Face Recognition Based on Fitting a 3D Morphable Model by Volker Blanz and Thomas Vetter

Presented by A. Brian Davis

What lies ahead

- Introduction
- 3D Morphable Model
- Face Vectors
- Optical Flow
- Using Face Vectors
- Image Synthesis {shape / colors}
- Fitting the model
- Optimization
- Results

Introduction

- Face recognition
 - Intrinsic vs extrinsic parameters
 - Extrinsic: head pose, illumination
 - Intrinsic: shape of face, texture
 - Get one set without the other?
 - Eigenlighting
 - Automatically extract?
- What is our 3D morphable model?

3D Morphable Model

How to separate intrinsic from extrinsic?
(calculate both)

1)Hypothesize all parameters

2)Synthesize face from parameters

3)Record "reconstruction error" wrt pixels4)Minimize error (gradient descent)

- 3D model?
 - Estimate orientation of face
- Reconstruction vs Recognition
 - Change extrinsic, classify intrinsic

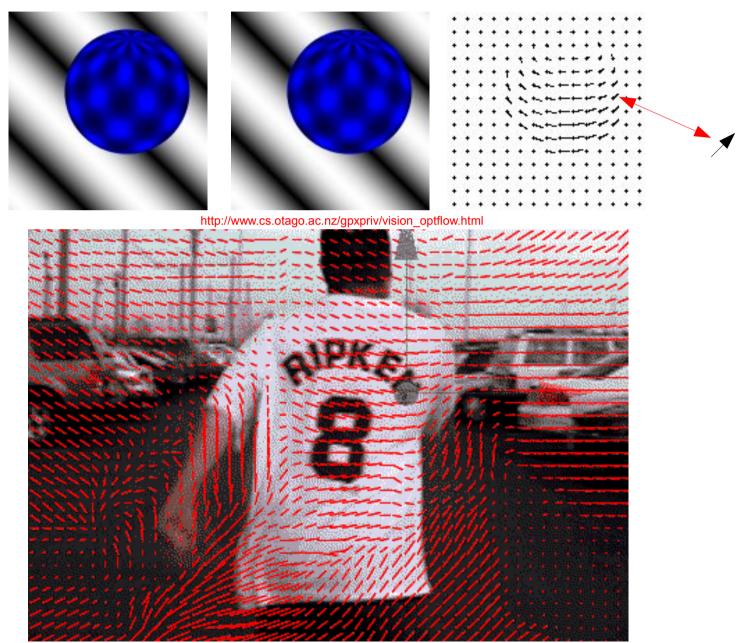
Face Vectors

- How do we get 3D?
 - Database 3D laser scans (100m,100f)
 - Race specific
 - 262144 points, radii, RGB
 - Preprocessing
 - Manually nix noise
 - Forehead trimming
 - Cut behind the ears
- Correspondence
 - Reference face
 - Points densely correspond Optical flow

Optical Flow

- Assumptions
 - Constant objects moving between frames
 - Constant brightness wrt velocity
 - Different objects?
- Then, change in intensity equal to gradient * actual change (equal to zero)
- Calculate for each small neighborhood
 - Erratic, smoothing
 - Connected springs

Optical Flow cont.



http://www.societyofrobots.com/images/programming computer vision optical flow.gif

Face Vectors cont.

- Reference face has N vertices
 - One color for each vertice
- For each new 3D scan:
 - Calculate optical flow (invalid assumptions)
 - Save N points from new scan
 - Interpolate from optical flow result
- Have all our scans. Now what?

3D faces in usable form

- PCA on resulting vectors
 - We all saw this coming
 - Fewer parameters for reconstruction, recognition
- Treat radii, textures independently
- From pattern rec:
 - PCA de-correlates data
 - Assumed to be multi-variable Gaussian For point p, $P(p) = \prod_{i=1}^{m} e^{-\frac{1}{2}(\frac{\alpha_i}{\sigma_i})} = e^{\sum_{i=1}^{m} -\frac{1}{2}(\frac{\alpha_i}{\sigma_i})^2}$
 - - Useful calculating priors

