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Speaker Transformation
● Goal: map acoustic properties of one speaker 

onto another
● Uses:

− Personification of text-speech systems
− Multimedia
− Preprocessing step for speech recognition

● Reduce speaker variability
● Practical?



  

Steps Involved
● Training phase

− Given speech input from source and target, form 
spectral transformation

− Inputs / outputs to transformation:
● Segment speech small chunks (frames)

− Formants
− LPC cepstrum coefficients
− Others (excitation)?

− Can we generalize behavior of transform?
● Codebooks/codewords

− Vector quantization



  

Vector quantization
● Assign vectors to discrete set of values
● K-Means

− For STASC, also want
“average” all vectors
assigned to a class

− K-Means gives us this
for free

Shamelessly stolen from Dr. Gutierrez's pattern recognition slides



  

LSFs
● Line spectral frequencies
● Derived (losslessly) from LPC's

− Can convert to/from, thus can create speech from 
LSFs

● Relate to formant frequencies
− Used in STASC represent vocal tract of speakers

● Stable
● Why use instead of MFCCs?



  

STASC (first method)
● Assumes orthographic transcription

− What's said, in writing
● From transcription, phonemes retrieved

− Speech segments assigned phoneme based on 
transcription

● MFCCs, dMFCCs for each segment (frame) passed into 
HMM, most likely path using Viterbi algorithm

− LSFs calculated per frame, labeled with phoneme 
from HMM

− Phoneme centroids calculated (average LSF values 
all vectors labeled particular phoneme

− One-one mapping



  



  

Second method (better)
● No orthographic transcription

− Intuitively, we know the HMM states in 1st method 
didn't need correspond phonemes

● Require speakers speak same (hopefully phonetically 
balanced) sentence

− Sentences with phones approx. distributed as in normal speech
− Because fewer restrictions, need to do some extra 

processing of speaker's speech
● Normalize root-mean-squared energy
● Remove silence before/after speech



  

Second method transformation
● HMM trained on each sentence

− Data from source speaker's speech segments
● LSF vectors

− Number of states correspond sentence length
− Segmental k-means, separates speech segments into 

clusters
− Baum-Welch algorithm train HMM on cluster averages

● Covariance matrix uniform
● For source/target speech segments, Viterbi algorithm 

assigns segments to states.
● Transformation moves segments from state in source to 

state in target
● Centroids



  

Excitation characteristic
● From previous papers, know excitation greatly 

influences perception of speaker
● Not trivial to transfer

− Very different for voiced / unvoiced sounds
● Use current codebooks to transfer excitation

− Calculate short-time average magnitude spectrum 
of excitation signal each “speech unit”



  

Codebook weight estimation
● Assume we have vector w of LSFs labeled with 

HMM state
● Also centroids Si of each HMM state
● Algorithm:

− Calculate distances di from w to Si
● Perceptual distance – closely spaced LSFs correspond to 

formant locations given higher weight
− From distances, calculate weights vi, represent w 

as linear combination Si's
● Minimize error?



  

Gradient Descent
● Find local optimum weights minimize error 

reconstructed LSFs vs actual LSFs
● Algorithm:

− Find gradient of difference reconstruction, predicted 
(weighted perceptually)

− Weight gradient by small value (speed to convergence)
− Add to old weights
− Until difference in weights between iterations is sufficiently 

small
● Found that only few weights given large value

− Only use 5 most likely weights
● 15% additional reduction in Itakura-Saito distance, .4 dB error



  

Use of weights
● Given reconstruct LSF vector (segment of 

speech from speaker) from linear combination 
of sigmoids

● Use those weights and target's sigmoids, use 
resulting LSFs to reconstruct speech

● Other transformations?
− Excitation spectral characteristics
− Prosody
− Can estimate new weights for all, 

but why? Artist's impression



  

Excitation and Vocal Tract
● Use weights construct excitation filter

− linear combination of sigmoids' ( average target 
excitation magnitude spectra ) over (source EMS)

● Use weights construct vocal tract spectrum – 
convert transformed LSF vectors to LPCs

− Expansion of bandwidths; gives unnatural speech
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Bandwidth modification
● Assume average formant bandwidth values of target speaker 

similar most likely target codeword (LSF centroid)
● Since LSFs correspond to formant locations / bandwidths, 

change bandwidths by changing adjacent LSF distances
● Algorithm:

− Find LSF entries directly before/after each formant location in most likely 
Target codeword

− Calculate average formant bandwidth
− Same for corresponding speech segment LSF vectors
− form ratio of average codeword bandwidth over segment bandwidth
− Apply estimated bandwidth ratio to adjust LSFs of speech segment 

vectors
− Enforce reasonable bandwidths (average bandwidth of most likely 

centroid from target speech over 20



  

Bandwidth modification result



  

Prosodic Transformation
● Pitch, duration, energy modified to mimic target
● Dynamic segment lengths

− Constant for unvoiced, 2-3 pitch periods for voiced
● Pitch:

− No weights involved
− Modify f0 linearly, matching variance f0s, matching 

averages



  

Duration

● Uniform duration 
matching?

● Different people 
pronounce 
different 
phonemes 
differently

● Need finer control 
duration 
modification



  

Duration modification
● Duration phoneme dependent context 

(coarticulation)
− Triphones as speech units

● Find speech unit centroids 
(durations), weights per 
segment, form target 
duration as linear 
combination 

● Uses?
− Human transcription



  

Energy scale modification
● Another characteristic of speaker
● Algorithm (finding energy scaling factor per time 

frame):
− Calculate RMS energy for each codeword
− Derive weights for representing scaling factor as 

linear combination (target's RMS energy) over 
(source's RMS energy)

− After applying other modifications, scale energy



  

Evaluations
● Want to test effectiveness of transformation

− Speaker recognition
− Speech recognition

● Objective and subjective
− Automatic speech recognizer
− Human subjects

● Test 



  

Objective
● Idea: confuse a speaker recognition machine

− Stacking the deck
− Confidence measure

● The machine:
− 256 mixture Gaussian mixture models

● 24 dimension feature vector (MFCCs, deltas)
− Binary split vector quantization

● One vector for all, split to two in arbitrary directions
− Train HMM

● 3 speakers, speaking 1 hour each; 45 minutes for training
● Different sentences (first method)

− 15 minutes set aside for testing

st=log P X∣t P X∣s



  

Testing
● Multiple speakers

− Each transformed to 
another

● Context 
dependent

Target

Source



  

Objective (2)
● Sentence HMM

− Source / target speak same sentences
− 15 minutes speech from 2 M, 1F

● Transform 1 M into M/F
● Phonetic codebooks also used; compare the two
● Measure fidelity to:

− Cepstrum
− Excitation spectrum
− RMS energy
− F0
− Duration

● Results show sentence HMM better; increased training



  

Objective (2)



  

Subjective
● Listening experiments – no cheating
● ABX test

− 20 stimuli presented
● A, B listened to; X presented; (2-3 word phrases)
● “Is X perceptually closer to A or to B in terms of speaker identity”
● HMM based transformation
● 100% M-F, 78% M-M

● But is it a garbled mess?



  

Intelligibility
● 150 short nonsense sentences (prevent 

inference)
● “Shipping gray paint hands even”
● Phone accuracy of natural, transformed speech 

compared.  Phones retrieved from dictionary
● 93.8% accuracy transformed, 93.4% accuracy 

natural
− Target speaker more intelligible?


