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the ability to trade cues off against each other in phoneme identification. At the
word level. the model captures Ihe ma.ior positive feature of Marslen-Wilson

COHORT model of speech perception. in that it shows immediate sensitivity to
information favoring one word or set of words over others. At the same time, it
overcomes a difficulty with the COHORT model: it can recover from underspec-

, ificalion or mispronunciation of a word' s beginning. TRACE II also uses lexical
information to segment a stream of speech into a sequence of words and to find
word beginnings and endings, and it simulates a number of recent findings related
to these points. The TRACE model has some limitations, but we believe it is a
step toward a psychologically and computationally adequate model of the process
of speech perception. ~ 1986 Academic Pre.., Inc,

The TRACE Model of Speech Perception

JAMES L. MCCLELLAND

AND
Consider the perception of the phoneme /g/ in the sentence "She re-

ceived a valuable gift; " There are a large number of cues in this sentence
to the identity of this phoneme, First, there are the acoustic cues to the
identity of the /g/ itself, Second. the other phonemes in the same word
provide another source of cues. for if we know the' rest of the phonemes

in this word. there are only a few phonemes that can form a word with
, them, Third. the semantic and syntactic context further constrain the

possible words which might occur. and thus lintit still further the possible
interpretaJion of the first phoneme in "gift,

There is ample evidence that all of these different sources of infor-
mation are used in recognizing words and the phonemes they contain,
In~eed. as Cole and Rudnicky (1983) have recently noted. these basic
facts were described in early .experiments by Bagley (1900) over 80 years
ago, Cole and Rudnicky point out that recent work (which we c~msider

in detail below) has added clarity and detail to these basic findings but
has not lead to a theoretical synthesis that provides a satisfactory account
of these and many other basic aspects of speech perception,

In this paper. we describe a mOdel whose primary purpose is to account
for the integration of multiple sources of information. or constraint, in
speech perception, The model is constructed within a framework which

appears to be ideal for the exploitation ofsim',ltaneous. and often mutual,
constraints. This framework is the interactive activation framework
(McClelland & Rumelhart. 1981; Rumelhart & McClelland. 1981. 1982),
This approach grew out of a number of earlier ideas. some coming first
from research on spoken language recognition (Marslen-Wilson & Welsh.
1978; Morton. 1969; Reddy. 1976) and others arising from more general
considerations of interactive parallel processing (Anderson. 1977; Gross-

berg. 1978; McClelland. 1979),
According to the interactive-activation approach. information pro-

cessing takes place through the excitatory and inhibitory interactions
among a large number of processing elements called units, Each unit is
a very simple processing device, It stands for a hypothesis about the
input being processed. The activation of a unit is monotonically related
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We describe a model called the TRACE model of speech perception. The model
is based on the principles of interactive activation. Information processing takes
place through the excitatory and inhibitory interactions of a large number of
simple processing u rtits, each working continuously to update its own activation
on the basis of the activations of other units to which it is connected. The model
is called the TRACE model because the network of units forms a dynamic pro-
cessing structure called "the Trace. " which serves at once as the perceptual
processing mechani~m and as the system s working memory. The model is in-
stantiated in two simulation programs. TRACE I, described in detail elsewhere,
deals with short seg~ents orreal speech. and suggests a mechanism for coping
with the fact that the cues to the identity, of phonemes vary as a function of
context. TRACE II_ the focus of this article, simulates a large number of empirical
findings on the perc:eption of phonemes and words and on the interactions of
phoneme ;md word perception. At the phoneme level, TRACE II simulates the
innuence of lexical jnformation on the identification of phonemes and accounts
for Ihe fact that lexic:ial effects are found under certain conditions but not others.
The model also shows how knowledge of phonological constraints can be em-
bodied in particular lexical items but can still be used to innuence processing of
novel. nonword ullerances. The model also exhibits categorical perception and
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to the strength of the hypothesis for which the unit stands, Constraints
among hypotheses are represented by connections. UnUs which are mu-
tually consistent are mutually excitatory, and units that are mutually in-
consistent are mutually inhibitory. Thus, the unit for /g/ has mutually
excitatory connections with units for words containing /g/, and has mu-
tually inhibitory connections with units for other phonemes, When the
activation of a unit exceeds some threshold activation value, it begins to
influence the activation of other units via its outgoing connections; the
strength of th~se signals depends on the degree of the sender s activation,
The state of the system at a given point in time represents the current
status of the various possible hypotheses about the input; information
processing amounts to the evolution of that state, over time, Throughout
the course of processing, each unit is continually receiving input from
other units, continually updating its activation on the basis of these inputs,
and, if it is over threshold , it is continually sending excitatory and inhib-
itory signals to other units. This " interactive-activation " ,process allows
each hypothe~is both to constrain and be constrained by other mutually
consistent or inconsistent hypotheses,

Criterill lInd Collstmillts Oil Model Development

There are generally two kinds of models of the speech perception pro-
cess, One kind of model, which grows out of speech engineering and
artifical intelligence, attempts to provide a machine solution to the
problem of s~eech recognition, Examples of this kind of model are
HEARSAY (Erman & Lesser, 1980; Reddy, Erman, Fennell. & Neely,
1973) HWIM(Wolf & Woods, 1978), HARPY (Lowerre, 1976), and
LAFS/SCRIBER (Klatt, 1980), A second kind of model, growing out of
experimental ~sychology, attempts to account for aspects of psycholog-
ical data on the perception of speech. Examples of this class of models
include Marsl~n-Wilson s COHORT Model (Marslen-Wilson & Tyler,
1980; Marslen~Wilson & Welsh, 1978; Nusbaum & Siowiaczek, 1982);
Massaro s feature integration model (Massaro, 1981; Massaro & Oden,
I 980a, 1980b; Oden & Massaro, 1978); Cole and Jakimik' s (1978, 1980)
model of auditory word processing, and the model of auditory and pho-
netic memory espoused by Fujisaki and Kawashima (1968) and Pisoni
(1973, 1975).

Each approach honors a different criterion for success. Machine
models are ju4ged in terms of actual performance in recognizing real
speech. Psychological models are judged in terms of their ability toac-
count for details of human performance in speech recognition, We call
these two criteria ompilllltimwi and pjiycholog;cal adequacy.

In extending the interactive activation approach to speech perception,
we had essentially two questions: First, could the interactive-activation

approach contribute toward the development of a computationally suffi-
cient framework for speech perception? Second , could it account for what
is known about the psychology of speech perception? In short, we wanted
to know, was the approach fruitful, both on computational and psycho-
logical grounds.

Two facts immediately became apparent. First, spoken language intro-
duces many challenges that make it far from clear how well the interac-
tive-activation approach will serve when extended from print to speech.
Second , the approach itself is too broad to provide a concrete model,
without further assumptions, Here we review several facts about speech
that played a role in shaping the specific assumptions embodied in
TRACE.

Some Important Facts about Speech

Our intention here is not to provide an extensive survey of the nature
of speech and its perception, but rather to point to several fundamental
aspects of speech that have played important roles in the development
of the model we describe 'here, A very useful discussion of several of
these points is available in Klatt (1980).

Temporal nature of the speec'h stimulus, It does not, of course, take a
scientist to observe one fundamental difference between speech and
print: speech is a signal which is extended in time, whereas print is . a
stimulus which is extended in space, The sequential nature of speech
poses problems for a modeler, in that to account for context effects, one
needs to keep a record of the context , It would be a simple matter to
process speech if each successive portion of the speech input were pro-
cessed independently of all of the others, but in fact, this is clearly riot
the case. The presence of context effects in speech perception requires
a mechanism that keeps some record of that context, in a form that allows
it to influence th~ interpretation of subsequent input.

A further point , and one that has been much neglected in certain
. models, is that it is not only prior context but also subsequent context
that influences perception, (This and related points have recently been
made by Grosjean & Gee, 1984; Salasoo & Pisoni, 1985; and Thompson,
1984). For example, Ganong (1980) reported that the identification 

of a
syllable-initial speech sound that was constructed to be between /gI and
/k/ was ;ptluenced by whether the rest of the syllable was Iisl (as in

kiss ) or /lftl (as in "gift"), Such' " right context eftects" (Thompson,
1984) indicate that the perception of what comes in now both influences
and is influenced by the perception of what comes in later. This faci
suggests that the record of what has already been presented cannot not
be a static representation , but should remain in a malleable form. subject
to alteration as a result of influences arising from subsequent con/ex!.
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word segmentation (Bond & Garnes, 1980). and certain segmentation
decisions are easily influenced by contextual factors (Cole & Jakiinik.
1980), Thus. it is clear that word recognition cannot count on an accurate
segmentation of the phoneme stream into separate word units. and 
many cases such a segmentation would perforce exclude from one of the
words a shared segment that is doing double duty in each of two succes-
sive words, .

COfltext-semitit'ity of me.f, A third major fact about speech is that the
cues for a particular unit vary considerably with the context in which
they occur. For example, the transition oftht second formant carries a
great deal of information about the identity of the stop consonant Ibl 

Fig, I. but that formant would look quite different had the syllable been
big" or "bog" instead of "bag. " Thus the context .in which a phoneme

occurs restructures the cues to the identity of that phoneme (Liberman,
1970). The extent of the restructuring depe..ds on the unit selected and
on the particular cue involved. But the problem is ubiquitous in speech,

Not only are the cues for each phoneme dramatically affected by
preceding and following context. they are also altered by. more global
factors such as rate of speech (Miller. 1981). by morphological and pro-
sodic factors such as position in word and in the stress contour of the
utterance. and by characteristics of the speaker such as size and shape
of the vocal tract. fundamental frequency of the speaking voice. and
dialectical variations (see Klatt, 1980. and Repp & Liberman. 1984. for
discussions), .

A number of different approaches to the problem have been tried by
different investigators. One approach is to try to find relatively invar-
iant-generally relational- features (e.g.. Stevens & Blumstein. 1981),

Another approach has been to redefine the unit so that it encompasses
the context and therefore becomes more invariant (Fujimura & Lovins.
1982; Klatt. 1980; Wickelgren, 1969), While these are both sensible and
useful approaches, the first has not yet succeeded in establishing a suf-
ficiently invariant set of cues, and the second may alleviate but does not
eliminate the problem; even units such as demisyllables (Fujimura &
Lovins, .1982), context-sensitive allophones (Wickelgren, 1969). or even
whole words (Klatt, 1980) are still influenced by context. We have chosen
to focus instead on a third possibility: that the perceptual system uses
information from the context in which an utterance occurs to alter con-
nections, thereby effectively allowing the context to retune the perceptual
mechanism on the fly.

Noise and indeterminacy in the speech signal. To compound all the
problems alluded to above, there is the additional fact that speech is ofteil
perceived under less than ideal circumstances. While a slow and careful
speaker in a quiet room may produce sufficient cues to allow correct

Lack (~r hOllllc!a/";es alld tempo/"al OI'C'r/ap. A second fundamental point
about speech .is that the cues to successive units of speech frequently
overlap in time. The problem is particularly severe at the phoneme level. 
A glance at a schematic speech spectrogram (Liberman. 1970; Fig. I)
clearly illustrates this problem. There oare no separable packets of infor-
mation in the spectrogram like the separate feature bundles that make up
letlt~rs in printed words,

Because of the overlap of successive phonemes. it is difficult and. we
believe. counterproductive to try to divide the speech stream up into
separate phoneme units in advance of identifying the units. A number of
other researchers (e.g., Fowler, 1984: Klatt, 1980) have made much the
same point. A superior approach seems to be to allow the phoneme ide;n-

tification process to damine the speech stream for characteristic pat-
terns. without first segmenting the stream into separate u!1its,

The problem of overlap is less severe for words than for phonemes.
but it does not go away complete.ly, In rapid speech. words run into each
other. and there are no pauses betwe~n words in running speech, To be
sure. there are often cues that signal the locations of boundaries between
words-stop consonahts are generally aspirated at the beginnings of
stressed words in English. and word initial vowels are generally preceded,
by glottal stops. for example. These cues have been studied by a number
of investigators. partictllarly Lehiste (e,g,. Lehiste, 1960, 1964) and Nak-

atani and collaborators, Nakatani and Dukes (1977) .demonstrated that
perceivers exploit some of these cues but found that certain utterances
do not provide sufficient cues to word boundaries to permit reliable per-
ception of the intended utterance, Speech errors often involve errors of

TIME
FIG, I, A ~chcmalic spcclrngram ror the ~yJlab'e "bag, " indicating the overtap or the

inrormation ~pecirying the different phonemes. Reprinted with permission rrom Liberman
119701,
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perception of all of the phonemes in an utterance without the aid of lexical
or other higher level constraints, these conditions do not always obtain,
People can correctly perceive speech under quite impoverished condi-

tions, if it is semantically coherent and syntactically well formed (G,
Miller, Heise, & Lichten, 1951), This means that the speech mechanisms
must be able to function, even with a highly degraded stimulus, In par-
ticular, as Thompson (1984), Norris (1982), and Grosjean and Gee (1984)
have pointed out, the mechanisms of speech perception cannot count on
accurate information about any part of a word, As we shall see, this fact
poses a serious problem for one of the best current psychological models
of the process of spoken word recognition (Marslen-Wilson & Welsh,
1978),

Many of the characteristics that we have reviewed differentiate speech
from print-at least, from very high quality print on white paper- but
it would be a: mistake to think that similar problems are not encountered
in other domains. Certainly, the sequential nature of spoken input sets

. speech apart from vision, in which there can be some degree of simul-
taneity of perception, However, the problems of ill-defined boundaries,
context sellsitivity of cues, and noise and indeterminacy are central
problems in vision just as much as they are in speech (cf. Ballard, Hinton, 
and Sejnowski, 1983; Barrow & Tenenbaum, 1978; Marr, 1982), Thus,
though the model we present here is focussed on speech perception, we
would hope that the ways in which it deals with the challenges posed by
the speech signal are applicable in other domains.

activation models than with models in any other computational frame-
work, such as expert systems or production systems. 

.0-

THE TRACE MODEL

The Imporltwce of the Right Architecture

All four of the considerations listed above played an important role in
the formulation of the TRACE model. The model is an instance of an
interactive activation model, but it is . by no means the only instance of
such a model that we have considered or that could be considered, Other
formulations ,we considered simply did not appear to offer a satisfactory
framework for dealing with these four aspects of speech (see Elman &
McClelland, , 1984, for discussion). Thus, the TRACE model hinges as
much on the particular processing architecture it proposes for speech
perception as it does on the interactive activation processes that occur
within this architecture.

Interactive~activation mechanisms are a class too broad to stand or fall
on the merits of a single model, To the extent that computationally and
psychologically adequate models can be built within the framework, the
attractiveness of the framework as a whole is, of course, increased, but
the adequacy of any particular model will generally depend on the par-
ticular assumptions that model embodies. It is no different with interactive-

Overview

The TRACE model consists primarily of a very large number of units
organized into three levels, thefealllre. phoneme, and It'ord levels, Each
unit stands for a hypothesis about a particular perceptual object occurring
at!a particular point in time defined relative to the beginning of the ut- .
terance.

A small subset of the units in TRACE II, the version of the model we
focus on in this paper, is illustrated in Figs, 2, 3, and 4, Each of the three
figures replicates the same set of units, illustrating a different property
of the model in each case. In the figures, each rectangle corresponds to
a separate processing unit, The labelS on the units and along the side
indicate the spoken object (feature, phoneme, or word) for which each
unit stands, The lefland right edges of each rectangle indicate the portion
of the input the unit spans,

At the feature level, there are several banks of feature detectors, one
for each of several dimensions of speech sounds. Each bank is replicated
for' each of severdl successive moments in time, or time slices, At . the

phoneme level, there are detectors for each of the phonemes, There is
one copy of each phoneme detector centered over every three time slices.
Each unit spans six time slices, so units with adjacent centers span over-
lapping ranges of slices, At the word level, there are detectors for each
word. There is one copy of each word detector centered over every three
feature slices. Here each detector spans a stretch of feature slices cor-
responding to the entire length of ' the word. Again, then, units with ad-
jacent centers span overlapping ranges of slices,

Input to the model, in the form of a pattern of activation to be applied
to the units at the feature level, is presented sequentially to the featurc-
level units in successive sliCes, as it woul(J if it were a real speech stream,
unfolding in time. Mock-speech inputs on the three illustrated dimensions
for the phrase " tea cup" (/tik"p/)' are shown in Fig. 2, At any instant,
input is arriving only at the units in one slice at the feature level. In terms
of the display in Fig, 2, then, we can visualize the input being applied to
successive slices of the network at ~uccessive moments in time. However,
it is important to remember that all the units are continually involved in
processing, and processing of the input arriving at one time is just begin-
ning as the input is moved along to the next time slice.

. The entire network of units is called " the Trace, " because the pattern
of activation left by a spoken input is a trace of the analysis of the input
at each of the three processing levels. This trace is unlike m~i\y traces
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Flo. 2, A subsel of the units in TRACE II. Each rectangle represents a different unit, The

labels indicate the item for which the unit stands, and the horizontal edges of the rectangle
indicale the portion of the Trace spanned by each unit. The input feature specifications for
the phrase " tea cup. " preceded and followed by silence. are indicated for the three iIIus-
trated dimensions by the blackening of the corresponding feature units.

though , in that it is dynamic, since it consists of activations of processing
elements. and these processing elements 'continue to interact as time goes
on. The distinction bet!ween perception and (primary) memory is com-
pletely blurred~.since the percept is unfolding in the same structures that
serve as working memory, and perceptual processing of older portions of
the input continues even as newer portions are coming into the system,
These continuing interactions permit the model to incorporate right con-
text effects, and allow ~he model to account directly for certain aspects
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FIG. 3. The connections orthe unit for the phoneme Ik/, centered over Time Slice :!4. The

rectangle for this unit is highlighted with a bold outline. The Ikl unit has mutually excilutory
connections to all the word- and feature-level units colored either purtly or wholly in bluck;
The more coloring on a units ' rectangle. the greater the strength of the connection. The
Ikl unit has mutually inhibitory connections to all of the phoneme- level units colored purtly
or wholly in grey. Again. the relative amount of inhibition is indicated by the extent of the
coloring of the unit: it is directly proportional to the extent of the temporal overlap of the
units. 
of short-term memory, such as the fact that more information can be
retained for short periods of time if it hangs together to form a coherentwhole, 

Processing takes place through the excitatory and inhibitory interac-
tions of the units in the Trace. Units on different levels that are mutually
consistent have mutually excitatory connections. while units on the same
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visual mo.del eliminate these between-level inhibito.ry co.nnections. since
these co.nnectio.ns can interfere with succ~ssful use o.f parti~1 information
(McClelland, 1985; McClelland , 1986), Like these newer versio.ns o.f the
visual mo.del, TRACE likewise co.ntains ,no. between-level inhibitio.n. We
will see that this feature o.f TRACE plays a very impo.rtant role in its
ability to. simulate a number o.f empirical pheno.mena.