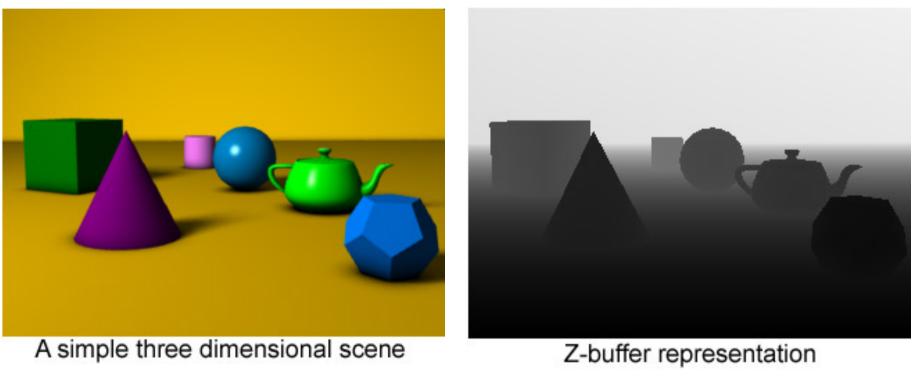
Optimize the modelling

- Given:
 - Low number of 3D faces
 - Unbounded potential number faces to match
- Large variations between faces hard to model
 - Global least-squared sense
- Solution: Fit model to face globally and segments
 - Eyes, nose, mouth, surrounding area
 - Blend all to look good

Image Synthesis

- How to create face image from parameters
 - Shape, texture coefficients, rotation of face, translation in picture
 - Apply 3D affine transform
 - Perspective projection project onto plane as we perceive it
 - Occlusion / shadows?
 - Z-buffer
- What about colors?

Z-buffer



http://en.wikipedia.org/wiki/Image:Z-buffer.jpg

Image Synthesis - colors

- Color from ambient light, directed light, colors of texture
 - Phong illumination model easy computations, good empirical performance
- Manually modify contrast / gains of colors
 - Fitting faces to pictures, paintings, etc
- Now we have raw pixels from parameters

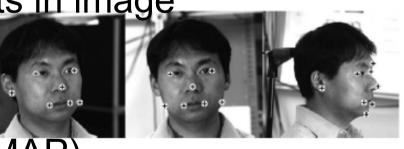
Phong Illumination

Fitting the model

- Guess all parameters (about 3D model) from 2D image
- Cost function? Sum square differences of pixels
- Require user identify feature points in image corresponding points in ref face
 - Match up those points, call it good?
- Maximum a posteriori estimator (MAP)
 - Find most probable parameters given feature points, image
 - Bayes rule + liberal assumptions about independence / normality
 - Maximize: $p(I_{input}|\alpha,\beta,\rho)*p(F|\alpha,\beta,\rho)*P(\alpha)*p(\beta)*p(\rho)$

Fitting the model

- Guess all parameters (about 3D model) from 2D image
- Cost function? Sum square differences of pixels
- Require user identify feature points in image corresponding points in ref face
 - Match up those points, call it good?
- Maximum a posteriori estimator (MAP)
 - Find most probable parameters given feature points, image
 - Bayes rule + liberal assumptions about independence / normality
 - Maximize: $p(I_{input} | \alpha, \beta, \rho) * p(F | \alpha, \beta, \rho) * P(\alpha) * p(\beta) * p(\rho)$ Mean pixel error Feature point error Assumed uncorr. Multivariable Gaussian



Optimization

- Minimize error in reconstruction
 - Newton's method
 - Assume minimum near zero of line with slope of gradient at certain point
 - Computationally efficient?
 - Stochastic Newton's method
 - Compute difference in pixels at subset of points (chosen probabilistically)
 - Calculate shadows sparingly
 - Optimize shape, texture, rigid transformation variables first (largest impact) then optimize others
 - After general parameters, compute segments

Experiments – the setup

- Performed model fitting / identification from two databases
 - CMU's PIE 68 individuals, 66 images per person, different illuminations / viewpoints
 - FERET 194 individuals, 10 images per person (relatively same expression)
- 6 feature points per image (standardized)
- Textures as shadows

Recognition from coefficients

- After fitting model to image, what to do?
 - Concatenate all unit-var shape / texture coefficients
- Nearest neighbor classifier
 - Who is my nearest neighbor?
 - Mahalanobis distance?
 - Cosine of angle between vectors?
 - PCA analyze individual coefficient variance / LDA?
 - Ambiguous but apparently effective

Database	d_M	d_A	d_W
CMU-PIE	87.2%	94.2%	95.0%
FERET	80.3%	92.2%	95.9%

Recognition performance

probe view	gallery view				
	front	side	profile		
front	99.8% (97.1-100)	99.5% (94.1-100)	83.0% (72.1-94.1)		
side	97.8% (82.4-100)	99.9% (98.5-100)	86.2% (61.8-95.6)		
profile	79.5% (39.7-94.1)	85.7% (42.6-98.5)	98.3% (83.8-100)		
total	92.3 %	95.0 %	89.0 %		

