 

based approach, however, it is clearly not the only way. For example, von der Malsburg 

and colleagues have provided an alternative image-based face recognition system based on 

a deformable template and Gabor wavelets (Wtlrtz, Vorbrggen, von der Malsburg, & 

Lange, 1992; Konen, Maurer, & von der Malsburg, 1994; Wiskott, & von der Malsburg, 

1995). Moreover, the use of pixels as input to our PCA-based system is clearly an over- 

simplification and we have recently been experimenting with PCA based upon the outputs 

of images filtered in ways resembling early visual processing mechanisms (Hancock, Bur- 

ton, & Bruce, 1995). Psychological work shows that face recognition can be performed 

using information at relatively low spatial frequencies (Costen, Parker, & Craw, 1994; 

Bachmann, 1991) and so a complete account would probably combine outputs of filters 

with different spatial scales. What is impressive to date is that even based upon “mere” 

pixel level representation of the image, our PCA-based description fares so well at 

accounting for human face memory and perception. In summary, our claim is not that the 

details of the PCA account are correct. Rather it is that a linearized compact coding of 

human face images represents a promising hypothesis for human representation of faces. It 

is worth noting additionally that such an approach, while able to deal with variation such 

as the expression changes described here, will not readily deal with changes in viewpoint 

without representing discrete viewpoints separately. This view-specific property also 

seems to be a function of human face recognition (Bruce, 1994). 
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VIII. CONCLUSIONS 

We have presented a model of the complete process of face recognition. The model takes 
images of faces, and processes them through a recognition system which simulates the 

computation of familiarity, retrieval of personal information and naming. The model is the 
result of combining approaches from the perceptual literature on face recognition with a 

model of the cognitive processes. 
We hope to have demonstrated that the combined model represents an advance over 

either component on its own. The combination considerably extends the range of findings 
which the model can simulate, and allows one to examine the interaction between percep- 

tual and cognitive processes. In particular, it allows one to examine top-down effects (such 

as cued recognition) and effects which seem to be dependent on both perceptual and repre- 

sentational processes (such as distinctiveness). 
Although this model represents an attempt to capture the complete process of face rec- 

ognition, it is far from complete itself. In particular, a satisfactory account must be able to 
integrate learning into the system, and so far this has not been attempted. On a related issue, 

a complete model must be able to capture decisions which we can make with unfamiliar 
faces. This model has nothing to say on the issue of unfamiliar faces: it cannot decide about 

the sex or age of a face or decide whether it looks attractive, grumpy or distinguished. It 
cannot decide that a face looks like Ronald Regan but certainly isn’t, and it cannot decide 
that a face needs a shave. However, we believe that many of these effects will be captured 

only in a model which contains both perceptual and cognitive processes. The purpose of 
this paper is to propose just such a model. 

APPENDIX 

Technical Details 

The IAC simulations reported here were run using the Rochester Connectionist Simula- 
tor (Goddard et al., 1989). Unit update functions are standard interactive activation and 
competition functions (McClelland & Rumelhart, 1988) and are as follows. 

Net input to a unit i (neti) is calculated as: neri = c&vii.ou~pu~ + estr.extinputi 

Where outputi represents output of unitj, wij is the weight of the connection from unitj 
to unit i and extinputi is the external input of activation to unit i (for example activation 
given by an experimenter). a and estr are parameters used to scale the relative strength of 
external and internal activation. 

Unit update is calculated as follows 

If (neti > 0) pi = (maX - Ui).neti - deCUy.(ai - rest) 

Otherwise pi= (Qi - Vlin).?leti - deCLly.(Ui - rest) 

Where mar and min are the maximum and minimum levels of activation, rest is resting 
level of activation, and decay is a parameter governing the rate at which unit activations 
decay to rest. 
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The Hebb-like rule used for repetition priming was taken from Burton (1994) and is as 
follows: 

If Q,Clj > 0, Awii = ha,aj (1 - w$ 

Otherwise Awij = ha,~j (1 + Wii) 

where h is a global learning rate parameter. 
Global parameters were set as follows for all simulations: 

max = 1.0; min = -0.2; rest = -0.1; decay = 0.1; estr = 0.4 

a=O.l; h=0.25 

In each of the simulations all excitatory and inhibitory connections had strength 1.0 and 
-0.8 respectively. 
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