SOIm:es of TRACE' s lIrL'hitectllre, The inspiratio.n fo.r the architecture
o.f TRACE go.es back to. the HEARSAY Speech understanding system
(Erman & Lesser, 1980; Reddy et al.. 1973), HEARSAY introduced the
no.tio.n o.f a Blackbo.ard, a structure similar to. the Trace in the TRACE
mo.del. The main difference is that the Trace is a dynamic processing
structure that is self-updating, while the Blackbo.ard in HEARSAY was
a passive data structure thro.ugh which anto.no.mo.us processes shared
info.rmatio.n. 

The architecture o.fTRACE bears a stro.ng resemblance to. the " neural
spectrogram" propo.sed by Cro.wder (1978, 1981) to. acco.unt fo.r interfer-
ence effects between successive items in sho.rt-term memo.ry. . Like ~UI'
Trace, Crowder s neural spectro.gram pro.vides a dynamic wo.rking
memo.ry representatio.n o.f a spoken input. There are two. impo.rtant dif-
ferences between the Trace and Cro.wder s neural spectrogram , ho.wever.
First o.f all, the neural spectro.gram was assumed o.nly to. represent the
frequency spectrum o.fthe speech wave o.ver time; the Trace , o.n the other
hand, represents the speech wave in:terms o.fa large number o.f ditferent
feature dimensio.ns, as well as in terms of the pho.nemes and wo.rds co.n-
sistent with the pattern o.f activatio.n at the feature level, In this regard
TRACE might be seen as an extensio.n o.f the neural spectrogram idea,
The seco.nd difference is that Crowder po.stulates inhibito.ry interactio.ns
between detecto.rs fo.r spectral co.mpo.nents spaced up to. several hundred
milliseco.nds apart. These inhibito.ry Interactio.ns extend co.nsiderably far-
ther than tho.se we have included in the feature level o.f the Trace. This
difference do.es no.t reflect a' disagreement with Crowder sassumptio.ns.
Tho.ugh we have no.t, fo.und it necessary ,to. ado.pt this assumptio.n to. ac-
count fo.r the pheno.mena we fo.cus on in this article, lateral extensio.n o.f
inhibitio.n in the time do.main might well allo.w the TRACE framewo.rk to.
inco.rpo.rate many o.f the findings Cro.wder discusses in the two. articlescited. 
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FI(j, 4. The conneclions of Ihe highlighled unil for Ihe high value on Ihe Vocalic felllure
dimension in Time' Slice 9 and for Ihe highlighled unil for Ihe word Ik' pl starling in Slice

24. Excilalory conneclions are rf(resenled in black. inhibitory connections in grey. as inFig. 3. 
level that are inco.nsistent have mutually inhibito.ry co.nnectio.ns, All co.n-
nectio.ns are bidirectio.nal. Bidirectio.nal excitato.ry and inhibito.ry' co.n-
nectio.ns o.f the unit fo.r Ikl centered o.ver Feature-slice 24 (co.unting from

. 0) are sho.wn ,n Fig. 3; co.nnectio.ns far the high value o.f the feature

Vo.calic in Slice 9.and fo.r thewo.rd Ik" pl with the Ikl centered o.ver Slice
24 are sho.wn i~ Fig. 4.

The interactive activatio.n mo.del o.f visual ward reco.gnitio.n (Mc-
Clelland & Rumelhart, 1981) included inhibito.ry co.nnectio.ns between
each unit o.n the feature level and letters that did no.t co.ntain the feature,
and between each letter unit and the wo.rds that did no.t co.ntain the letter.
Thus the units fo.r T in the first letter po.sitio.n inhibited the units fo.r all
wo.rds that did no.t begin with T. Ho.wever, mo.re recent versio.ns o.f the

Context-Sensitive TlIningof Phoneme Units

The co.nnectio.ns, between the feature and pho.neme level determine
what pattern of activations o.ver the feature units will mo.st slrongly ac-

tivate the detecto.r fo.r each phoneme. To. co.pe with the fact that the
features representing each pho.neme vary acco.rding to. the pho.nemes sur-
rounding them, the model adjusts the connections from units al the fea-
ture level to. units at the nhoneme level as a function nf Iu'tiv:llinn" al 'hI"



TRACE MODEL MC CLELLAND AND ELMAN

TRACE land TRACE 

In developing TRACE, and i(l trying to test its computational and psy-
chological adequacy, we found that we were sometimes led in rather
different directions, We wanted to show that TRACE could process real
speech, but to build a model that did so it was necessary to worry about
exactly what features must be extracted from the speech signal, about

differences in duration of different features of different phonemes, and
about how to cope with the ways in which features and feature durations
vary as a function of context. Obviously, these are important 

problems,

worthy of considerable attention. However, concern with these issues
tended to obscure attention to the fundamental properties of the model
and the model' s ability to account for basic aspects of the psych(jlogical

data obtained in many experiments.
To cope with these conflicting goals, we have developed two different

versions of the model, called TRACE 1 and TRACE II, Both models

spring from the same basic assumptions, but focus on different aspects
of speech perception. TRACE 1 was designed to address some of the
challenges posed by the task of recognizing phonemes from real speech,
This version of the model is described in detail in Elman and McClelland
(in press). With this version of the model, we were able to show that the
TRACE framework could indeed be used to process real speech-albeit
from a single speaker uttering isolated monosyllables at this point. We
were also able to demonstrate the efficacy of the idea of adjusting feature
to phoneme connections on the basis of activations produced by sur-
rounding context. With connection strength adjustment in place ' the

model was able to identify the stop consonant in 90% of a set bf isolated
monosyllables correctly, up from 79% with an invariant set of connec-
tions. This level of performance is comparable to what has been achieved
by other machine-based phoneme identification schemes (e,g., Kopec,
1984) and illustrates the promise of the connection strength adjustment
scheme for coping with variability due to local phonetic context. Ideas
for extendiqg the connection strength adjustment scheme to deal with the
ways in which cues to phoneme identification vary with global variables
(rate, speaker characteristics, eJc, ) are considered in the general discus-
sion.

TRACE II, the version described in the present paper, was designed
to account primarily for lexical influences on phoneme perception and

for what is known about on-line recognition of words, though we use it
to illustrate how certain other aspects of phoneme perception fall out of
the TRACE framework, This version of the model is actually a simplified
version of TRACE 1. Most importantly, we eliminated the connection-
strength adjustment facility, and we replaced the real speech inputs to
TRACE I with mock speech, This mock speech input consisted of over-
lapping but contextually invariant specifications of the features of suc-
cessive phonemes, Obviously, then, TRACE II sidesteps many funda-

mental issues about speech, But it makes "it much easier to see how the
mechanism can account for a number of aspects of phoneme and word
recognition, A number of further simplifying assumptions were made to
facilitate examination of basic properties of the interactive activation pro-
cesses taking place within the model,

The foll9wing sections describe TRACE II in more detail, First we
consider the specifications of the mock-speech in()ut to the model, and
then we consider the units and connections that make up the Trace at

each of the three levels,

Mock-Speech Inputs

The input to TRACE II was a series of specifications for inputs to units
at the feature level, one for each 25-ms time slice of the mock utterance,
These specifications were generated by a simple computer program from
a sequence of to-be-presented segments provided by the human user of
the simulation program. The allowed segments consisted of the stop con-
sonants Ibl, Ipl, Idl, It/, lgI, and Ikl, the fricatives Isl and ISI sh" as in

ship ), the liquids III and Irl, and the vowels Ia! (as in "pot"

), 

IiI (as in

beet

), 

lul (as in "boot" ), and rI (as in "but

). 

rI was also used to

represent reduced vowels such as the second vowel in " target." There

was also a "silence " segment represented by I-I. Special segments, such
as a segment halfway between Ibl and Ipl, were also used; their properties
are described in descriptions of the relevant simulations,

A set of seven dimensions was used in TRACE lIto represent the
feature-level inputs, Five of the' dimensions (Consonantal, Vocalic, Dif-
fuseness, Acuteness, and Voicing) were taken from classical work in
phonology (Jakobson, Fant, & Halle, 1952), though we treat each of these

dimensions as continua, in the spirit ofOden and Massaro (1978), rather
than as binary features, A sixth dimension, Power, was included because
it has been found useful for phoneme identification in various machine

systems (e,g., Reddy, 1976), and it was incorporated here to add an ad-
ditional dimension to increase the differentiation of the vowels and con-
sonants, The seventh dimension, the amplildde of the burst of noise that
occurs at the beginning of word initial stops, was included to provide an
additional basis for distinguishing the stop consonants, which otherwise
differed from each other on only one or two dimensions, Of course, these

phoneme level in preceding and following time slices, For example, when
the phoneme It I is preceded or followed by the vowel 

Iii, the feature

pattern corresponding to the It I is very different than it is when the 
It I 

preceded or followed by another vowel, such as la/. Accordingly, when

the unit for Iii in a particular slice: is active, it changes the pattern of

connections for units for It I in preceding and following slices.
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dimensions an;: intentional simplifications of the real acoustid structure
of speech, in much the same way that the font used by McClelland and
Rumelhart (1981) in the interactive-activation model of visual word rec-
ognition Was an intentional simplification. of the real structure of print.

Each dimension was divided into eight value ranges. Each phoneme
was assigned a value on each dimension; the values on the Vocalic, Oif-
fuseness, and Acuteness dimensions for the phonemes in the utterance
!tik.p! are shown in Fig. 2, The full set of values are shown in Table I,
Numbers in the cells of the table indicate which value on the indicated
dimension was most strongly activated by the feature pattern for the
indicated phoneme, Values range from I very low to 8 = very high,

The last two dimensions were altered for the categorical perception and
trading relations simulations,

Values were assigned to approximate the values real phonemes would
have on these dimensions and to make phonemes that fall into the .same
phonetic category have identical values on many of the dimensions, Thus, .
for example, all stop consonants were assigned the same values on the
Power, Vocalic, and Consonantal dimensions, We do not claim to have
captured the details of phoneme similarity exactly, Indeed, one cannot
do so in a fixed feature set because the similarities vary as a function of
context. However, the feature sets do have the property that the feature
pattern for one phoneme is more similar to the feature pattern for other
phonemes in the same phgnetic category (stop, fricative, liquid, or vowel)
than it is to the patterns for phonemes in other categories. Among the
stops, those phonemes sharing place of articulation or voicing are more
similar than those sharing neither attribute.

The correlations of the feature patterns for the 15 phonemes used are
shown in Table 2. It is these correlations of the patterns assigned to the
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different phonemes. rather than the actual values assigned to particular
phonemes or even the labels attached to the different mock-speech di-
mensions. that determine the behavior of the simulation model. since it
is these correlations that determine how much an instance of one pho-
neme will tend to excite the detector for another,

The feature patterns were constru~ted in such a way that it was possible
to create feature patterns that would activate two different phonemes in
the same category (stop. liquid. fricative. or vowel) to an equal extent
by averaging the values of the two phonemes on one or more dimensions,
In this way, it was a simple matter to make up ambiguous inputs. halfway
between two phontimes. or to construct continua varying between' two
phonemes on one or more dimensions.

The feature specification of each phoneme in the input stream extended
over II time slices of the input. The strength of the pattern grew to a
peak at the 6th slic~ and fell off again. as illustrated in Fig, 2, Peaks of
successive phonemes were separated by 6 slices, Thus. specifications of
successive phonemes overlapped. as they do in real speech (Fowler. 1984;
Liberman, 1970).

Generally. there were no cues to word boundaries in the speech
stream- the featUlie specification for the last phoneme of one word
overlapped with the ,first phoneme of the next injust the same way feature
specifications of adj~\cent phonemes overlap within words, However. en-
tire utterances presented to the model for processing-whether they were
individual syllables., words. or strings of words-were preceded and fol-
lowed by silence, Silence was nol simply the absence ofany input; rather.
it was a pattern of feature values. just like the phonemes, Thus. a ninth
value on each of the iseven dimensions was associated with silence, These
values were actually outside the range of values which occurred in the
phonemes themselves. so that the features of silence were completely
uncorrelated with the features of any of the phonemes used,

The Phoneme Level and Feature-Phoneme Connections

At the phoneme level. there is a set of detectors for each of the 15
phonemes listed above, In addition. there is a set of detectors for the
presence of silence, These silence detectors are treated like all other
phoneme detectors. Each member of the set of detectors for a particular
phoneme is centered over a different time ~ ;ce at the feature level, and
the centers are spaced three time slices apart. The unit centered over a
particular slice received excitatory input from feature units in a range of
slices, extending both forward and backward from the slice in which the
phoneme unit is located, It also sends excitatory feedback down to the
same feature units in the same range of slices. 

The connection strengths between the feature- level units and a partic-
ular phoneme-level unit exactly match the feature pattern the phoneme
is given in its input specification, Thus. as illustrated in Fig. 3. the
strengths of the connections between the node for Ikl centered over Time
Slice 24 and the nodes at the feature level are exactly proportional to the
pattern of input to the feature level produced by an input specification
containing the featur~s of Ikl centered in the same time slice.

There are inhibitory connections between units at the phoneme level.
Units inhibit each other to the extent that the speech objects they stand
for represent alternative interpretations of the content of the speech
stream at the same point in the utterance. Note that. although the feature
specification of a phoneme is spread over a window of II slices, succes-
sive phonemes in the input have their ,centers 6 slices apart. Thus each
phoneme- level unit is thought of as spanning 6 feature-level slices. as
illustrated in Fig. 3. Each unit inhibits others in proportion to their
overlap, Thus, a phoneme detector inhibits other phoneme detectorscen-
tered over the same slice twice as much as it inhibits detectors centered
3 slices away, and inhibits detectors centered 6 or more slices away not
at all, ( 

Fc'lIlIIre Lel'el Vnit.f and Co""ection.

The units at the feature level are detectors for features of the speech
stream at particular ,moments in time. In TRACE II. there was a unit for
each of the nine values on each of the seven dimensions in each time

slice of the Trace, The figures show three sets of feature units in several
time slices, Units for features on the same dimension within the same
time slice are mutually inhibitory, Thus, the unit for the high value of the
Vocalic dimension in Time Slice 9 inhibits the units for other values on
the same dilJlension in the same time slice. as illustrated in Fig. 4. This
figure also illustrates the mutually excitatory connections of this same
feature unil with units at the phoneme level. In the next section we re-
describe these connections from the point of view of the phonem~ level,

Word Vnits and Word-Phoneme Connec'tions

There is a unit for every word in every time slice, Each of these units
represents a different hypothesis about a word identity and starting lo-
cation in the 'Irace. For example, the unit for the word Ik. pl in Slice 24

. (highlighted in Fig, 4) represents the hypothesis that the input contains
the word "cup" starting in Slice 24, More exactly, it represents the hy-
pothesis that the input contains the word "cup" with its first phoneme
centered in Time Slice 24. 

Word units receive excitation from the units for the phonemes they
contain in a series of overlapping windows. Thus, the unit for "cup" in

Time Slice 24 will receive excitation from Ikl in slices neighboring Slice



TRACE MODEL MC CLELLAND AND ELMAN

24, from rI in slices neighboring Slice 30, and from Ipl in slices neigh-

boring Slice 36. As with the feature-phoneme connections, these con-
nections are strongest at the center of the window and fall off linearly on
either side,

The inhibitory connections at the word level are similar to those at the
phoneme level, Again, the strength of the inhibition between two word
units depends on the number of time slices in which they overlap. Thus,
units representing alternative interpretations of the same stretch of pho-
neme units are strongly competitive, but units representing interpreta-
tions of nonoverlapping sequences of phonemes ~o not compete at all.

TRACE II has detectors for the 211 words found in a computerized
phonetic word list that met all of the following constraints: (a) the word
consisted only of the phonemes listed above; (b) it was not an inflection
of some other word that could be made by adding "-ed,

" "

os, " or
ing ; (c) the word together with its "-ed,

" "

-s," and " ing" inflections

occurred wiih a frequency of 20 or more per million in the Kucera and
Francis (1967) word count. It is not claimed that the model' s lexicon is an
exhaustive list of words meeting this criterion, since the computerized
phonetic lexicon was not complete, but it is reasonably close to this, To
make specific points about the behavior of the model, detectors for the
following three words not in the main list were added: "blush,

" "

regal,
and " sleet. " The model also had detectors at the word level for silence
(I-I), which was treated like it one-phoneme word,

indefinitely, though for practical purposes it is always terminated . after

some predetermined number of time cycles has ~Iapsed,

...

Presentation tlnd Proce!jti'ing of tm Ullertlnc'

Before processing of an utterance begins, the activations of all of the
units are set at their resting values. At the start of processing, the input
to the initial slice offeature units is applied, Activations are then updated,
ending the initial time cycle, On the next time cycle, the input to the next
slice of feature units is applied , and excitatory and inhibitory inputs to
each unit resulting from the pattern of activation left at the end of the
previous time slice are computed,

It is important to remember that the input is applied , one slice at a
time, proceeding from left to right as though it were an ongoing stream
of speech " writing on" the successive time slices of the Trace, The in-
teractive-activation process is occurring thrcughout the Trace on each
time slice, even though the external bottom-up input is only coming into
the feature units one slice at a time. Processing interactions can continue
even after the left to right sweep through the input reaches the end of the
Trace. Once this happens, there are simply no new input specifications
applied to the Trace; the continuing interactions are based on what has
already been presented. This interaction process is assumed to continue

Details of Processing Dynamkti,

The interactive activation process in the Trace model follows thedy-
namic assumptions laid out in McClelland and Rumelhart (1981), Each
unit has a resting activation value arbitrarily set at 0 , a maximum activation
value arbitrarily set at 1,0, and a minimum activation set at - .3. On
every time cycle of processing, all the weighted excitatory and inhibitory
signals impinging upon a unit are added together, The signal from one
unit to another is just the extent to which its activation exceeds 0; if its
activation is less than 0, the signal 'is 0. 1 Global level-specific excitatory,
inhibitory, and decay parameters scale the relative magnitudes of dilferent
types of influences on the activation of each unit. Values for these pa-

rameters are given below,
After the net input to each unit has been determined based on the prior

activations of the units, the activations of the units arc all updated for
the next processing cycle, The new value of the activation of the unit is
a function of its net input from other units and its previous activation
value, The exact function used (see McClelland & Rumelhart, 1981) keeps

unit activations bounded between their maximum and minimum values.
Given a constant input, the activation of a unit will stabilize at a point
between its maximum and minimum that depends on the strength and
sign (excitatory or inhibitory) of the input. With a net input of 0, the
activation of the unit will gradually return to its resting level.

