

Face Recognition Based on Fitting a
3D Morphable Model

by Volker Blanz and Thomas Vetter

Presented by A. Brian Davis

What lies ahead
● Introduction
● 3D Morphable Model
● Face Vectors
● Optical Flow
● Using Face Vectors
● Image Synthesis {shape / colors}
● Fitting the model
● Optimization
● Results

Introduction
● Face recognition

– Intrinsic vs extrinsic parameters
● Extrinsic: head pose, illumination
● Intrinsic: shape of face, texture
● Get one set without the other?

– Eigenlighting
● Automatically extract?

● What is our 3D morphable model?

3D Morphable Model
● How to separate intrinsic from extrinsic?

(calculate both)
1)Hypothesize all parameters
2)Synthesize face from parameters
3)Record “reconstruction error” wrt pixels
4)Minimize error (gradient descent)

● 3D model?
– Estimate orientation of face

● Reconstruction vs Recognition
– Change extrinsic, classify intrinsic

Face Vectors
● How do we get 3D?

– Database 3D laser scans (100m,100f)
● Race specific

– 262144 points, radii, RGB
● Preprocessing

– Manually nix noise
– Forehead trimming
– Cut behind the ears

● Correspondence
– Reference face
– Points densely correspond – Optical flow

Optical Flow
● Assumptions

– Constant objects moving between frames
– Constant brightness wrt velocity
– Different objects?

● Then, change in intensity equal to gradient *
actual change (equal to zero)

● Calculate for each small neighborhood
– Erratic, smoothing
– Connected springs

Optical Flow cont.

http://www.societyofrobots.com/images/programming_computer_vision_optical_flow.gif

http://www.cs.otago.ac.nz/gpxpriv/vision_optflow.html

Face Vectors cont.
● Reference face has N vertices

– One color for each vertice
● For each new 3D scan:

– Calculate optical flow (invalid assumptions)
– Save N points from new scan

● Interpolate from optical flow result
● Have all our scans. Now what?

3D faces in usable form
● PCA on resulting vectors

– We all saw this coming
● Fewer parameters for reconstruction, recognition

● Treat radii, textures independently
● From pattern rec:

– PCA de-correlates data
– Assumed to be multi-variable Gaussian
– For point p,

● Useful calculating priors
P  p=∏i=1

m
e
−

1
2

i
 i


2

=e
∑i=1

m
−

1
2

i
 i


2

Optimize the modelling
● Given:

– Low number of 3D faces
– Unbounded potential number faces to match

● Large variations between faces hard to model
– Global least-squared sense

● Solution: Fit model to face globally and
segments
– Eyes, nose, mouth, surrounding area

● Blend all to look good

Image Synthesis
● How to create face image from parameters

– Shape, texture coefficients, rotation of face,
translation in picture

– Apply 3D affine transform
– Perspective projection – project onto plane as we

perceive it
– Occlusion / shadows?

● Z-buffer
● What about colors?

Z-buffer

http://en.wikipedia.org/wiki/Image:Z-buffer.jpg

Image Synthesis - colors
● Color from ambient light, directed light, colors of

texture
– Phong illumination model – easy computations,

good empirical performance
● Manually modify contrast / gains of colors

– Fitting faces to pictures, paintings, etc
● Now we have raw pixels from parameters

Phong Illumination

Light Source

Specular Lighting

Diffuse Lighting

Fitting the model
● Guess all parameters (about 3D model) from 2D

image
● Cost function? Sum square differences of pixels
● Require user identify feature points in image

corresponding points in ref face
– Match up those points, call it good?

● Maximum a posteriori estimator (MAP)
– Find most probable parameters given feature points, image
– Bayes rule + liberal assumptions about independence /

normality
– Maximize: p  I input∣ , ,∗p F∣ , ,∗P ∗p ∗p 

Fitting the model
● Guess all parameters (about 3D model) from 2D

image
● Cost function? Sum square differences of pixels
● Require user identify feature points in image

corresponding points in ref face
– Match up those points, call it good?

● Maximum a posteriori estimator (MAP)
– Find most probable parameters given feature points, image
– Bayes rule + liberal assumptions about independence /

normality
– Maximize: p  I input∣ , ,∗p F∣ , ,∗P ∗p ∗p 

Mean pixel error Feature point error Assumed uncorr. Multi-
variable Gaussian

Optimization
● Minimize error in reconstruction

– Newton's method
● Assume minimum near zero of line with slope of gradient

at certain point
● Computationally efficient?

– Stochastic Newton's method
● Compute difference in pixels at subset of points (chosen

probabilistically)
● Calculate shadows sparingly

– Optimize shape, texture, rigid transformation
variables first (largest impact) then optimize others

– After general parameters, compute segments

Experiments – the setup
● Performed model fitting / identification from two

databases
– CMU's PIE – 68 individuals, 66 images per person,

different illuminations / viewpoints
– FERET – 194 individuals, 10 images per person

(relatively same expression)
● 6 feature points per image (standardized)
● Textures as shadows

Recognition from coefficients
● After fitting model to image, what to do?

– Concatenate all unit-var shape / texture coefficients
● Nearest neighbor classifier

– Who is my nearest neighbor?
● Mahalanobis distance?
● Cosine of angle between vectors?
● PCA analyze individual coefficient variance / LDA?

– Ambiguous but apparently effective

Recognition performance

CMU PIE FERRET