Each processing time cycle corresponds to a single time slice at the
feature level. This is actually a parameter of the model- there is no
intrinsic reason why there should be a single cycle of the interactive-
activation process synchronized with the arrival of each successive slice
of the input. A higher rate of cycling would speed the percolation of
effects of new input through the network relative to the rate of presen-
tation,

Output Assumptions

Activations of units in the Trace rise and fall as the input sweeps across
the feature level. At any time, a decision can be made based on the pattern
of activation as it stands at that moment. The decision mechanism can,
we assume, be directed to consider the set of units located within a small
window of adjacent slices within any level. The units in this set then

I At the word level, the inhibitory signal from one word to another is just. the square of

the extent to which the sender s activation exceeds zero. This tends to smooth Ihe efli:.:h
of many units suddenly becoming slightly activated. and of course il also increases Ihe
dominance of one active word over many weakly activated ones,
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Sj = 
kaj,

Even with all the simplifications described above. the TRACE model
still has a number offree parameters. These parameters are listed in Thble
3, It should be noted that parameters are not if'! general directly compa-
rableacross levels, For example. phoneme- to-phoneme and word- to-
word inhibition are not directly comparable to each other or to feature-
to-phoneme inhibition. since feature-level units conlpete only within a
single slice. while phoneme and word units compete in proportion to their
overlap,

There was some trial aod error in finding ' he set of parameters used in
the reported simulations. but. in general. the qualitative behavior of the
model was remarkably robust under parameter variations. and no sys~
tematic search of the space of parameters was necessary, Generally. ma-
nipulations of parameters simply influence themagnitude or the timing
of one effect or another without changing the basic nature of the effects
observed, For example. stronger bottom-up excitation speeds things up
and can indirectly influence the si~e of top-down effects. since. for ex-

ample. stronger word level activations produce stronger feedback to the
. phoneme level. Stronger top-down excitation. of course. directly influ-
ences the magnitude of lexical effects, The one parameter that appeared
to influence the qualitative behavior of the model was the strength of
within- level inhibition, Stronger within-level inhibition make the model
commit itself more strongly to slight early differences in activation among
competing alternatives. There was. therefore. some tuning of this param-
eter to avoid early overcommitment that would prevent right context from
exerting an influence under some circumstances, Finally. a low rate of
feature- level decay was used to allow feature-level activations to persist

, after the input moved on to later slices,
The parameter values were held constant at the values shown in the

constitute the set of response alternatives. designated by the identity of
the item for which the unit stands (note that with several adjacent slices
included in the set. several units in the alternative set may corr~spond to
the same overt response), Word identification responses are assum~d to
be based on . readout from the word level. and phoneme identification
responses are assumed to be based. on readout from the phoneme level.
As far as phoneme identification is concerned, then. it hOl:n~geneous
mechanism is assumed to be used with both word and nonword stimuli.
The decision mechanism can be asked to make a response either (a) at a
criterialtime during processirig or (b) when a unit in the alternative set
reaches a criterial strength relative to the activation of other alternative
units. Once a decision has been made to make a response. one of the
alternatives is chosen from the members of the set, The probability of
choosing a particular alternative i is then given by the Luce (1959)
choice rule:

peRi
~ S

when indexes the members of the alternative set. and

The exponential transformation ensures that all activations are positive
and gives great weight to stronger activations. and the Luce rule ensures
that the sum of all of the response probabilities adds up to 1,0. Substan-
tially the same assumptions were used by McClelland and Rumelhart
(1981),

Mil1imizil1R the Number of Parameters
At the expense oCconsiderable realism. we have tried to keep TRACE

II simple by using homogeneous parameters wherever possible. Thus, as
already noted. the feature specifications of all phonemes were spread out
over the same number of time slices. effectively giving all phonemes the
same duration, The strength of the total excitation coming into a partic-
ular phoneme unit ~rom the feature units was normalized to, the same
value for all phonelT1es. thus making each phoneme equally excitable by
its own canonical pattern, Other simplifying assumptions should be noted
as well. For example. there were no differences in connections or resting
levels for words of d~fferent frequency, It would have been a simple matter
to incorporate frequency as McClelland and Rumelhart (1981) did. and a
complete mltdel would. of course. include some account for the ubiquitous
effects of word freq~ency. We left it out here to facilitate an examination
of the many other f~ctors that appear to influence the process of word
recognition in speech perception,

TABLE 3
Parameters of TRACE II

Parameter Value

Feature-phoneme excitation
Phoneme-word excitation
Word-phoneme excitation
Phoneme-feature excitation
Feature-level inhibition
Phoneme-level inhibition"
Word-level inhibition"
Feature-level decay
Phoneme-level decay
Word-level decay

" Per three time-slices of overlap.
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table throughdut the simulations, except in the simulations of categorical
perception and tradi'ng relations, Since we were not explicitly concerned
with the effeds of feedback to the feature level in any of the other sim-
ulations, we sth the feedback from the phoneme level to the feature level
to zero to speed up the simulations in all other cases. In the categorical
perception and trading relations simulations this parameter was setat ,OS,
Phoneme-to-feature feedback tended to slow the effective rate of decay
at the feature level and to increase the effective distinctiveness of different
feature patterris, Rate of decay of feature-level activations and strength
of phoneme- to'- phoneme competition wete set to ,03 and .05 to compen-
sate for these effects, No lexicon was used in the categorical perception
and trading reliitions simulations, which is equivalent to setting the pho-
neme to word ~xdtation parameter to zero,
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ambiguous between Ibl and Ipl followed by III, 0 and Ig!. See texl Itlr ilfull cxplal1aliul1,

THE DYNAMICS OF PHONEME PERCEPTION

In the introduction, we motivated the approach taken in the TRACE
model in general terms. In this section, we see .that the simple concepts
that lead to TRACE provide a coherent and synthetic account of a large
number of different kinds of findings on the perception of phonemes,
Previous mode:ls have been able to provide fairly accurate accounts of a
number of these phenomena, For example, Massaro and Oden s feature
integration model (Massaro, 1981; Massaro & Oden, 1980a, 1980b; Oden
& Massaro, 1978) accounts in detail for a large body of data on the
influences of multiple cues to phoneme identity, and the Pisoni/Fujisaki-
Kawashima mbdel of categorical perception (Fujisaki & Kawashima,
1968; Pisoni, 1973, 1975) accounts for a large body of data on the con-
ditions under which subjects can discriminate sounds within the same
phonetic category. Marsler,Wilson s COHORT model can account for
the time course of lexical influences on phoneme identification. What we
hope to show here is that TRACE brings these phenomena, and several
others not considered by either model, together into a coherent picture
of the process of phoneme perception as it unfolds in time,

The present section consists of three main parts. The first focuses on
lexical effeCts On phoneme identification and the conditions under which
these effects are obtained. Here, we see how TRACE can account for
the basic lexical effect, and we make it clear why lexical effects are only
obtained under some conditions, The second part of this section focuses
on the question of the role of phonotactic rules- that is, rules specifying
which phonemes can occur together in English- in phoneme identifica-
tion, Here, we see how TRACE mimics , the apparently rule-governed
behavior of human subjectf. in terms of a "conspiracy" of the lexical
items that instantiate the rule. The. third part focuses on two aspects of
phoneme identification often considered quite separately from lexical ef-

fects-namely, the contrasting phenomena of cue tradeofTs in phoneme
perception and categorical perception, Here we see that TRACE provides
an account of both effects as well as details of their time course, All three
parts of this section illustrate 'how the simple mechanisms of mutual ex-
citation and inhibition among the processing units of the Trace provide a
natural way of accounting for the relevant phenomena, The section ends
with a brief consideration of the ways in which TRACE might be ex-
tended to cope with several other aspects of phoneme identification andperception, 
Lexical EffeL'

YOll can tell a phoneme by Ihe company Ihm il keepj' 2 In this section,
we describe a simple simulation of the basic lexical effect on phoneme
identification reported by Ganong (1980), We start with this phenomenon
because it. and the related phonemic restoration effect, were among the
primary reasons why we felt that the interactive-activation approach
would be appropriate for speech perception as well as visual word rec-
ognition and reading,

For the first simulation, the input to the model consisted of a feature
specification which activated Ibl and Ipl equally, followed by (amI partially
overlapping with) the feature specifications for III then n, then Ig!. Figure
5 shows phoneme and word-level activations at several points in the
unfolding of this input specification. Each panel of the figure represents

2 This titte is adapJed from the tille of a talk by D-dvid E, Rumelharl on relillcd phenol1lcnil
in teller perception. These findings are described in Romelhart and McClelland (1982/, We
Ihank Dave for his permission to adapt the title
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a different point in time during the presentation and concomitant pro-
cessing of the input. The upper portion of each panel is used to display
activations at the word level; the lower panel is used for activations at
the phoneme level. Each unit is represented by a rectangle, labeled with
the identity of the item the unit stands for, The horizontal extension of
the rectangle indicates the portion of the input spanned by the unit. The
vertical position of the rectangle ind icates the degree of activation of the
unit. In this and subsequent figures, activations of the phoneme units

located between the peaks of the input specifications of the phonemes
(at Slices 3, 9, 15. etc, ) have been deleted from the display for clarity
(the activations of these units genera1ly get suppressed by the model,

since the units on the peaks tend to dominate them), The input itself is
indicated below each panel, with the successive phonemes positioned at
the temporal positions of the centers of their input specifications, The
rt along the axis represents the point in the presentation of the input

stream at which the snapshot was t!lken,
The figure illustrates the gradual' buildup of activation of the two in-

terpretations of the first phoneme, followed by gradual buildups in acti-
vation for subsequent phonemes, As these processes unfold, they begin
to produce word-level activations, It is difficult to resolve any word-lev~1

activations in the first few frames, . however, since in these frames, the
information at the p~oneme level simply has not evolved to the point
where it provides enough constraint to select anyone particular word.
In this case, it is only after the Igl has come in that the model has infor-
mation telling it whe~her the input is closer to "plug,

" "

plus,

" "

blush,
or "blood" (TRACE's lexicon contains no other words beginning with
Iprt or fbr/), After that point, as illustrated in the fourth panel, "plug
wins the competition at the word level and, through feedback support to
Ip/, causes Ipl to dominate Ibl at the phoneme level. The model, then,
provides an explicit account for the way in which lexical information can
influence phoneme identification,

Two things about the lexical effect observed in this case are worthy of
note. First. the effect is rather small, Second, it does not emerge until
well after the ambiguous segment itself has come and gone, There is a
slight advantage of Ipl over Ibl in Frames 2 and 3 of the figure. In these
cases, however, the advantage is not due to the specific information that
this item is the word "plug the model can have no way of knowing
this at these points in processing, The slight advantage for Ipl at these

early points is due to the fact that there are more words beginning with
Ipll than Ibltin the model's lexicon, and in particular, there are more
beginning with Iprl than Ibrt. So, when the input is nrd/, with the?
standing for the ambiguous Ib/-/pl segment, the model must actually over-
come this slight Ip/-ward bias, Eventually, it does so,

. Figure 6 shows the temporal course of buildup of the strength of the
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shown is the buildup or response strength ror processing an unambiguou~ Ipl segment in

Ipl'g/. The vertical line topped with " ?" indicates the point in time corresponding to the
center or the initial segment in the input stream. Successive vertical lines indicate centersor successive phonemes. 
Ipl response based on activations of the phoneme units . in Slice 12 for

two cases in which the initial segment is ambiguous between Ipl and Ib/.

In one case, the ambiguous segment is followed by Irgl (as in "plug
in the other, it is followed by IrSI (as in "blush" ), Given the model's
restricted lexicon, which does not contain the ~ord "plush, " the lexical
effect should lead to eventual dominance of the Ipl response in the first
case, but a suppression of the Ipl response in the second case, The dif-
ferences between the contexts do not begin to show up until after the
center of the final phoneme, which occurs at Slice 30. The reason for this
is simply that the information is. not available until that point, because
the phoneme that signals what the word will be comes at the very end of
the word. The effect takes another few time slices to begin to influence
the activation of the ' initial phoneme, because it percolat~s to the first
phoneme by way of the feedback from the word or words that con-
tain it, .

Elimination of the lexical effect by time pressure, Fox (1982) has re-
ported that the lexical effect on word initial segments is eliminated if
subjects are given a deadline to respond within 500 ms of the ambiguous
segment. Though they can correctly identify unambiguous segments in
responses made before the deadline, these early responses show no sen- 
sitivity to the lexical status of the alternatives, Similar findings are also
reported by Fox (1984).

Our model is completely consistent with Fox s results, Indeed, we have
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already seen that the activations in the 1i"ace only begin to reflect the
lexical effect about one phoneme or so after the phoneme that establishes
the lexical identity of the item, Given that this segment does not occur,
in Fox s experiments, until the second or third segment after the ambig-

uous segment, there is no way that a lexical effect could be observed in
early responses.

But what abqut the fact that early responses to unambiguous segments
can be accurate? TRACE accounts for this too. In Figure 7 we show the
state of the Trace at various different points after the unambiguous Ibl 

Ibrgl, Here, the Ibl dominates the Ipl from the earliest point. The anal-
ogous result is ! obtained, when the stimulus is Ipl in Iprgl, and the actio

vation for the ihitial phoneme is quite independent of whether or not the
item is a word. The response strength for the case when Iprgl is presenttd
in Fig, 6 shows that the probability of choosing Ipl is near unity within
12 processing cycles, or 300 ms of the initia, segment, well before the
deadline would be reached-and well before word identity specifying
information is I/.vailable,

Lexictll effec'ts Itlte in tI word. In the model, lexical effects on word-
initial segments! develop rather late, at least in the case where there is no
context precedIng the word, Of course, the exact timing of the develop-
ment of any lexical effect would be dependent upon the set of words
activated by thb stimulus; if one word predominated early on, a lexical
effect could develop rather. earlier, In general, though, word-initial am-
biguities will require time to resolve on the basis of lexical information,

However, when the ambiguous segment comes late in the word , and the
information that precedes the ambiguous segment has already established
which of the two alternatives for the ambiguous segment is correct
TRACE shows a lexical effect that develops as the direct perceptual
information relevant to the identity of the target segment is being pro-
cessed. This phenomenon is illuStrated in Fig, 8 , which shows the state
of the 1i"aceat several points in time relative to an ambiguous final seg-
ment tha~ could be a It I or a Idl, at the end of the context Itarg I, Within
the duration of a single phoneme after the center of the ambiguous seg-
ment, It! already has an advantage over Idl, We therefore predict that
Fox s results would come out differently, were he to use word-final, as
opposed to word-initial, ambiguous segments, In such a case we would
expect the lexical effect to show up well within the 500-ms deadline,

Dependenc' e of the lexiCtlI effect on phonologic'(11 tlmbigllity, One fur-
ther aspect ofthe lexical effect that was noted by Ganong (1980) deserves
comment, This is the fact that the lexical effect on the identity of a

. phoneme only occurs with segments which fall in the boundary region
b~tweentwo phonemes. For segments which are unambiguous examples
of one category or the other, the effect is not obtained, TRACE is entirely
consistent with this aspect of the data, The influence of the lexicon is
simply another source of evidence, like that coming from the feature
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FIG. 8. The stale of the Trace al several stages of processing Ihe stream consisling of
Itarg ' followed by Ii segment ambiguous bel ween III and Id/.



TRACE MODEL MC CLELLAND AND ELMAN

level, influcncing the activation of one phoneme unit or another. When
the bottom-up input is decisive, it can preempt any lexical bias effects.
We have verified this in simulations presenting unambiguous tokens of
Ipl or fbi, followed either by Irgl or IrS/. In these simulations, the unit
for the presented initial segment reaches a very high level of activation,
independent of the following context. When the segment comes at the
end of the word, the context exerts stronger effects, thus accounting for
the fact that speech distortions are easier to detect when they come early
in a word than when they come late (Marslen-Wilson & Welsh, 1978),

However, even there, it is possible to override lexically based activations
with clear bottom-up signals, although there may be some slowing of the
activation process which would probably show up in reaction times.

H should be noted that TRACE' s account of lexical effects is quite
similar to the account offered by the feature integration theory of Massaro
and Oden (1980a). Indeed, Massaro and Oden s model provides quanti-
tative fits to Ganong s findings. We will make some mention of the slight
differences in quantitative assumptions between the models below. For

. now, we note a mo~e crucial difference: TRACE incorporates specific
assumptions about the time course of processing which allows it to ac-
count for the conditions under which lexical effects will be obtained, as
well as for the influence (or a lack thereoO of lexical effects on reaction
times, to which we now turn, 

Ah.H'IIn' (~(lexicaleffed ill some reaction-time studies, Foss and Blank
(1980) presented some results which seemed to pose a challenge to in-
teractive models of phoneme identification in speech perception, They
gave subjects the ta~k of listening to spoken sentences for occurrences
of a particular phoneme in word- initial position, Reaction time to press
a response key from the onset of the target phoneme was the dependent
variable. In one example, the target was IgI and the sentence was, At the
end (~"'a.~t year, the Rovemment, , , . The subject' s task was simply to
press the response key upon hearing the IgI at the beginning of the word
ROl'erllmellt.
. The principle finding of Foss and Blank' s study was that it made no
difference whether the target came at the beginning of a word or a non-
word. Later studies by Foss and Gernsbacher (1983) indicate that other
experiments which have found lexical or even semantic and syntactic

ntext effects on monitoring latencies are flawed, and that monitoring
times for word- initial phonemes are primarily influenced by acoustic
factors affecting phoneme detectability, rather than lexical, semantic, or
syntactic factors,

The conclusion that phoneme monitoring is unaffected by the lexical
status of the target-bearing phoneme string seems at variance with the

spirit of the TRACE model, since in TRACE, the lexical level is always
involved in the perceptual process, However. we have already seen that
there are conditions under which the lexical level does not get much of
a c~ance to exert an effect, In the previous section we saw that there is
no lexical effect on identification of ambiguous word- initial targets when
the subject ~s under time pressure to respond quickly; simply because the
subject must respond before information is even available that would
allow the model-or any other mechanism- to produce a lexical effect.

In the Foss and Blank situation, there is even less reason to expect a
lexical effect, since the target is not an ambiguous segment. We already
saw that activation curves rise rapidly for unambiguous segments; in the
present case, they can reach near-peak levels well before the acoustic
information that indicates whether the target is in a word or nonword has
reached the s~bject's ear. 

The ' results of a simulation run illustrating these points are shown in
Fig. 9. For this example, we imagine that the target is Itl, Note how during
the initial syllable of both streams, little activation at the word level has
been established, Even toward the end of the stream, where the infor-

. mation is just coming in which determines thai " trugus" is not a word,
there is little difference, because in both cases, there are several active
word- level candidates, all supporting the word-initial It/. It is only after
the end of the stream that a real chance for a difference has occurred, Well
before this time arrives, the subject will have made a response, since the
strength of the It! response reaches a level sufficient to guarantee a high
accuracy by about Cycle 30, well before the end of the word, as illustrated:in Fig, 10, 

Even though activations are quite rapid for unambiguous segments,
these can still be influenced by lexical effects, provided that the lexical.
information is available in time, In Fig, II, we illustrate this point for the
phoneme It I i'n the streams Isikr tl (the word " secret" ) and Ig ldA

guldut," a nonword), The figure shows the strength of the It I response
as a function of processing cycles, relative to all other responses based
on activations of phoneme units at Cycle 42, the peak of the input spec-
ification for the It/. Clearly, response stren~ ' h grows faster for the It! in
Isikr tl than for the It! in Ig ldAt!; picking an arbitrary threshold of .9 for
response initiation, we find that the It! in Isikr tl reaches criterion about
3 cycles or 75 ms sooner than the It I in Ig ld"t/.

Studies showing lexical effects in reaction times. Marslen-Wilson
(1980) has reported an experiment that demonstrates the existence of
lexical effects in phoneme monitoring for phonemes coming at later poi~ts
in words. For phonemes coming at the beginning of a word or at the end
of the first syllable, he found no facilitation for phonemes in words rel-
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ms advantage compared to corresponding positions in non words. This
compares quite closely with the value of about 75 ms we obtained for the
Isikr t/- ld' tl example. At the ends of even longer words, the word ad-
vantage increased in size to 185 ms. Marslen-Wilson s result Ihus con-
firms that there are' indeed lexical effects in phoneme moniloring-even
for unambiguous inputs-but underscores the tact that there is no word
advantage for phonemes whose processing can be completed long before
lexical influences would ha\:,e a chance to show up,
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FIG. t t. ProbabililY of the It I response as a funclion of processing cycles. based on acli-
vation of phoneme units at Cycl.:A2. for the stream Isik.. .1 (" secre. , and Id'

guldut" ). Vertical lines indicate the peaks of the input patterns corresponding 10 Ihe
successive phonemes in either slream.

IIImm

B I

100

.!:....

~ 0.
III
1.0

....

en 0.
III

g 0.
III
III

020

-Lr- s- -Lr-a-s- -Lr-a-e-
FIG. 9. Stale of Ihe ltace al three different painls during the processing of the word

targel (/targ t/! and the nonword " trugus" (/tr sf),

ative to phonemes in non words (in fact there was a non word advantage
for these early target conditions). For targets occurring at the end of the
second syllable of a two-syllable word (like "secret though the stimuli
in this particular experiment were Dutch) Marslen-Wilson found an 85-
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The TRACE model and Marslen-Wilson s COHORT model (Marslen-
Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978) offer fairly similar
interpretations of lexical effects in phoneme monitoring, Both models
account for the growth in the effect as a function of position in the word,
As in COHORT, lexiealeffects in TRACE depend on the point at which
the pattern of activation at the word level begins to specify the identities
of the phonemes, In COHORT, there is a discrete moment when this
occurs- when the cohort of items consistent with the input is reduced
to a single item. In T~RACE, things are not quite so discrete, However,
it will still generally be the case in TRACE that the size of the lexical
effect will vary with the location of the "unique point," the point at which
the bottom-up input remains consistent with only a single word, How-
ever, since Marslen-Wilson s experiments were performed with Dutch
words, we have not been able to simulate his experimental demonstration
of this effect in detail.

TRACE and COHORT make similar predictions in some situations,
but not in all. In the next section, we consider a phenomenon which
TRACE accounts for ,via the same mechanisms it uses to account for the
lexical effects we have been considering. Here, the graded feedback from
the word level to the, phoneme level allows TRACE to account for an
effect that would not be predicted by COHORT, unless additional as-sumptions were made, 
Are PlrOllOtoctic Rille Ejfect.f the Res"lt of a Co1lspiracy?

Recently, Massaro ;;tnd Cohen (1983) have reported evidence they take
as support for the use of phonotactic rules in phoneme identification. In
one experiment, Massaro and Cohen s stimuli consisted of phonological
segments ambiguous between Irl and III in different contexts. In one con-
text (fLi/) Irl is permissible in English, but III is not. In another context
(/5-i/) /11 is permissible in English but Irl is not. In a third context (/Li/)
both are permissible, and in a fourth (/v_ i/) neither is permissible. Massaro
and Cohen found a bias to perceive ambiguous segments as Irl when Irl
was permissible or as III when 11/ was permissible. No bias appeared in
either of the other two conditions.

With most of these stimuli, phonotactic acceptability is confounded
with the actual lexica1 status of the item; thus /nil and ffril flee" and

free ) are both words, as is Itril bul not Illil, In the Is_il context, how-
ever. neither Islil or Isril are words, yet Massaro and Cohen found a bias
to hear the ambiguous segment as III, in accordance with phonotactic

rules.
It turns out that TRACE produces the same effect, even though it lacks

phonotactlc rules, The reason is that the ambiguous stimulus produces

partial activations of a number of words (' ~sleep" and "sleet" in the
model' s lexicon; it would also activate "sleeve,

" "

sleek, and others in
a model with a fuller lexicon). None of these word units gets as active
as it would if the entire word had been presented, However, all of them
(in the simulation, there are ony two, but the principle still applies) are
partially activated, and all conspire together and contribute to the acti-
vation of III. This feedback support for the III allows it to dominate the
Irl, just as it would if Islil were an ac~ual word, as shown in Fig, 12,

The hypothesis that phonotactic rule effects are really based on word
activations leads to a prediction: that we should be able to reverse these
effects if we present items that are supported strongly by one or more
lexical items even if they violate phonotactic rules, A recent experiment
by Elman (1983) confirms this prediction, In this experiment, ambiguous
phonemes (for example, halfway between Ibl and Id/) were presented in
three different types of contexts, In all three types, one of the two (in this
case, the Id/) was phonotactically acceptable, while the other (the Ib/)
was not. However, the contexts differed in theil ' relation to words. In one
case, the legal item actually occurred in a word ("bwindle dwindle
In a second case, neither item made a word, but the illegal item was very
cI()se to a word ("bwacelet" dwacelet" ). In a third case, neither item

EiITllJ
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FIG. 12. State (If the 1i'ace at several points in processing a segment ambiguous between

111 and Irl, in the context Is_i/. The units for "sleep" IIslip/) and "sleet" (/slit/) are boxed
together since they take on identical activation values.



TRACE MODEL MC CLELLAND AND ELMAN

was particularly close to a word ("bwime dwime Results of the
experiment are shown in Thble 4. The existence of a word identical to
one of the two alternatives or differing from one of the alternatives by a
single phonetic feature of one phoneme strongly influenced the subject'
choices between the two alternatives, Indeed, in the case where the pho-
notactically irregular alternative ("bwacelet ) was one feature away from
a particular lexical item ("bracelet"), subjects tended to hear the ambig-
uous item in accord with the similar lexical item (that is, as a Ibl) even
though it was phonotactically incorrect.
. To determine whether the model would also produce such a reversal
of the phonotactic rule effects with the appropriate kinds of stimuli,
ran a simulation using a simulated inputambiguous between Ipl and It I in
the context I-Iuli/, Ipl is phonotactically acceptable in this context, but
It I in this context makes an item that is very close to the word " truly,
The results of this run, at two different points during processing, are
shown in Fig. 13, Early on in processing, there is a slight bias in favor
of the Ipl over the Itl, because at first a large number of Ipll words are
slightly more activated than any words beginning with Itl, Later, though,
the It I gets the upper hand as the word " truly" comes to dominate at the
word level. Thus, by the end of the word or shortly thereafter, the closest
word has begun to playa dominating role, causing the model to prefer
the phonotactically inappropriate interpretation of the ambiguous initial
segment.

Of course, at the same time the word " truly " tends to support Irl rather
than III for the second segment.. Thus, even. though this segment is not
ambiguous, and the III would suppress the Irl interpretation in a more
neutral context, the Irl stays quite active,

Trading Relations and CategoriL'al Perc'eption

In the simulations considered thus far, phoneme identificatio~ is intlu-
enced by two different kinds of factors, featural and lexical. When one
sort of information is lackin~, the other can compensate for it. The image

tha, emerges from these kinds of findings is of a system that exhibits
great flexibility by being able to base identification' decisions on different
sources of information, It is. of course, well established il1at within the
feat ural domain each phoneme is generally signaled by a number of dif-
ferent cues, and that human subjects can trade these cues off against each
other, The TRACE model exhibits thi-s same flexibility, as we detail
shortly.

But there is something of a paradox, While the p(:rceptual mechanisms
exhibit great flexibility in the cues that they rely on for phoneme identi-
fication, they also appear to be quite "categorical" in nature. That is
they produce much sharper boundaries between phonetic categories than
we might expect based on their sensitivity to multiple cues; and they
appear to treat acoustically distinct feature patterns as perceptually
equivalent, as long as they are identified as instances of the same pho-
neme.

In this section, we illustrate that in TRACE, just as in human speech
. perception, flexibility in feature interpretation-specifically, the ability
to trade one feature of a phoneme off against another-coexists with a
strong tendency toward categorical perception.

For these simulations, the model was stripped down to the essential
minimum necessary, so that the basic mechanisms producing cue tradc-
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TABLE 4
Percenlage Choice of Phonolaclically Irregular Consonant

Stimulus type

Legal word/illegal non word 
Legal non word/illegal nonword
Legal nonword/illegal nearword

Example

dwindle/bwindle
dwime/bwime
dwacelel/bwacelel

Percentage of idenlificlilions
as " illegal" phoneme

F(2,34) = 26.414, p c:: .001.

luli- _ lull- _ luli- _ luli-
FIG. 13. Slate of the Trace al several points in processing an ambiguous Ipl-/11 segmenlfollowed by Ilulil 
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several catego~ical perception studies of VOT continua (using Ig/-/k/.

Id/-/tl. or Ib/-/pl stimuli) have covaried both VOT and FIOF. if only
because FIOF tends to covary with VOT Whl.ll realistic stimuli are used
(e.g.. Pisoni & Lazarus. 1974: Samuel. 1977), Though the simulations use

Ig/-/kl continuum. we consider several categorical perception experi-
ments using Id/-/tl and Ibl-lpl continua. since the same dimensions can
differentiate the two members of both of these other pairs, We also con-
sider data obtained in experiments on other continua. using other cues,
We could easily have repeated the simulations with other sets of continua; .
however. the general qualitative form of the results would be the same,
What would vary from case to case would be the magnitude of the effect
of a step along a given dimension,

The pattern of excitatory input to the VOT and FIOF detectors pro-
duced by the canonical mock speech Igl and Ikl used in the simulationsare illustrated in Fig. 15, 

Trad;"g relat;OIu, TRACE quite naturally tends to produce trading
relations between features. since it relies on the weighted sum of the
excitatory inputs to determine how strongly the input will activate a par-
ticular phoneme unit. All else being equal. the phoneme unit receiving

the largest sum bottom-up excitation will be more strongly activated than
any other, and will therefore be the most likely response when a choice
must be made between one phoneme and another, Since the net bottom-
up input is just the sum of all of the inputs, no one input is necessarily

decisive in this regard,
Generally, experiments demonstrating trading relations between two or .

more cues manipulate each of the cues over a number of values ranging
between a value more typical of one of two phonemes and a value more
typical of the other, Summerfield and Haggard did this for VOT and

FIOF, and found the typical result. namely that the value of one cue that
gives rise to 50% choices of Ikl was affected by' the value of the other
cue: the higher the value of FIOF, the shorter the value of VQT needed.
for 50% choices of Ik/. Unfortunately; they did not present full curves
relating phoneme identification to the values used on each of the two
dimensions, In lieu of this, we present curves in Fig, 16 from a classic
trading relations experiment, by Denes (1955), Similar patterns of results
have been reported in other studies, using other cues (e,g" Massaro.
1981, Figs. 4 and 5), though the transitions are often somewhat steeper
(see below for a discussion of the is~ue of steepness). We have chosen
to present the shallower curves reported by Denes because in them we
see clearly. that there are cases in which a cue that favors one of the two
phonemes to a moderate degree will give rise to the perception of the
other phoneme when paired up with a strong cue that favors the other

offs and categodcal perception could be brought to the fore. The word
level was eliminated altogether. and at the rhonemelevel there were only
three phonemes. tal. Ig/. and Ik/, plus silence (I-I). From these four items.
inputs and percepts of the form ga- and ka- could be constructed.

. The following additional constraints were imposed on the feature speci-

fications of each of the phonemes: (I) the Ial and I-I had no overlap with

either Igl or Ik/, so that neither Ial nor I-I would bias the activations of
the Igl and Ikl phoneme units where they overlapped with the consonant:
(2) Igl and Ikl were identical on five of the seven dimensions. and differed
only on the remaining two dimensions, 

The two dimensjons which differentiated Igl and Ikl were voice onset
time (VOT) and the ()nset frequency of the fitst formant (FIOF), These
dimensions replaced the voicing and burst amplitude dimensions used in
all of the other simulations, Figure 14 illustrates how FIOF tends to
increase as voice onset time is delayed.

Summerfield and Haggard (1977) have shown that subjects are sensitive
both to VaT and to FIOF and that it is possible to trade one of these
cues off against the other. Thus. the boundary between Igal and Ikal shifts
to longer VOTswhen FI starts off lower rather than higher,

Categorical perception and trading relations among cues have been
studied on a variety of different continua by a variety of different inves-
tigators, We have chiosen to focus on the VOT and FIOF features. as
exemplified by the Igal-/kal continuum. because there is data on trade-
offs between these cues (Summerfield & Haggard, 1977). and because
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FlU, 14, Schematic diag~am of a syllable that will be heard as Igal or Ikal, depending on
the point in the syllable at which voicing begins, Prior to the onset of voicing. F2 '(lOP
curvel is energized by aperiodic noise sources. and FI is "cut back" (the noise source has
liUle or no energy in this rangel. Because of the fact that Ft rises over time after syllable
onset (as the vocattruct moves from a shape consistent with the consonant into a. shape

consistent with...he vowell. its frequency at the onset of voicing is higher for later values
of VOT. Parameters used in constructing this schematic syllable are derived from Kewley-
!'ort's (19821 analysis of the parameters of formants. in natural speech. and are similar to
those used in many perceptual experiments,
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identity of Isl and Iii. Dala from Denes, 1955 , filled by the model of Massaro and Cohen,
1977. e. so ms; 0, 100 ms; 8, ISO ms; A, 200 ms, Reprinled wilh permission from Massaro
and Cohen (1977).

1.00

1&1 12345 Ikl

trade-off curves as have been generally reported, we generated a set of
25 intermediate phonetic segments made up by pairing each of five dif-
ferent intermediate patterns on the VOT dimension with each of live
different intermediate patterns on the FIOF dimension. The dilfcrent
feature patterns used on each dimension are shown in Fig. 15, along with
the canonical feature patterns for IgJ and Ikl on each of the Iwo dimen-
sions, On the remaining five dimensions, the intermediate segments all
had the common canonical feature values for Ig/ and Ik/. 

The model was tested with each of the 25 stimuli. preceded by silence
(I-I) and followed by la-I. In this and all subsequent simulations we report
in this paper. the peak of the initial silence phoneme occurred at Time
Slice 6 in the input. and the peaks of successive phoneme segments oc-
curred at six slice intervals. Thus. for these stimuli. the peak on the
intermediate phonetic segment occurred at Slice 12. the peak of the fol-
lowing vowel occurred at Slice 18. and ~he peak of the final silence oc-
curred at Slice 24. For each input 'presented. the interactive activation
process was allowed to continue through a total of 60 time slices. well
past the end of the input. The state of the Trace at various points in
processing. for the most/g/~Iike of the 25 stimuli, is shown in Fig. 17. At
the end of the 60th time slice. we recorded the activation of the units for
Ig/ and Ikl in Time Slice 12 and the . probability of choosing Igl based on
these activations, (It makes no difference to the qualitative appearance
of the results if a different decision time is used; earlier decision times
are associated with smaller differences in relative activation between the
IgI and Ikl phoneme units. and later ones with larger difterences. but the
general pattern is the same,

Ft Onset Frequency
FIG. 15. Canonical feature-level inpul for Ig! and IkI, on Ihelwo dimensions Ihal dislinguish .

them. and Ihe pallerns used for the live inlermediale values used in the Irading relalions
simulation, Along Ihe abscissa of each dimension Ihe nine unilsfor the nine dil1erenl value
rdnges of the dimension are armyed. The curves labeled Ig! and 

Ikl jndicale Ihe relalive
slrenglh of the excitatory inpullo each i,)f Ihese unils, produced by Ihe indicaled phoneme.
The canonical curves also indicale Ihe slrenglhs of the feature- la-phoneme conneclions for
Ig!. and Ikl on Ihese dimensions. Thai is. Ihe canonical input pallern for each phonemeexaclly malches Ihe slrenglhs of Ihe corresponding feature-phoneme conneclions. Num-
bered curves on each dimension show Ihe feature pallerns used in Ihe Iradin.: relalions
simulalion.

phoneme, An additional finding is the bowing of the curves; they tend to
be approximately linear through the middle of their range, but to level
off at both ends. where 'the values on both dimensions agree in pointing
to one alternative or the other,

To see if TRACE would simulate the basic trade-off effect obtained by
Summerfield and Haggard. and to see if it would prdduce the same shape
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Ik/-like values on both dimensions, In terms of Summerfield and Hag-
gard' s measure. the value of VaT needed to achieve 50% probability of
reporting Ik/. we can see that the VaT needed increases as the FIOF
decreases, just as these investigators found. 

Cue trade-offs in phoneme identification are accounted for in detail by
the feature integration model ofOden and Massaro (1978; Massaro. 1981;

MassarQ and Oden. I 980a. 1980b); While we have shown how TRACE
can account for the basic trade-off effect and the general form of the
trade-off curves. we have not yet attempted the kinds of detailed fits that
Massaro, Oden, and collaborators have reported in a number of studies,
However. the models are quite similar. so it seems rather unlikely that
cue trade-off data would be able to diScriminate between them, And both
make special assumptions about lack of invariance of cues to phonemeidentity across contexts, 

One apparent dissimilarity between the models deserves comment.
Whereas cue strengths are combined multiplicatively in the determination
of response strengths in the feature integration model. they are combined
additiveiy in the bottom-up inputs to the units in TRACE, However, in
TRACE, two further computational steps take place before these inputs
result in response strengths. First, the interactive-activation process en-
hances differences between competing units, Second, the resulting unit
activations are subjected to an exponential transformation. Just this

. second step by itself would transform influences that have additive effects
on unit activations into influences that. have multiplicative effects on re-
sponse strength. Thus, the models would be mathematically equivalent
if the interactive activation process were simply replaced by a linear,
additive combination of inputs to the units. In quantitative formulations
of the interactive activation process closely related to the ones we use
(Grossberg, 1978), what the interactive activation process does is simply
rescale the unit activations, preserving the ratios of their bottom-up
activation but keeping them bounded. Though our version of these equa-
tions does not do this exactly, the ways in which it deviates from this
would be difficult to use as the basis for an empirical distinction between
the TRACE approach and the feature integration model" Thus, up to a
point, we can see TRACE as (approximately) implementing the compu-
tations specified in aden and Massaro s model. The models differ,
though, in that TRACE is dynamic and in that it incorporates feedback
to the phoneme level. This allows TRACE to account for categorical
perception in a different way.

Categorical perception. In spite ofthe fact that TRACE is quite flexible
in the way it combines information from different features to determine
the identity of a phoneme, the model is quite categorical in its overt
responses, This is illustrated in two ways: first. the model shows a much
sharper transition in its choices of responses as we move from Ig/ to Ikl
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syllahle cunsistilfg (,f the most IgI- like ot the 2S intermediate segments used in the trading
relations experiment. represented by I'!(/. preceded by silence and followed by lal, then

another silence.

Response probabilities were computed using the formulas given earlier
for converting activations to response strengths and strengths into prob-
abilities, The resulting response probabilities, for each of the 25 condi-
tions of the experiment, are shown ' in Fig, 18. The pattern of results is
quite similar to that obtained in Denes (1955) experiment on the 1st-

continuum. The contribution of each cue is approximately linear and
additive in the middle of the range; but the curves flatten out at the
extremes, as in the Denes (1955) experiment. More importantly, the mod-
el' s behavior exhibits the ability to trade one cue off against another. For
example, there are three different combinations of feature values whkh
lead to a probability between .82 and , 85 of choosing Ik/: (I) the neutral
value of the VOT dimension coupled with the most Ik/-like value on the
1'101' dimension: (2) the neutral value on the FIOF dimension coupled
with the most Ik/-like value of the VaT dimension; and (3) the somewhat
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FI(L III, Simulated prob;lbility of choosing Ik/llt Time Slice 1i0, for each of the 25 stimuli

used in 'he trading relations simulation experiment. Numbers next to each curve refer to
the intermediate p;llIern on, the FIOF continuum used in the five stimuli contributing to
each curve, Uigher numbers correspond to higher values of FIOF.
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FIG. 20. Effects of competition on phoneme activiltions. The first panel shows relative
amounts of bollom-up excitatory input to Igl and IkJ produced by each of the II stimuli
used in the categorical perception simulation, The second panel shows the activations ul"
units for Ig/ and Ikl at Time Cycle 60, Stimuli 3 and 9 correspund 10 Ihe canonical/gl and
Ik/, respectively.

of the units for /g/ and /k/ at the end of 60 cycles of processing. The slight
differences in net input have been greatly amplified. and the activation
curves exhibit a much steeper transition than the relative bottom-up ex-
citation curves. 

There are two reasons why the activation curves ,are so much sharper
than the initial bottom-up excitation functions. The primary reason is
competitive inhibition. The effect of the competitive inhibition at the pho-
neme level is to greatly magnify the slight difference in the excitatory
inputs to the two phonemes. It is easy to see why this happens. Once
one phoneme is slightly more strongly activated than the other. it exerts
a stronger inhibitory influence on the other than the other can exert on
it. The net result is that " the rich get richer, " This general property of
competitive inhibition mechanisms was discussed by McClelland and Ru-
melhart (1981), following earlier observations by Grossberg (see Gross-
berg, 1978 , for a discussion) and Levin (1976); it is also well known as
one possible basis ' of edge enhancement effects in low levels of visual

TRACE MODEL

along the VaT and FIOF dimensions than we would expect from the
slight changes in the relative excitation of the /g/ and /kI units. Second, .
the model tends to obliterate differences between different inputs which
it identifies as the same phoneme, while sharpening differences between
inputs assigned to different categories, We will consider each of these
two points in turn, after we describethe stimuli used in the simulations.

Eleven different consonant feature patterns were used, embedded in
the same simulated /- / context as in the trading relations simulation,

The stimuli varied from very low values of both VaT and FIOF, more
extreme than the canonical /g/, through very high values on both dimen-
sions, more extreme than the canonical /kl. All the stimuli were spaced
equal distances apart on the VaT and FIOF dimensions, The locations
of the peak activation values on each of these two continua are shown
in Fig, 19, 

Figure 20 indicates the relative initial bottom-up activation of the /g/
, and /k/ phoneme units for each of the II stimuli used in the simulation.
The first thing to note is that the relative bottom-up excitation of the two
phoneme units differ only slightly, For example, the canonical featl,Jre
pattern for /g/ sends 75% as much excitation (0 /g/ as it sends to /k/, The
feature pattern two steps toward/g/ from /k/ (Stimulus 5), sends 88% as
much activation to /g/ as to /k/.

The figure also indicates, in the second panel, the resulting activations
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/81 Ikl

This obviously brings out the fact that the apparent steepness of the
identification function depends on the grain of the sampling of different
points along the continuum between two stimuli, as well as a host 
other factors (Lane, 1965), Whether an empirical or simulated identifi-
cation function looks steep or not depends on the selection of stimuli by
the experimenter or modeler, However, it is worth noting that the steep-
ness of the identification function is independent of the presence of
trading relations, at least in the simulation model, That is, if we had used
more widely separated steps along the VOT and FIOF dimension, we

would have obtained much steeper identification funct1Qns. The additivity

of excitatory inputs would still apply, and thus it would still be possible
to trade cues off against e~ch other,

In TRACE, the categorical output of the model comes about only after
an interactive competition process that greatly sharpens the differences

in the activation of the detectors for the relevant units, This interactive

process takes time. In the simulation results reported here, we assumed
that subjects waited a fixed time before responding. But, if we assume

, that subjects are able to respond as soon as the response strength ratio

reaches some criteriallevel, we would find that subjects would be able
to respond more quickly to stimuli near the prototype of each category
than they can to stimuli near the boundary, This is exactly what was

found by Piso~i and Tash (1974).
The sharpening the model imposes on the identification function, 

conjunction with the faCt that it can trade one feature off against another,
shows how the model, like human perceivers of speech, can be both

flexible and decisive at the same time, These aspects of TRACE are

shared with the feature integration model (Massaro, 1981),
. However, the

TRACE model's decisiveness extends eve. 1 further than we haveob-

served thus far: feedback from the phoneme to the feature level tends to.
cause the model to obliterate the differences between input feature pat-
terns that result in the identification of the same phoneme, thus allowing
the model to provide an account not only for sharp identification func-

tions, but also for the fact that discriminability of speech sounds is far

poorer within categories than it is between categories.
Strictly speaking, at least as defined by Liberman, Cooper, Shank-

weiler, and Studdert-Kennedy (1967), true categorical perception is only
exhibited when the ability to discriminate different sounds is no better
than. could be expected 'based on the assumption that the only basis a
listener has for discrimination is the categorical assignment of the stim-
ulus to a particular phonetic category, However, it is conceded that

true " categorical perception in this semo: is never in fact observed
(Studdert-Kennedy, Liberman, Harris, & Cooper, 1970), While it is true

that the discrimination of sounds is much better for sounds which per-

information processing, A second cause of the sharpening of the activa-
tion curves is the phoneme-to-feature feedback, which we consider in

detail in a moment. 
The identification functions that result from applying the Luce choice

rule to the activation values shown in the second panel of Fig, 20 are

shown in Fig. 21 along with the lBX discrimination function, which is

discussed below. The identification functions are even sharper than the
activation curves; there is only a 4% chance that the model will 

choose

/k/ instead of /g/ for Stimulus 5, for which /k/ receives 88% as much

bottom-up support as /g/, The in~reased sharpness is due to th~ properties

of the response strength assumptions. These assumptions essentially im-
plement the notion that the sensitivity of the decision mechanism, in

terms of d' for choosing the most strongly . activated of two units, is a

linear function of the difference in activation of the two units, When the
activations are far enough apart, 

d' )Viii be sufficient to ensure near- lOO%

correct pelformance, even though both units have greater than 0 activa-
tion, Of course, the .amount of separation in the activations that is nec-
essary for any given level of performance is a matter of parameters; the
relevant parameter here is the scale factor used in the exponential trans-
formation of activations. The value used for this parameter in the present
simulations (10) was the same as that used in all other cases where we
translate activation into response probability, including the trading:rela-
tions simulation. 

Some readers may be puzzled as to why TRACE II exhibits a sharp

identification function in the categorical perception experiment, but
shows a much more gradual transition between /g/ and /k/ in the trading
relations simulation, The reason is simply that finer steps along the VOT
and FIOF continua were used in the trading relations simulation, All of

the stimuli for the tl1ading relations simulation lie between Stimuli 6 and
4 in the categorical perception simulation. 
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F"L 21. Simulated identilicalion functions and forced-choice accuracy in the 
ABX task.
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ceivers assign to different categories than for sounds they assign to the
same category, there is also at least a tendency for discrimination to be
somewhat better than predicted by the identification function, even be-
tween stimuli which are always assigned to the . same category. TRACE
II produces this kind of approximate categorical perception.

The way it works is this, When a feature pattern comes in, it sends
more excitation to some phoneme units than others; as they become
active, they begin to compete, and one gradually comes to dominate the
others, This much we have. already observed, But as this competition
process is going on, there is also feedbpck from the phoneme level to the
feature level. Thus, as a particular phoneme becomes active, it tends to
impose its canonical pattern of activation on the feature level, The effect
of the feedback becomes particularly strong as time goes on, since the
feature input only excites the feature units very briefly; the original pat-
tern of activation produced by the phoneme units is, therefore, gradually
replaced by the canonical pattern imposed by the feedback from the pho-

" neme level, The result is tha~ the pattern of activation remaining at the
feature level after 60 cycles of processing has become assimilated to the
prototype, In this way, feature patterns for different inputs assigned to
the same category are rendered nearly indistinguishable,

An impression of the magnitude of this effect is illustrated in Fig, 22,
which shows how different the feature patterns of adjacent stimuli are at
the end of 60 cycles of processing. The measure of difference is simply
I - "b' where "b stands for the correlation of the patterns produced by
stimuli and b, Only the two dimensions which actually differ between
the canonical IgI and Ikl are considered in the difference measure, Fur-
thermore, the correlation considers only the feature pattern on the feature

units in Time Slice 12, right at the center of the input specification. If all
dimensions are considered, the values of the difference measure are re-
duced overall, but the pattern is the same, Inclusion of ft!'dture patterns
from surrounding slices likewise makes little difference.

To relate the difference between two stimuli ~o probability correct
choice performance in the ABX task generally used in categorical per-
ception experiments, we once again use the Luce (1959) choice model.
The probability of identifying stimulus with alternative in is givenby 

Ix=,,) II.( 
where Sax is the "strength" of the similarity between (/ and x. This is
given simply by the exponential of the correlation of and 

"x = ek,r"x

g 0.

is 0.

and similarly for Sbx' (The exponential transformation is required to trans-
late correlations, ranging from + Ito - I, into positive values, so that
Luce s ratio rule can be used. The same transformation is used for trans-
lating activations into response strengths in identification tasks. ) Here 
is the parameter that scales the relation between correlations and
strengths, These assumptions are consistent with the choice assumptions
made for identification responses, The resulting response probabilities,
for one choice of the parameter 

,. 

(5) are shown in Fig; 21 (the exponen-

tiation parameter 

,. 

is different than the parameter used in generating

identification probabilities from activations because correlations and ac-
tivations are not on equivalent scales), 

Basically, the figure shows that the effect of feedback is to make the
feature patterns for inputs well within each category more similar than
those for inputs near the boundary bet~een categories. Differences be-
tween stimuli near the prototype of the' same phoneme are almost obli-
terated. When two stimuli straddle the boundary, the feature-level pat-
terns are much more distinct. As a result, the probability of correclly
discriminating stimuli within a phoneme category is much lower Ihan Ihe
probability of discriminating stimuli in different categories.

The process of "canonicalization" of the representation of a speech

sound via the feedback mechanism takes time. Ouring Ihis lime, Iwo
things are happening: one is that the activations initially produced by the
speech input are decaying; another is that the feedback, which drives the
representation toward the prototype, is building up. In the simulations,

we allowed a considerable amount of time for these processes before
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FIG. 22. Differences between pallerns of activation at the feature level at Cycle 60. I()r
pairs of stimuli one step apart along the Ir/-iki continuum used for producing the identifi-
cation functions shown previously in Fig. 21. The difference measure is the correlation of
the two patterns, subtracted from 1.0; thus, if the two patterns correlated perfectly, their
difference would be O. 
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computing similarities of different activation patterns to each other, Ob-
viously. if we had left less time. there would not have been as much of
an opportunity for these forces to operate. Thus, TRACE is in agreement
with the finding that there tends to be an increase in within-category

discrimination when n task is used which allows subjects to base their

responses on judgm~nts of the similarity of stimuli spaced closely to-
gether in time (Pisonl& Lazarus, 1974).

It should be noted that it would be possible to account for categorical
perception in TRACE without invoking feedback from the phoneme level
to the feature level, All we would need to ~o is assume that the feature
information that gives rise to phoneme identification is inaccessible, as

. proposed by the motor theory of speech perception (Liberman et ai"
1967). or is rapidly lost as proposed by the "dual-code" model (Fujisaki
& Kawashima, 1968; Massaro. 1975, 1981; Pisoni, 1973, 1975, ) The dual-

code model, which has had considerable success accounting for categor-
ical perception data, assumes that phoneme identification can be based
either on precategorical information or on the results of the phoneme

identification process, Since it is assumed that feature information decays
rapidly (especially for consonant features-see below), responses must

often be based solely on the output of the phoneme identification process,
which is assumed to "rovide a discrete code ofthe sequence of phonemes.
This interpretation accounts for much of the data on categorical percep-
tion quite well. Indeed, it is fairly difficult to find ways of distinguishing
between a feedback f!1odel and one that attributes categorical perCeption
to a loss of information from the feature level coupled with a reliance on
a more abstract code, Both feedback models and dual code models can
accommodate the fact that vowels show less of a tendency toward cat-
egorical perception than consonants (Fry, Abramson, Eimas, & Lib-

erman, 1962; Pisoni, 1973). It is simply necessary to assume that vowel

features are more persistent than consonant features (Crowder, 1978,

1981; Fujisaki & Kawashima, 1968; Pisoni, 1973, 1975), However, the
two classes of interprtetations do differ in one way, The feedback account
seems to differ most clearly from a limited feature access accQunt in its
predictions of performance in discriminating two stimuli, both away from
the center of a category, but still within it Here, TRACE tends to show
greater discrimination than it shows between stimuli squarely in themiddle of a category, 

Standard interpretations of categorical perception can account for in-
creases in ~lo;criminability near the boundary between two categories
(where identification .may in fact be somewhat variable), simply in terms
of the fact that marginal stimuli are more likely to give rise to different
category labels, But TRACE can account for increases in discriminability
at extreme values of feature continua which would not give rise to dif-

ferent category labels. In TRACE, the reason for this increase in discrim-
inability is that the activation of the appropriate item at the phoneme

level is ,weaker, and therefore the feedback signal is weaker, than it is
when the input occurs near the center of the category. For example,
Stimulus I in our simulations falls below the canonical/g/ stimulus, and
therefore activates the Ig/ phoneme detector less strongly than stimuli
closer to the canonical Ig/, A similar thing happens with the 

Ik/. This

results in less "canonicalization" of the extreme stimuli, and produces a
-shaped discrimination function, as shown in Fig. 22,

There is some evidence bearing on this aspect of TRACE' s account of

categorical perception, Samuel (1977) has reported ABX discrimination

data that show noticeable minima in the disc: imination function near the
canonical stim~1i within each category on a 

Id/-/tl continuum, Indeed,

Samuel's account of this effect, though not couched in terms of interac-
tive activation processes, has a great deal of similarity to what we see in
TRACE; he suggests that near-canonical items are more strongly assim-
ilated to the canonical pattern, Unfortunately the effect we seek is fairly
subtle, and so it will be difficult to separate from noise. In Samuel'
experiment., the effect is fairly clear-cut at both extremes of the VOT

continuum in three observers at the end of extensive training, as shown
in Fig, 23, and even unpracticed subjects tend to show the effect toward
the high end of the VOT continuum, well past the prototype for 

It/.

In summary, TRACE appears to provide a fairly accurate account of
the phenomena of cue trade-offs and categorical perception of speech
sounds, It accounts for categorical perception without relying on the no-
tion that the phenomenon depends on readout from an abstract level of
processing; it assumes instead that the feature level, like other levels of
the system, is subject to feedback from higher levels which actually
changes the representation as it is being retained in memory, pushing 
toward a canonical representation of the phoneme most strongly activated
by the input.

Other Phenomena at the Phoneme Level

The literature on phoneme perception includes several further findings
we have not yet been able to consider in detail. The next few. paragraphs

consider one of these findings and how it might be accommodated in theTRACE model. 
Effects of global and local context on phoneme identification. 

In our

simulations of trading relations, we have shown that the criterial value
needed on one dimension of stimulus variation can be affected by ot~er
dimensions. Thus, when the onset of FI is relatively high, shorter voicing
latencies are needed to perceive a sound as unvoiced, Other factors also
innuence the phoneme perceived as a result of a particular featural input.
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CONTROL GROUP speaker parameters, Our main point here is that connection modulation
is quite a different mechanism than the simple additive ,combination of
excitatory influences that underlies the way TRACE accoO'nts for trade-
offs among the cues to a single phoneme or for the effects of top-down
influences on the phoneme boundary,

Summary of Phoneme Identification Simulatiolls

We have considered a number of phenomena concerning the identiti-
cation and perception of phonemes, These include lexical influences on
phpneme identification, and the lack thereof, both in reaction time and
in response choice measures; "phonotactic rule" effects on phoneme
identification and the role of specific lexical items in influencing these
effects; the integration of multiple cues to phoneme identity and the cat-
egorical nature of the percept that results from this integration. TRACE
integrates all of these phenomena into a single account that incorporates
aspects of the accounts offered for particular aspects of these results by
other models, In the next section, we show how TRACE can also en-
compass a number of phenomena concerning the recognition of spoken
words,
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THE TIME COURSE OF WORD RECOGNITION

The study of spoken word recognition has a long history, and many
models have been proposed, Morton s now-classic logogen model
(Morton, 1969) was the first to provide an explicit account of the inte-
gration of contextual and sensory information in word recognition. Other
models of this period (e,g., Broadbent, 1967) concentrated primarily on
effects of word frequency, Until the mid 1970s, however, there was little
explicit consideration of the time course of spoken word recognition.
Several studies by Marslen-Wilson and his collaborators (Marslen-
Wilson, 1973; Marslen-Wilson & Tyler, 1975) and by Cole and hiscollab-
orators (Cole, 1973; Cole & Jakimik, 1978, 1980) pioneered the investi-
gation of this problem, 

Marslen-Wilson s COHORT model (Marslen~Wilson & Tyler, 1980;

M!irslen-Wilson & Welsh, 1978) of speech perception was based on this
early work on the time course of spoken word recognition. The COHORT
model was one of the sources of inspiration for TRACE, for two main
reasons" First, it provided an explicit account of the way top-down and
bottom-up information could be combined to produce a word recognition
mechanism that actually worked in real time. Second, it accounted for
the findings of a number of important experiments demonstrating the " on-

line" character of the speech recognition process. However, several de-
ficiencies of the COHORT model have been pointed out, as we shall see,

Because TRACE was motivated in large part by a desire to keep what
is good about COHORT and improve upon its weaknesses, we begin this

VOICE ONSET TIME (mile)
FIG, 23. Identification (solid curves) and ABX discrimination data (dashed curves) from

Ihree practiced and three naive subjects. Simplified and reprinted, with permission, from
Samuel( 1977). 
The identity of phonemes surrounding a target phoneme, the rate of
speech of a, syllable in which a particular feature value occurs, as well as
characteristics of the speaker and the language being spoken all influence
the interpretations of features. See Repp and Liberman (1984) for a dis-
cussion of all of these sorts of influences on the boundaries between
phonemes, 

It has been suggested by Miller, Green, and Schermer (1984) and by
Repp and Liberman (1984) that these different effects may have different
sources, In particular, Miller et al. (1984) suggest that lexical effects and

, semantic and syntactic influences on the one hand may be due to a dif-
ferent mechanis~ than influences such as speech rate and coarticulatory
influences due to local phonetic context.

The assumptions we have incorporated into TRACE make a similar
distinction, In TRACE I, we have accounted for effects of phonetic con-
text by allowing activations of units to influence the feature-to-phoneme
connections in adjacent time slices (see Elman & McClelland, in press,
for details). In the discussion, we 'consider ways of extending the con-
nection modulation idea to accommodate effects of variations in rate and
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section by considering the COHORT model in some detail. First we re-
view the basic assumptions of the model, then consider its strengths and
weaknesses. There appear to be four basic assumptions of the COHORT
model.

J. The model uses the first sound (in Marslen-Wilson & Tyler, 1980,

the initial consonant cluster-plus-vowel) of the word to determine which
words will be in an initial cohort or candidate set,

2. Once the candidate set is established, the model eliminates words

from the cohort immediately, as"each successive phoneme arrives, if the
new phoneme fails to match the next phoneme in the word, Words can
also be eliminated on the basis of semantic constraints, although the initial
cohoI'I is assumed to 'be determined by acoustic input alone. 

3. Word recognition occurs immediately, as . soon as the cohort has

been reduced to a single member; in an auditory lexical decision task,
the decision that an item is a nonword can be made as soon as there are
no remaining members in the cohort,

4. Word recognition can influence the identification of phonemes in a

word only after the word has been recognized,

There is a conside~able body of data that supports various predictions
of the COHORT model, It has been observed in a variety of 

paradigms

thai lexical influences on phoneme identification responses are much
grealer laler in words than at their beginnings (Bagley, 1900; Cole and

Jakimik, 1978, 1980; Marslen-Wilson, 1980; Marslen-
Wilson and Welsh,

1978). We considered some of this evidence in earlier section~.. Another

important finding suJi)porting COHORT is the fact that the reattion time

to decide that an item is a non word is constant, when measured from the
occurrence of the first phoneme that rules out the last remaining word in
the cohort (Marslen-Wilson, 1980),

Perhaps the most direct support for the basic word recognition as-

sumptions of COHORT comes from the gating paradigm, introduced first
by Grosjean (1980), In this paradigm, subjects are required to guess the
ident it y of a word after hearing successive presentations of the word, The
first presentation is cut ofT so that the subject hears only the first 
(N = 30 to 50 in different studies). Later presentations are successively
lengthened in N-ms increments until eventually the whole word is pre-
sented. The duration at which halfthe subjects correctly identify the word
is called the " isolatiQn point. " Considerably more input is required before
subjects are. reason~bly sure of the identity of the 

word; that point is

tenned the "acceptance point. " Grosjean s initial study confirmed many

basic predictions of COHORT, though it also raised a few difficulties for
it (see below). In a more recent study using the same method, Tyler and

Wessels (1983) carried out a very close analysis of the relation between

the empirically determined isolation point and the point at which the input

the subject has received is consistent with one and only one remaining
item, the point at which recognition would be exepected to occur in the
COHORT model. They report that the isolation point falls very close to
this theoretically derived recognition point, strongly supporting the basic
immediacy assumptions of the COHORT model, 

It should be noted that the gating task is not a timed task, and so it
does not. provide a direct measure of what the subject knows as the

speech input is unfolding, However, it is now in fairly wide use, and

Cotton and Grosjean (1984) have established that the basic patterns of

results obtained in Grosjean s (1980) pioneering gating experiment do not

depend on the presentation of successively longer and longer presenta-

tions of the same stimulus.
A dilemma for COHORT, 

Though the COHORT model accounts for a
large body of data, there are several difficult:" s with it. We consider first

the one that seems the most serious: as stated, COHORT requires ac-

curate, undistorted information about the identity of the phonemes in a
word up to the isolation point. Words cannot enter into consideration

unless the initial consonant cluster plus vowel is heard. and they ar~
discarded from it as soon as a phoneme comes along that they fail to
match. No explicit procedure is described for recovering words into the
cohort once they have been excluded from it, or when the 

beginning of

the word is not accurately perceived due to noise or elision,
These aspects of COHORT make it very difficult for the model to

explain recognition of words with distorted 
beginnings. such as

dwibble" (Norris, 1982), or words whose beginnings have been replaced

by noise (SaJasso & Pisoni, 1985). From a computational point of view,
this makes the model an extremely brittle one; in particular it fails to deal
with the problem of noise and underspecification which is so crucialfor
recognition of real speech (Thompson. 1984),

The recognizability of distorted items like "dwibble" might be taken

as suggesting that what we need to do is liberalize the criterion for en-

tering and retaining words in the cohort. Thus, the cohort could be de-
fined as the set of words consistent with what has been heard or mild
(e,g" one or two features) deviations from what has been heard. This
would allow mild distortions like replacing 

Irl with Iwl not to disqualify

a word from the cohort. It would also allow the model to cope with cases
where the beginning of the word is underspecified; in- these cases. the

initial cohort would simply be larger than in the case where the input
dearly specified the initial phonemes.

However. there is still a problem. Sometimes we need to be able to
rule out items which mismatch the input on one or two dimensions and

sometimes we do not. Consider the items "pleasant" and "blacelet. " In

the first case. we need to exclude "present" from the cohort, so the
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slight difference between III and Irl must be sufficient to rule it out; in the
second case, we do not want to lose the word "bracelet, " since it pro-
vides the best fit overall to the input. Thus, in this case, the difference

between III and Irl must not be allowed to rule a word candidate out.
Thus the dilemma: on the one hand, we want a mechanism that will be

able to select the correct word as soon as an undistorted input specifies
it uniquely, to account for the Tyler and Wessels results. On the other
hand, we do not want the model to completely eliminate possibilities
which might later turn out to. be correct, We shall shortly see that TRACE
provides... way out of this dilemma. 

Another problem for COHORT. Grosjean (1985) has recently pointed
out another problem for COHORT, namely, the possibility that the sub-
ject may be uncertain about the location of the beginning of each suc-
cessive word, A tacit assumption of the model is that the subject goes
into the beginning of each word knowing that it is ' the beginning. In the
related model' of Cole and Jakimik ( 1980) this assumption is made explicit.
Unfortunately, it is not always possible to know in advance where one
word starts and the next word ends. As we discussed in the introduction,
acoustic cues to juncture are not always reliable, ' and in the absence of
acoustic cues, even an optimally efficient mechanism ~annot always

, know that it has heard the end of one word until it hears enough of the
next to rule out the possible continuations of the first word.

What is needed, then. is a model that can account for COHORT'
successes, and overcome these two important deficiencies, The next two
sections show that TRACE does quite well on both counts. The first of
these sections examines TRACE' s behavior in processing words whose
beginnings and endings are clearly deliniated for it by the presence of
silence, The second considers the processing of multiword inputs, which
the model must parse for itself.

One Word tit (t Time

In this section we see how TRACE resolves the dilemma facing CO-
HORT, in that it is immediately sensitive to new information but is still
able to cope with underspecified or distorted word beginnings, We also
consider how the model accounts for the preference for short-word re-
sponses early in processing a long word, The section concludes with a
discussion of ways the model could be extended to account for word
frequency and contextual influences,

Competition ~'S bottom-lip inhibition. TRACE deals with COHORrs
dilemma by using competition. rather than phoneme-to-word inhibition.
The essence of the idea is simply this, Phoneme units have excitatory
connections to all the word units they are consistent with. Thus, when-
ever a phoneme becomes active in a particular slice of the Trace , it sends.

excitation to all the word units consistent with that phoneme in that slice.
The word units then compete with each other; items that contain each
successive phoneme dominate all others, but if no word "matches per-
fectly, a word that provides a close tit to the phoneme sequence can
eventaully win out over words that provide less adequate matches. The
exact metric of "closeness of fit" depends. of course. on a large number
of details, In the absence of such a metric, a simple count of the number
of acoustic features differing between a lexical item .and a presented stim-
ulus can provide a useful first approximation. but other factors such as
stress, location of differences within the word, and discriminability of the
differing feature~. will of course come into play.

Consider, from this point of view, our two items " pleasant " and " blace-
let" again, In the first instance. "pleasant" will receive more bottom-up
excitation than "present," and so will win out in the competition. We
have already seen, in our analysis of categorical perception at the pho-
nemelevel, how even slight differences in initial bottom-up excitation can
be magnified by the joint effects of competition and feedback. But the
real beauty of the competition mechanism is that this action is contingent
on the activation of other word candidates, Thus, in the case of "blace-
let" , since there is no word " blacelet

" "

bracel~t" will not be SlIp-
pressed, Initially, it is true, words like "blame" and "blatant " will tend
t~ dominate "bracelet, " but since the input matches "bracelet" better
than any other word, "brace let" wjll eventually come to dominate the
other possibilities, 

This behavior of the model is .illustrated using ~xamples from its re-
stricted lexicon in Fig. 24. In one case. the input is " legal, " and the word

regal" is completely dominated by " legal. " In the other case. the input
is " lugged," and the word " rugged" eventually dominates, because there
is no word " lugged" (pronounced to rhyme with " rugged" the word

lug" is not in the model' s lexicon), Here "rugged~' must compete with
other partial matches of " lugged, " of course, and it is less effective in
this regard than it would be if the input ,exactly matched it, but it doeswin out in the end. 

It should be noted that the details of what word will be most strongly
activated in such cases depend on a number of factors, including, in
particular, the distinctiveness of mismatching phonemes. Also, it is pos-
sible to find cases in which a word that correctly spans a part of a longer
string dominates a longer word that spans the whole string but misses
out on a phoneme in one place or another. An item like "vigorette" may
or may not be a case in point. In such cases, though, the most important
thing might not turn out to be winning and losing, but rather the fact that
both tend to stay in the game, Such neologisms can suggest a poetic
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phonemes, In this section, we examine how well TRACE emulates the
COHORT model, in cases where the input is an undistorted representa-
tion of some particular word. In particular, we wanted to see how close.
TRACE would come to behaving in accord with COHORT' s assumption
that incorrect words are dropped from the cohort of active candidates as
soon as the input diverges from them,

To examine this process, we considered the processing of the
word "product" (/prad"ct/). Figure 25 shows the state of the Thace at
various points in processing this ' word, and Fig. 26 shows the response
strengths of several units relative to the strength of the word "product"
itself, as a function of time relative to the arrival of the successive pho-
nemes in the input. In this figure, the response strength of "product" is
simply set to 1,0 at each time slice and the response strengths of units
for other words are plotted in terms of the ratio of their strength. divided
by the strength of "product." The curves shown are for the words !' trot,

possible, " priest,

" "

progress," and "produce ; these words differ
from the word "product" (according to the simulation program s stress-

less encoding of them!) ir, the 1st, 2nd, 3d, 4th, and 5th phonemes, re-
spectively, Figure 26 shows that these items begin to drop out of "con-
tention" just after each successive phoneme comes in, Of course, there
is nothing hard and fast or absolute about dropping a candidate in
TRACE. What we see instead is that mismatching candidates simply
begin to fade as the input diverges from them in favor of some other
candidate. This is just the kind of behavior the COHORT model would

fi' -

j! "...!!;

G (E!J

If-;;-'
(E!J

S - r I
lit I .,;:!d " If

tE.i..!t

~ d- I -
g ~ d -

- I

'to

I.. ra k II

i..u"l8l8tIl8111

tr ~ ~I
u 91

- p

r ad - kr a

ull I I
I u DfI

g-d- - g-d- - ,;-d- +2

FIG, 24, SIBle of Ihe lrace allwo poinls during processing of " 'ega'" and " 'ugged.

conjunction of meanings, if used just right: "He walked briskly down the
street, puffing his vigorette.

Time COllr.fe of w(ird recognition in TRACE. So far we have shown
how TRACE overcomes a dificulty with the COHORT model in cases
where the beginning of a word has been distorted. In earlier sections on
phoneme processing, some of the simulations illustrate that the model is
capable of recognizing words with underspecified (i,e" ambiguous) initial

prad~kl- -prad-kl- -prad~kl- - prad-kl-
FIG, 25. State of thelhlce at various points in processing the word "product" (/prad'kt/'.
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FIG. 26. Response strengths of tt ~ units for several words relative to the response strength

of the unit for "product" (/prad-kt/). as a function of time relative to the peak of the first
phoneme that fails to match the word, The successive curves coming off of the horizontal
line representing the normalized response strength of "product" are for the words "Irot.

" ,

possible,

" "

priesl,

" "

progress," and "produce." respectively. In our lexicon they are
, rendered as Itnil/, Ipas I/, Iprist/, Ipragr s/, and Ipradus/, respectively.
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We were at first somewhat disturbed by this aspect of the model's
behavior, but it turns out to correspond quite closely with results obtained
in experiments by Grosjean (1980) and Cotton and Grosjean (l9H4) using
the gating paradigm, Both papers found that subjects hearing the begin-
nings of words like "captain" tended to report shorter words consistent

with what they had heard (e.

g., "

cap ). However, we should observe
that in the gating paradigm, when the word "captain" is truncated just

after the Ipl, it will sound quite a bit like "cap" followed by silence , In
TRACE, this silence would activate silence units at the phoneme and
word levels, and the word-level silence units would compete with units
for words that extend into the silence. It will reinforce the preference of
the model for short-word interpretations, because the detection of the
silence will inhibit the detector for the longer word, Thus, there are ac-
tually two reasons why TRACE might favor short-word interpretations
over long-word interpretations in a gating experiment. Whether human
subjects show a residual preference for shorter interpretations over longer
ones in the absence of a following silence during the course of processing
is not yet clear from available data,

We should point out that the experimental literature indicates that the
advantage of shorter words over longer ones holds only under the special
circumstances of gated presentation and then only with early gates, when
shorter words are relatively more complete than longer ones would be.
It has been well known for a long time that longer words are generally
more readily recognized than shorter ones when the whole word is pre-
sented for identification against a background of noise (Licklider &
Miller, 1951), Presumably, the reason for this is simply that longer words
generally provide a larger number of cues than shorter words do and
hence are simply less confusable.

Frequency a"d context effects, There ,are , of course , other factors
which influence when word recognition will occur beyond those we have
considered thus far, Two very important ones are word frequency and
contextual predictability, The literature on these t)oVo factors goes back
to the turn of the century (Bagley, 1900).\ Morton s (1969) logogen model
effectively deals with several important aspects of this huge literature
though not with the time course of these effects, 

We have not yet included either word frequency or higher level con-
textual influences in TRACE, though of course we believe they are im-
portant.Word frequency effects could be accommodated, as they were
in the interactive-activation model of word recognition, in terms of var
at ion in the resting activation level of word units, or in terms of variation
in the strength of phoneme-to-word connections. Contextual influences
can be thought of as supplying activation to word units from even higher
levels of processing than the word level. In this way, basic aspects of

produce in this case, though of course the drop-off would be assumed to
be an abrupt, discrete event,

There is one aspect of TRACE's behavior which differs from thaI of
COHORT: among those words that are consist~nt with the input up to a
particular point in time. TRACE shows a bias in favor of shorter words
over longer words, Thus, "priest" has a slight advantage before the Ial
comes in, and "produce" is well ahead of "product" until the tlcomes
in (in phonemes, "produce." is one shorter than "product"

This advantage for shorter words is due to the competition mechanism,
Recall that word units compete with each other in proportion to the
overlap of the sets of time slices spanned by each of the words, Overlap
is, of course, symmetrical, so long and short words inhibit each other to
an equal extent. But longer words suffer more inhibition from other long
words than short words do. For example, "progress" and "probable
inhibit "product " more than they inhibit "priest" and "produce. " Thus
units for longer words are generally subjected to extra inhibition, partic-
ularly early on when many candidates are active, and so they tend to
suffer in comparison to short words as a result.

3 The data reported by Tyler and Wessels actually appears to indicate an e,ven more
immediate drop-off than is seen in this simulation. However, il should be remembered that
the curves shown in Fig. 26 are on-line response strength curves, and thus renect the lags
inherent in the percolation of input from the feature to the word level. The gating task, on

the other hand, does not require subjects 10 respond on, line. "If the input is ' simply turned
off at the peak of each phoneme s input specification, and then allowed to run free for a
few cycles, the dropout point shifts even earlier.
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these two kinds of innuences can be captured. We leave it to future
research. however. to determine to what extent these elaborations of
TRACE would provide a detailed account of the data on the roles of
these factors, For now. we turn to the problem of determining where one
word ends and the next one begins, 

we can say either item in a way that makes it sound like a single word
or like two words, there is an intermediate way of saying them so that
the first seems to be two words and the second seems like only one.

To see what TRACE II would do with single- and multiple-word inputs,
we ran simulation experiments with each individual word in the main 2 I 1-

word lexicon preceded and followed by silence, and then with 2 I I pairs
of words, with a silence at the beginning and at the end of the entire
stream. The pairs were made by simply permuting the lexicon twice and
then abutting the two permutations so that each' word occurred once as
the first word and once as the second word in the entire set of 211 pairs,

We stress, of course, that real speech would tend to contain cues that
would mark word boundaries in many cases; the experiment is simply
designed. to show what TRACE would do in cases where these cues are
lacking,

With the individual words, TRACE made no mistakes- that is, by a
few slices after the end of the word, the word that spanned the entire
input was more strongly activated than any other word, An example of
this is shown using the item Ipartil in Fig. 27. The stream Ipartil might be
either one word ("party ) or two ("par tea" or "par tee the model
knows of only one word pronounced Iti/). At early points in 'processing
the word, "par" dominates over "party" and other longer words, for

reasons discussed in the previous section, By the time the model has had
a chance to process the end of the word, however, "party" comes to
dominate. . 

Why does a single longer word eventually win out over two shorter

Lexical Bas;.~ (~r WOI:d Segmentation

How do we know when one word ends and the next word begins? This
is by no means an easy task. as we noted in the introduction, To recap
our earlier argument. there are some cues in the speech stream. but as
several investigators have pointed out (Cole & Jakimik. 1980; Grosjean

& Gee. 1984: Thompson. 1984), they are not always sufficient. particu-
larly in fluent speech, It would thus appear that there is an important role
for lexical knowledge to play in determining where one word ends and
the next word begins; as well as in identifying the objects that result from
the process of segmentation. Indeed. as Reddy (1976) has suggested,
segmentation and identification may be joint results of the mechanisms
of word recognition. 

Cole and Jakimik (1980) discuss these points and present evidence that
semantic and syntactic context can guide segmentation in cases where
the lexicon is consis~ent with two readings ("car go" vs "cargo ). Our
present model lacks ~yntactic and semantic levels. so it cannot make use
of these higher lever constraints; but it can make use of its knowledge
about words, not only to identify individual words in isolation, but to
pick out a sequence of words in continuous streams of phonemes. Word
identification and se~mentationemerge together from the i"teriJctive~ac-
tivation process, as part and parcel of the process of word activation,

This section considers several aspects of the way in which word seg- 
mentation emerges f~om the interactive-activation process, as observed
in simulations with TRACE II, Before ' we consider these, it is worth
recalling the details elf some of the assumptions made about the bottom-
up activation of word' units and about competitive inhibition between word
units. First, the extent to which a particular phoneme excites a particular
word unit is independent of the length of the word, Second, the extent
to which a particular word unit inhibits another word unit is proportional
to the temporal overlap of the two word units. This means that words
which do not overlap in time will not inhibit each other, but will gang up
on other words that partially overlap each of them. These two assump-
tions form most of th~ basis of the effects we observe in the simulations,

..,.

11/e bollndary ~ ill the ear of the "beheOl' eI", First, we consider the
basic fact that the number of words we hear in a sequence of phonemes
can depend on our knowledge of the number of words the sequence
makes. Consider the two utterances, "she can t" and "secant" . Though
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Flo. 27. The state of the 'lhtce at various points during processing of Iparti/,
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and " tea do not overlap. Thus, "art" receives inhibition from hoth
bar" and " tea, " while "bar" and " tea" each receive inhibition only

from "art. " Thus two words that do not overlap with each other can
gang up on a third each overlaps with partly, and drive it oul.

These remarkably simple mechanisms of activation and competition do
a very good job of word segmentation, without the aid of any syllabifi-
cation, stress, phonetic word boundary cues, or semantic and syntactic
constraints. In 189 of the 211 word pairs tested in the simulation exper-
iment, the model came up with the correct parse, in the sense that no
other word was more active than either of the two words that had been
presented, Some of the failures of the model occurred in cases where the
input was actually consistent with two parses, either a longer spanning
word rather than a single word (as in "party ) or a different parse into
two words, as in "part rust" for "par trusl." In such cases TRACE tends
to prefer parses in which the longer word comes first. There were, how-
ever, some cases in which the model did not come up with a valid parse,
that is, a pattern that represents complete coverage of the input hy a set
of nonoverlapping words. For example, consider the input Iparki/.
Though this makes the two words " par" and "key," the word "park"
has a stronger activation than either "par" or "key. " as illustrated in
Fig. 28,

This aspect of TRACE II' s behavior indicates that the present vcrsion
of the model is far from the final word on word segmentation. A complete
model would also exploit syllabification, stress, and other cues to word
identity to help eliminate some of the possible interpretations of TRACE
II' s simple phoneme streams, The' activation and competition mecha-
nisms in TRACE II are sufficient to do quite a bit of the word segmen-
tation work, but we do not expect them to do this perfectly in all cases
without the aid 'of other cues.

Some readers may be troubled by a mechanisrr that does not insist
upon a parse in which each phoneme is covered by one and only one
word, Actually, though, this characteristic of the model is often a virtuc,
since in many cases the last phoneme ofh word must do double duty as
the first phoneme of the next, as in " hound dog" or "brush shop, " Whilc
speakers tend to signal the doubling in careful speech, the cues to single
vs double consonants are not always sufficient for disambiguation, as is
clear when strings with multiple interpretations are used as stimuli. For
example, an utterance intended as ' no notion" will sometimes be heard
as "known notion" (Nakatani & Dukes, 1977). The model is not inclined
to suppress activations of partially overlapping words, even when a non-
overlapping parse is available. This behavior of TRACE is illustrated with
IbAstapl ("bus top" or "bus stop ) in Fig. 29. In this case, higher levels
could provide an additional source of information that would help the
model choose between overlapping and nonoverlapping interpretations.

ones in TRACE? There are two main reasons, First of all, a longer word
eventually receives more bottom-up support than either shorter word,
simply because there are more phonemes activating the longer word than
the shorter word. The second reason has to do with the sequential nature
of the input, In the case of Ipartil, by the time the Itil is coming in, the
word "party" is well enough established that it keeps Itil from getting as
strongly activated as it would otherwise, as illustrated in Fig. 27. This
behavior of the model leads to the prediction that short words embedded
in the ends of longer words should not get as strongly activated as shorter
words coming earlier in the longer word. This prediction could be tested
using the gating paradigm, or a cross-modal priming paradigm such as
the one used by Swinney (1982).

However, it. should be noted that this aspect of the behavior of the
model can be overridden if there is bottom-up information favorine the
two-word interpretation, Currently, this can only happ~n in TRACE
through the insertion of a brief silence between the "par" and the " tea.
As shown in Fig, 28, this results in "par" and " tea" dominating all otherword candidates, 

What happens when there is no long word that spans the entire stream,
as in Ibartil? In this case, the model settles on the two-word interpretation

bar tea, " as shown in Fig, 28. Note that other words, such as "art,
that span aportion of the input, are less successful than either "bar" or

tea. " The reason is that the interpretations "bar" and "art" overlap
with each other, and "art" and " tea" overlap with each other, but " bar

part i- ' +3 -par-t 1-+3 -barf j- +3 - park i- +3

FIG. 28, Slale of the 'ltace after processina the streams /parliJ, /par-tiJ, /barliJ, unit Iparki/.
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establish where a word will end even before i. actually does end, partic-
ularly in the case of longer words or when activations at the word level
are aided by syntactic and semantic constraints, However, it is much
harder to establish the end of a nonword, since the fact that it is a non-
w()rd means that we cannot exploit any knowledge of where it should
end to do so,

This fact may account for the finding of Foss and Blank (1980) that

subjects are much slower to respond to target phonemes at the beginning
of a word preceded by a non word than at the beginning of a word
preceded by a word. For example, responses to detect word initial 

Idl

were faster in stimuli like the following:

At the end of last year, the government decided. . .

b-slap- - br-Sap.
FIG. 29. State of the Trace at the end of the streams Ibustapl ("bus stop" or "bus top

and IbruSapl (" brush shop

than they were when the word preceding the target (in this case govern-
ment) was replaced by a nonword such as "gatabont." It should be noted
that the targets were specified as word-initial segments, Therefore, the
subjects had not only to identify the target phoneme, they had to deter-
mine that it fell at the beginning of a word, as, well, The faef that reaction
times were faster when the target was preceded by a word suggests that
subjects were able to use their knowledge of where the word "govern-
ment" ends to help them determine where the next word begins,

An example of how TRACE allows one word to help establish where
its successor begins is illustrated in Fig, 30; In the example, the. model
receives the stream " possible target" or "pagusle target. " and we
imagine that the target is word-initial/t/. In the first case. the word "pos-

, sible is clearly established and competitors underneatIJ it have been
completely crushed by the time the initial It I in " target" becomes active
at the phoneme level (second panel in the upper part of the figure). so
there is no ambiguity about the fact that this It I is at the beginning of the
next word, (The decision mechanism would. of course. be required to
note that the model had established the location of the end of the
preceding word, We have not yet incorporated explicit assumptions about
how this would be done. ) In the second case. words beginning and ending
at a number of. different places. including some that overlap with the
location of the Itl, are partly activated, Thus. the subject would have to
wait until he is well into the word " target " before it becomes clear that
the first It I in target is in fact a word- initial It/. 

In reality, the situation is probably not as bleak for the perceiver as it
appears in this example, because in many cases there will be cues in the
manner of pronunciation and the syllabification of the input that will help
to indicate the location of the word boundary. However. given ' the im-
precision and frequent absence of such cues. it is not surprising that the

The simulations we have reported show that the word activation/com-
petition mechanism can go a long way toward providing a complete in-
terpretation of the input stream as a seq,uence of words, As a word is
beginning to come in. the model tends to prefer shorter words consistent
with the input stream over longer ones. As the input unfolds through
time. however. the model tends to prefer to interpret streams of pho-
nemes as single longer words rather than as a sequence of short words;
and it tends to find parses that account for each phoneme once. But it
does not insist upon this. and will occasionally produce an interpretation
that leaves part of the stream of phonemes unaccounted for or which
accounts for part of the stream of phonemes twice, Often enough, it will
also leave an alternative to its "preferred paise" in a strong position. so

that both the preferred parse and the alternative would be available to
higher levels and subject to possible reinforcement by them.

Thus far in this section, we have considered the general properties of
the way in which TRACE uses lexical information to segment a speech
stream into words. but we have not considered much in the way of em-
pirical data that these aspects of the model shed light on, However. there
are two findings in the literature which can be interpreted in accordance
with TRACE' s handling of multiword speech streams,

Where does 1I 1I00lword elld? A number of investigators (e,g,. Cole &
Jakimik. 1980) have suggested that when one word is identified. its iden-
tity can be used to determine where it ends and therefore where the next
word begins. In TRACE. the interactive activation process can often
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or " tarnished" or one of several other possibilities, It is only after morc
time has passed. and we have perceived either a silence or enough of the
next word to rule out any of the continuations of Itarl, that we can decide
we have heard the word " tar, " This situation. as it arises in TRACE
with the simple utterance Itarbaksl (" tar box ) is illustrated in Fig. 31.

Though " tar" is somewhat more active than the longer word " target
when the Irl is coming in. it is only when the word "box " emerges as
the interpretation of the phonemes following " tar" that the rival " target"
finally fades as a serious contender,

With longer words the situation is different. As we have already seen
in another example. by the time the end of a longer word is reached it is
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. lexical status of one part of a speech stream plays an important role in
determining where the beginning of the next word must be.

The lollg tlllJ ~'horl of lI'ort! ideillifi('tllioll, One problematic feature of
speech is the fact that it is not always possible to identifya word un-
ambiguously until one has heard the word after it. Consider. for example.
the word " tar, " If we are listening to an utterance and have gotten just
to the Irl in "The man saw the tar box. " though " tar" will tend to be
the preferred hypothesis at this point. we do not have enough information
to say unequivocally that the word " tar" will not turn out to be " target

,-Iarbak,- I-Iarb,",- I-I,rb,k.- I-Iarbaks-
FtG. 31. Siale of Ihe Trace al several points in processing "tar box " and "guitar box,
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much more likely that only one word candidate will remain, Indeed, with
longer words it is often possible to have enough information to identify
the word unambiguously well before the end of the word. An illustration
of this situation is provided by a simulation using the utterance "guitar
box " Ig tarbaks/, By the time the Irl has registered, "guitar" is clearly
dominant at the word level. and can be unai11biguously identified without
further ado.

Recently, an experiment by Grosjean (1985) has demonstrated these
same effects empirically, Grosjean presented subjects with long or short
words followed by a second w()rd and measured how much of the word
and its successor the subject needed to hear to identify the target. With
longer words, subjects could usually guess the word correctly well before
the end of the word, ;and by the end of the word they were quite sure of
the word' s identity, With monosyllabic words, on the other hand, many
of the words could not be identified corr~ctly until well into the next
word, On the average, subjects were not sure of the word's identity until
about the end of the next word, or the beginning of the one after, As
Grosjean (1985) points out, a m~or reason for this is simply that the
spoken input often does not uniquely specify the identity of a short word.
In such cases, the perceptual system is often forced to process the short
word, and its successor, at the same time.

RecoRllizilll: the words ill a short selltellce, One last example of
TRACE II's performance in segmenting words is illustrated in Fig, 32,
The figure shows the state of the lrace at several points during the pro-
cessing of the stream ISiS" t"baks/. By the end, the words of the phrase

She shut a box, " which fils the input perfectly with no overlap, domi-
nate all others. .

This example illustrates how far it is sometimes possible to go in
parsing a stream of phonemes into words, without even considering syn-
taclic and semantic '(onstraints, or stress, syllabification, and juncture
cues to word identification. The example also illustrates the difficulty the
model has in perceiving short, unstressed words like " . This is, of
course, just an extreme version of the difficulty the model has in pro-
cessing mol1osyllabic words like " tar, " and is consistent with Grosjean
data on the difficulty subjects have with identifying short words. In fact,
Grosjean and Gee (1984) report pilot data indicating that these difficulties
are even more severe with function words like " " and "of. " It should
be noted that TRACE makes no special distinction between content and
function words, per se, and neither do Grosjean and Gee, However, func-
tion words are usually unstressed and considerably shorter than content
words. Thus, it is not necessary to point to any special mechanisms for
closed versus open class morphemes to account for Grosjean and Gee
results.
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Summary of Word Idemijication Simulations

While phoneme identification has been studied for many years, data
from on-line studies of word recognition is just beginning to accumulate;
There is an older literature on accuracy of word identification in noise.
but it has only been quite recently that useful techniques have been de-
veloped for studying word recognition in real time.

What evidence there is. though indicates the complexity of the word
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identification process, While the word identification mechanism is sen-
sitive to each new incoming phoneme as it arrives, it is nevertheless
robust enough to recover from underspecification or distortion of word
beginnings. And it appears h.. be capable of some simultaneous processing
of successive words in the input stream, TRACE appears to capture these
aspects of the time course of word recognition. In these respects, it im-
proves upon the COHORT model, the only previously extant model that
provides an explicit account of the on-line process of word recognition,
And the mechanisms it uses . to accomplish this are the same ones that it
used for the simulations of the process of phoneme identification de-
scribed in the preceding section, 

lenee, the model exhibits immediate sensitivity to information favoring
one word interpretation over another. It shows an initial preference for
shorter words relative to longer words, but eventually a sequence of
phonemes that matches a long word perfectly will be identified as that
word, overturning the initial preference for the short-word interpretation.
These aspects of the model, are consistent with human data from gating
experiments.

7, Though the model is heavily influenced by word beginnings, it can
recover from underspecification or distortion of a word' s beginning.

S, The model can use its knowledge of the lexicon to parse sequences
of phonemes into words, and to establish where one word ends and the
next one begins when cues to word boundaries are lacking.

9, Like human subjects, the model sometimes cannot identify a word
until it has heard part of the next word, Also like human subjects. it can
better determine where a word will begin when it is preceded by a word
rather than a nonword,

10. The model does not demand a parse of a phoneme sequence that
includes each phoneme in one and only one word, This allows it to cope
gracefully with elision . of phonem~s at word boundaries. It will often
permit several alternative parses to remain available lor higher level in-
fluences to choose among,

In addition to these characteristics observed in the present paper, our
simulations with TRACE I show several further correspondences be-
tween the model and human speech. perception, Most important of these
is the fact that the model is able to use activations of phoneme units in
one part of the Trace to adjust the connection strengths determining which
features will activate which phonemes in adjacent parts of the Trace. In
this WaY, the model can adjust as human subjects do to coarticuh.itory
influences on the acoustic properties of phonemes (Fowler. 1984; Mann
& Repp, 1980). 

There is, of course. more data on some of these points than others. II
will be very interesting to see how well rRACE will hold up against the
data as further empirical studies are carried oul.

ENERAL DISCUSSION

Summa,.y of TRACE' ~' Successes

In this article, we have seen that TRACE can account for a number of
different aspects of human speech perception. We begin by listing the
major correspondences between TRACE and what we know about the
human speech understanding process.

I, TRACE, like humans, uses information from overlapping portions
of the speech wave to identify successive phonemes,

2, The model shows a tendency toward categorical perception of pho-
nemes, as do human subjects. The model's tendency toward categorical
perception is affected by many of the same parameters which affect the
degree of categorical perception shown by human subjects; in particular.
the extent to which perception will be categorical increases with time
between stimuli that must be compared, 

3, The model combines feature information from a number of difterent
dimensions, and exhibits cue trade-offs in phoneme identification. These
characteristics of human speech perception have been demonstrated in a
very hirge number of studies,

4, The model augments information from the speech stream with fced-
back from the lexical level in reaching decisions about the identity of
phonemes, These lexical intluences on phoneme identification occur in
conditions similar to those in which lexical effects have been reported,
but do not occur in conditions in which these effects have not been ob-

~~. .

5, Like human subjects the model exhibits apparent phonotactic rule
effects on phoneme identification. though it has no explicit representation
of the phonotactic rules, The tendency to prefer phonotactically regular
interpretations of ambiguous phonemes can be overridden by particular
lexical items, just as it can in the human perceiver,
6. In processing unambiguous phoneme sequences preceded by si-

Some of Ihe ReasolU' fo,. IheSucces~'es of TRACE

To what does the TRACE model owe its succes~ in simulating human
speech perception'! Some of TRACE' s successes simply depend on its
ability to make use of the information as it comes il. For example. it fails
to show context effects only when a response must be made. or can be
made with high accuracy. before contextual information is available.

There are several other reasons for TRACE' s success, One, we think.
is the use of continuous activation and competition processes in place of
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discrete decisive processes such as segmentation and labeling, Activation
and competition are matters of degree and protect TRACEfr~m cata-
strophic commitment in marginal cases. and they provide a naturiif means
for combining many ~ifferent sources: of information, Of course. this fea-
ture of the model is shared with several other models (e,g.. Morton. 1969;
Oden & Massaro. 1978). though only Nusbaum and Siowiaczek (1982)
have previously incorporated these kinds of assumptions in a model of.
the time course of word recognition.

Part of the success of TRACE is specifically due to the use of com-
petitive inhibitory interactions instead of bottom-up (or top-down) inhi-
bition. Competition allows the model to select the best interpretation
available. sell ling for an imperfect one when no beller one is available.
but overriding poor ones when a ' good one is at hand, These and other
virtues of competitive inhibition have been noted before (e,g.. Feldman
& Ballard. 1982: Gro~sberg. 1973; Levin. 1976: Ratliff. 1965; von Bekesy.
1967) in other contexts. Their usefulness here attests to the general utility
of the competitive inhibition mechanism.

The elimination of between-level inhibition from the interactive acti-
vation mechanism puts us in a very nice position with respect to one
general critique of interactive-activation models. It is often said that ac-
tivation models are ~oo unconstrained and too flexible to be anything
more than a language for conveniently describing information processing,
We are now in a position to suggest that a restricted version of the frame-
work is not only sufficient but superior. Interactive-activation models
could exploit both excitatory and inhibitory connections both between
and within levels, bu~ in the original interactive-activation model of letter
perception. only inhibitory interactions were allowed within a level. In
more recent versions of the visual model (McClelland. 1985, 1986),
and in TRACE, we have gone even further, allowing only excitatory
connections between levels and only inhibitory connections within levels.
From our experience, i t appears that models which adhere to these con-
straints work as well as or better than members of the more general class
that do not. We hasten to add that we have no proof that this is true, We
have, however. no reason to feel that we could improve the performance
of our model by allowing either between-level inhibitory interactions or
within-level excitation, 

Other aspects of the successes of TRACE depend on its use offeedback
from higher to lower revels, Feedback plays a central role in the accounts
of categorical perception. lexical effects on phoneme identification, and

phonotactierule" effects, 
We do not claim that any of these phenomena, taken individually, re-

quire the assumption ; of a feedback mechanism, For example, consider
the phenomenon of tategorical perception. We use feedback from the

phoneme to the feature level to drive feature patterns closer to the pro-
totype of the phoneme they most strongly activate, Thi!! mechanism.
coupled with the competition mechanism at the phoneme level, accounts
for better discrimination between than within categories, However, we
could account for categorical perception by suggesting that subjects do
not have access to the acoustic level at all, but only to the results of the
phoneme identification process. Similarly, lexical effects on phoneme
identification can be accounted for by assuming that subjects (sometimes)
read out from the word level and infer the identity of phonemes from the
lexical code (Marslen-Wilson, 1980: Marslen-Wilson & Welsh, 1978;
Morton. 1979), In the case of "phonotactic rule" effects, other interpre-

tations are of course available as well, One could. for example, simply
suppose that subjects use knowledge of the phonotactic constraints. per-
haps captured in units standing for legal phoneme pairs. and that it is the
output of such units that accounts for the influence of phonotactic reg-
ularity on phoneme identification. 

We know of no single convincing empirical reason to prefer feedback
accounts to other possibilities, However, we have two theoretical reasons
for preferring to retain top-down as well as bottom-up interactions in our
activation models, One reason has to do with the simplicity of the re-
sulting decision mechanisms, Feedback allows higherlevel considerations
to influence the outcome of processing at lower levels in just the same
way that lower level considerations influence the outcome of processing
at higher levels, The influences of lexical and other constraints on pho-
neme identification need not be pushed out of the theory of speech per-
ception itself into decision processes, but are integrated directly into the
perceptual process in a unified way, Given top-down as well as bottom-
up processing, the decision mechanisms required for generating ' overt
responses that reflectlexical and other contextual influences are greatly
simplified; no special provision needs to be m.,de for combining lexical
and phonetic outputs in the decision mechanism,

A second reason for retaining feedback comes up when we consider
the problem of learning. Although we have not discussed how learning
might occur in TRACE, we have assumed that the mechanisms of speech
perception are acquired through modification of connection strengths.
Very roughly, in many learning schemes, connections between units are
strengthened when two units tend to be activated simultaneously, at the
expense of connections between units that tend not to be activated at the
same time (cf, Grossberg, 1978; Rosenblatt. 1962: Rumelhart & Zipser,
1985). In such schemes. however. there is a serious problem if activation
is entirely bottom-up: for in that case. once a particular unit has been

tuned" to respond to a particular pattern. it is difficult to retune it: it
fires when its "expected" pattern is presented. and when it fires. its
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tendency to respond to that pattern only increases. Feedback provides a
way to break this vicious cycle, If higher levels insist that a particular
phoneme is present. then the unit for that phoneme can become activated
even if the bottol11-up input would normally activate some other phoneme
instead; then the learning mechanism can "retune" the detector for the
phoneme so that it will need to depend less on the top-down input the
next time around, 

In general. the use offeedback appears to place more of the intelligence
required for perception and perceptual learning into the actual perceptual
mechanism itself. and to make the mechanisms which exhibit this intel-
ligence explicit. As formulated here. these mechanisms are incredibly
simple; yet they appear to buy quite a lot which often gets pushed into
unspecified "decision" and "postperceptual guessing" processes (e.
Forster. 1976),

Finally. th~ . success of TRACE also depends upon its architecture,
rather than the fundamental computational principles ' of activation and
competition. or the decision to include feedback, By architecture, we
mean the organization of the Trace structure into layers consisting of units
corresponding to items occurring at particular times within the utterance,
As we noted in the introducLion. this architecture is one we decided upon
only after several other kinds of architecture had failed,

There are three principle positive consequences of the TRACE archi-
tecture. First, it keeps straight what occurred when in the speech stream,
Competition occurs only between units competing to represent the same
portion of the input stream, Multiple copies of the same phoneme and

word units can be active at the same time without producing confusion,
Furthermore. the architecture permits the same competition mechanism
that chooses among alternative word interpretations of a single-word ut-
terance to segment longer utterances into words, No separate control
structure. resetting the mechanism at the beginning of each new word, isrequired, 

Second, the architecture permits both forward and backward interac-
tions. Backward interactions are absolutely essential if the model is to
account for the fact that the identity of a phoneme (or a word; Warren &
Sherman, 1974) can be influenced by what comes after it as well as what
comes beforeiL Some kind of record of the past is necessary to capture
these kinds of influences. as well as to provide a clear picture of the
sources of the more conventional effects of preceding context, and the

Trace construct lays this out in a way that is both comprehensible' and
efficienL

Third, the Trace structure provides an explicit mechanism which in-
stantiates the idea that there may be no distinction between the mecha-
nisms which carry out perceptual processing and those which provide a

working memory for the results of the perceptual process. At one and
the same time. the Trace is a perceptual processing system and a memory
system, As a result. the model automatically accounts forihe fact that
coherent memory traces persist longer than incoherent ones. The co-
herent ones resonate through interactive (that is, bottom-up and top-
down) activation. while incoherent ones fail to establish a resonance and
therefore die away more rapidly,

Several of these aspects of TRACE overlap with assumptions made in
other models, as mentioned in previous sections; continuity between
working memory and the perceptual processing structures has been sug-
gested by a number of other authors (e.g,. Conrad, 1962), and the notion
that working memory is a dynamic processing structure rather than a
passive data structure has previously been advocated by Crowder (1978,
1981) and Grossberg (1978), Indeed, Grossberg has noted that resonating
activation/competition processes can both enhance a perceptual repre-
sentation and increase the retention of a representation; his analysis of
interactive-activation processes in perception and apemory captures the
continuity of perception and memory as well as many other desirable
properties of interactive-activation mechanisms,

Some Deficiencies of TRACE

. Although TRACE has had a number of important successes , it also has
a number of equally important deficiencies. A number of these deficien-

cies relate to simplifying assumptions of the simulation model. It is im-
portant to be clear that such deficiencies are not intrinsic to the basic
structure of the model but to the simplifications we have imposed upon
it to increase our ability to understand its basic properties. Certain de-
ficiencies-such as the assumption that all phonemes are the same
length, that all features are equally salient and useful , and overlap an equal
amount from one phoneme to another-are not present in TRACE I.
Obviously a fully realistic model would take account of such dinerences.
Other factors that should be incorporated in a more complete model in-
clude some provision for effects of worll frequency, and some mecha-
nisms for exploiting available cues to word boundaries,

Another deficiency of the model is that the decision mechanisms have
not been fully enough elaborated. For example, as it stands the model
does not provide a mechanism for ,deciding when a nonword has been
presented. Nor have we specified how decision processes would actually
use the information available at the word level to locate word- initial pho-
nemes, A related problem is the lack of an explicit provision for vari-
ability in the activation and/or readout processes. Incorporating vari-
ability directly into a simulation model would greatly increase the com-
plexity of the simulation process, but would also increase the model's
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ability to capture the detailed properties of reaction time distributions
and errors (Ratcliff. 1978).

So far we have considered deficiencies which we would attribute to
simplifying assumptions adopted to keep TRACE as simple and trans-
parent in its behavior as possible. However. there are some problems that
are intrinsic to the basic structure of the model,

One fundamental deficiency of TRACE is that fact that it requires
massive duplication of units and connections. copying over and over
again the connection patterns thaI' determine which features activate
which phonemes and which phonemes activate which words. As w~ al-
ready noted. learning in activation models (e,g" Ackley, Hinton. &
Sejnowski. 1985: Grossberg. 1976: Rumelhart & Zipser, 1985) usually
involves the retuning of connections between units depending on their
simultaneous activation, Given TRACE' s architecture. such learning
would not generalize from one part of the Trace to another and so would
not be accessible for inputs arising at different locations in the Trace, A
second problem is that the model. as is. is insensitive to variation in global
parameters, such as speaking rate, speaker characteristics and accent,
and ambient acoustic characteristics, A third deficiency is that it fails to
account for the fact that one presentation of a word has an effect on the
perception of it a very short time later (Nusbaum & Siowiaczek, 1982),

These two presentations. in the current version of the model. simply
excite separate tokens for the same word in different parts of the Trace,

All these deficiencies reflect the fact, that the TRACE consists of a
large set of independent tokens of each feature. phoneme, and word unit,
What appears to be called for instead is a model in which there is a single
stored representation of each phoneme and each word in some central
rt;presentational structure, If this structure is accessed every time the
word is presented, then we could account for repetition priming effects,
Likewise. if there were a single central structure. learning could occur in
just one set of units, 'as could dynamic returning offeature-phoneme and
phoneme- word connections to take account of changes in global param~
eters or speaker characteristics,

However. it remains necessary to keep straight the relative , temporal
location of different feature. phoneme. and word activations. Thus it will
not do to simply abandon the Trace in favor of a single set of units

consisting of just one copy of each phoneme and one copy of each word,
It seems that we need to have things both ways: we need a central

representation that plays a role in processing every phoneme and every
word and thiit is subject to learning, retuning. and priming, We also need
to keep a dynamic trace of the unfolding representation of the speech
stream. so that we can continue to accommodate both left and right con"
textual effects.
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We are currently beginning to develop a model that has these proper-
ties, based on a scheme for using a central network of units to tune the
connections between the units in the Trace in the course of processing.
thereby effectively programing it "on the fly, " Similar ideas have already
been applied to visual word recognition (McClelland, 1985, 1986). Our
hope is that a new versifJnof the model based on these ideas will preserve
the positive features of TRACE I and TRACE II. while overcoming their
principle deficiencies,

Some General Issues in Speech and Language Perception
There are a number of gen~ral issues in speech and language' percep-

tion, Four questions in particular appear to lie close to the heart of our
conception of what speech perception is all about. First. what are the
basic units in speech perception? Second. what is the percept. and which
aspects of the processing of spoken language should be called perceptual?
Third. what is the representation of linguistic rules? Fourth. is there any-
thing unique or special about speech perception? We conclude this article
by considering each issue from the perspective we have developed
through the course of our ~xplorations of TRACE.

What is the perceptual "nit? Throughout this article. we have consid-
ered three levels of processing-feature, phoneme, and word. At each
level, individual processing units stand for hypotheses about the features,
phonemes. and words that might be present at different points in the input
stream, It is worth noting that most aspects of the model's performance

, are independent of the specific assumptions that we have made about the
units, or even the levels. Thus. if we replaced the phoneme level with
demisyllables (Fujimura & Lovins, 1978) or phoneme triples (Wickelgren.
1969), very little of the behavior of the model would change. These units
can capture some of the coarticulatory influences on phoneme id~ntity.
and they would reduce some of the word-boundary ambiguities faced by
the current version of the model, but neither coarticulatory influences
nor word boundary ambiguities would disappear altogether (see Elman
& McClelland. in press, for further discussion), 

In fact, interactive activation models like TRACE can be formulated
in which each perceptual object is represented. not by a single unit. but
by a pattern of activation over a collection of units, For example. the
phoneme units in each time slice of TRACE might be replaced by a
different set of units which did not have a one-to-one correspondence to
phonemes. A phoneme would be represented by a particular pattern of
activation over the set of units (each representing, perhaps. to some con-
junction of lower level features) rather than by a single unit in the set.

There are some computational advantages of distributed representation
compared to our "one unit one concept" assumption (Hinton, Mc-
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Clelland, & Rumelhart, in press), but it is very difficult to find principled
ways of distinguishing between local and distributed representational
schemes empirically, Indeed, in certain cases there is an exact mapping
and, in general, it is possible to approximate most aspects of the behavior
of a local scheme with a distributed one and vice versa (Smolensky,
1986). In light of this, our use of local as opposed to distributed repre-
sentations is not perhaps as significant as it might appear at first glance.
What is essential is the information that the representation captures,
rather than whether it does so via distributed or local representation, The
use of local representatior..., with each unit (at the phoneme and word
levels, anyway) representing a mutually exclusive alternative makes it
much easier to relate the states of the processing system to overt response
categories but is not otherwise a fundamental feature of the structure of
the model.

What is the percept? At a number of points in this article, we have
alluded to ways in which our conception of perception differs from the
usage of other authors, Such concepts as perception are inherently tied
to theory, and only derive their meaning with respect to particular theo-
retical constructs, Where does the TRACE model place us, then, with
respect to the question, what is speech perception?

For one thing, TRACE blurs the distinction between perception and
other aspects of cognitive processing, There is really no clear way in
TRACE to say where perceptual processing ends and conceptual pro-
cesses or memory begin, However, following Marr s (1982) definition of
visual percept.ion, we could say that speech perception is the process of
forming representations of the stimulus- the speaker s utterance-at
several levels of description, TRACE provides such a set of representa-
tions, as well as processes to construct them. On this view, then, the
Trace is the percept, and interactive activation is the process of percep-
tion,

Aspects of this definition are appealing. For example, on this view, the
percept is a very rich object, one that refers both to abstract, conceptual
entities like words and perhaps at higher levels even meanings , as well
as to more concrete entities like acoustic signals and features, Perception
is not restricted to one or a subset of levels, as it is in certain models
(e.g., Marslen-Wilson, 1980; Morton, 1979).

On the other hand, the definition seems overly liberal, for there is
evidence suggesting that perceptual experience and access to the results
of perceptual processing for the purposes of overt responding ,may not
be completely unconstntined, A number of experiments, both in speech
(e.g., Foss & Swinney, 1973; McNeil & Lindig, 1973) and reading (Drew-
nowski & Healy, 1977; Healy, 1976) suggest that under certain conditions
lower levels of processing are inaccessible, or are 'at best accessed only

with extra time or effort. On this evidence, if perception is to form rep-
resentations, and if the representations. are anythil18 like those postulated
in TRACE, then perception is quite independent of the experience of the
perceiver and of access to the percept. Put another way, we may choose
to define the 'Irace as the percept, but it is not the perceptual"expericnce.
This does not seem to be a very satisfactory state of affairs.

One coherent 'response to these arguments would be to say that the
'Irace is not the experience itself, but that some part or parts of it may
be the object of perceptual experience, It seems sensible , for example,
to suppose that the percept itself consists of that part of the Trace under
scrutiny by the decision mechanisms, On this view, it would not be in-
coherent to suppose that representations might be formed which would
nevertheless be inaccessible either to experience or to overt response
processes. It would be a matter separate from the analysis of the inter-
active-activation process itself to specify the scope and conditions of
access to the Trace. In our simulations, we have assumed that the deci-
sion mechanism could be directed with equal facility to all levels. but this
may turn out to be an assumption that does not apply in all cases.

HolY are rules represe~ted? It is common in theories of language to
assume without discussion that linguistic rules are represented "...' SlIch

in the mind of the perceiver, and that perception is guided primarily by

consultation of such rules, However, there area number of difticulties
associated with this view, First, it :does not explain how exceptions are
handled; it would seem that for every exception, there would have to be
a special rule that takes precedence over the more general formulation.
Second, it does not explain aspects of rule acquisition by children leai'ning
language, particularly the fact that" rules appear to be acquired, at least
to a large extent, on a word by word basis; acquisition is marked by a
gradual spread of the rule from one lexical item or set of lexical items to
others. Third, it does not explain how rules come ,into existence histori-
cally; as with acquisition, it appears that rules spread gradually over the
lexicon, It is difficult to reconcile several ofthese findings with traditional
rule-based accounts of language knowledge and language processing.

Models like TRACE and the interactive-activation model of word rec-
ognition take a very different perspective on the issue of linguistic rules,
They are not represented as such, but rather they are built into the per-
ceptual system via the excitatory and inhibitory connections needed for
processing the particular items which embody these rules. Such a mech-
anism appears to avoid the problem of exceptions without difticulty, and
to hold out the hope of accounting for the observation that rule acquisition
and rule change are strongly tied to particular items which embody the
ru~. 

What is spedt,! abollt ...'peech? We dose by raising a qucstion that often
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