The Hopfield Network

R. Rojas

Presented by
Madhumanti Ray



Outline

Synchronous & Asynchronous networks

Bidirectional Associative Memory

Hopfield network

Hebbian learning and Hopfield network

Perceptron learning and Hopfield network

Application of Hopfield network to combinatorial problems
Limitations of Hopfield network in NP-complete problems
Implementation of Hopfield network

Closing comments



Synchronous networks
requires the computing elements to evaluate the inputs and
compute the outputs simultaneously.
excitation of output units calculated at each node by
evaluating sign function.

Asynchronous networks

selects an unit randomly to compute excitation.
changes state to 1 or -1 depending on < or > threshold value
independent of other units

Recurrent Associative networks

output of network fed back to input units using additional
feedback connections



Bidirectional Associative Memory (BAM)

Synchronous network
Modification of recurrent associative network
two layers - input and output
input layers send their computations to output layer using

bidirectional edges. Final output of output layer sent back
using
using same edges.
Activation function : sign function

Encoding: Bipolar

X

X,




map n- dimensional row vector x0 to k-dimensional row vector y0

Weight matrix W (n x k matrix)

y; = sgn(x; W)
Feedback

X;,q 1 =sgn(Wy; 1)

After some iterations a fixedpoint (x,y) is found for which there is no change in
both:

y= sgn(xW) and x'= sgn(Wy')



For a given vector pair (x,y) which is a fixed point, used Hebbian learning to
compute matrix W = xTy

y =sgn(xW)=sgn(xx! y)=sgn(| Ix| [2y)=y and,
xT =sgn(WyT) = sgn(xTy yT) =sgn (xTI Iyl 12)=xT
Therefore, for m vectors: W= x;ly; + X'y, + ...+ X, 'V

BAM can be used to represent autoassociative networks, where each unit has
a self feedback loop:

X=XW and XI'=WXT

Where, X is a matrix with m rows representing n-dimensional vectors



Energy function of BAM

For the first vector x0 presented to the network with weight matrix W:
y0 = sgn(xOW)

During feedback, excitation of input layer: el= Wy,
(x0,y0) is a stable state of the network if:
sgn(e) = X,

Vectors e closer to x, will give a smaller value for : -xye’
which is used in the energy function E of the network:

E =-xel=- x,Wy,!

Therefore,
E(x,y,) = -1/2x; Wy,T

where, y; output of right layer of units in i-th iteration and x; output of left
layer



For units with a threshold and the step function as the activation function,
we update the input vectors with an additional component
so now vector x will be (x1,x2,....xn,1)
vector y is similarly updated
weight matrix W is updated to W’ with additional row and column
row n+1 has the negative thresholds of the units in the right layer
column k+1 has those of units in left layer

The energy function will, therefore, be modified for extended network to:
E(x,y) = -Vax; Wy +72 0,y;" + %2 0,'x;

where 0, represents row vector of thresholds of k units in left layer and O,
gives thresholds of n units in right layer



Using energy function of BAM, prove network converges to stable state after some
iterations using synchronous or asynchronous updates

For x = (xq,Xy,....,X,) and y=(y;,Ya---Vn)
Weight matrix (nxk) W = {w,/

Wy whg - Wik Y1

B 1. Way Waz -~ Wagk Y2
Ex,y) = —5[:1:1_.1‘.2_. ey Tn)

Wn1 Wea »- - Wik Uk

Multiplying W, by y!, get excitation for unit i in left layer. Denote by g;, g,, ..., g,
1
Ex,y)= —%[1‘.1,:}:2,. U .gz
G
Similary W;- x — excitation of unit 7 in right layer. Denote by e;, e,, ..., e
)
Eix,y)= —%[el, €2, EL) ?2

Yk



Equivalent form: 1~ 1 <
i Eix,y)= —EZE?;H and E(x,y)= —EZQ‘{J—H‘,-

i=1 i=1

State of unit changes when excitation g; or e; have different sign than x;.

updated to x; to x;’ .
‘E'I[X.' y,} = ‘E'I[X’.'}F} = _Egi{j:i = ji}

x; & x;" have different signs than g;.
-'E'I[x.' .‘)‘F} - "E'I[Xlr.' y} >0

Updating network state — reduces total energy

Reach state (a,b) s.t energy cannot be reduced further
local minimum of energy function
state (a,b) is attractor of the system



Hopfield Network

Proposed by American physicist John Hopfield in 1982
asynchronous recurrent neural network

special case of BAM although precedes it

Architecture:
consists of n totally coupled units. No self feed back .

symmetric because weights, w;; = w; i.e. single bidirectional

ij - ji
connection
Features:

n x n symmetric weight matrix W with zero diagonal

necessary for the network to converge to stable states ( applies to all
asynchronous networks)
threshold O set to a value # 0, if e < O then state is -1 otherwise ¢>0

stateis 1



Hopfield network can be considered a asynchronous recurrent network of
perceptrons

the activation function of units = units of perceptrons

Therefore, the energy function of state x of a Hopfield network is given by:

E(x)= - %% xWxT+ 0xT

the 6, and 0, is replaced by 0 since, 6 = 0,= 6,

The energy function can be further expanded into the following form:
E(x)=-% Z;I.=1 Z?:]_ wij xi Xj + Z?’=1 Gixi

A Hopfield Network always finds a local minimum of the energy function.



The Flip-Flop example O . O

Fig. 13.4. A fip-flop

Network two units with threshold zero
only two stable states(1,-1) and (-1,1)

One unit forces the other to change states to stabilize the network
Assume complementary logic values

Energy function with weights, w;, =w,; =x; X, =1
E(x; X5) =X X,

Flip tlop in examples ahead...

Fig. 13.5. Energy function of a Aip-flop



Ising Models and Hopfield Network

Ising model of Magnetism:

The model consists of discrete variables called spins that can be in one of
two states— % (up), - %2 (down). The spins are arranged in a lattice or graph,
and each spin interacts only with its nearest neighbors.

Total magnetic field sensed by an atom i : by = 37, wy x; + h*

h* - external field
wy — magnetic coupling between atoms i and j

Hence, potential energy E of a state of in Ising model derived from above:
= - Ve ST wy xi %+ X7 - h'x

**this function ( at temperature zero) is isomorphic to the energy function
of a Hopfield network



Hopfield Network Dynamics

Analyze with following example:
Given a network with three units, each has
arbitrary weights and thresholds.

Observations: s unit | it 3
- each transition has same ) SR R G e
probability = 1/3 s Rt !
- State (1,-1,1) & (-1,1,-1) very as| )
unstable, Pr of leaving is 1 20f
- Single stable state (-1,-1,-1) | R I R
L R R SRR A,
Hopfield network ] et i e S R AR ehbttd
eventually finds a local

minimum & state where

network cannot

change anymore.




Convergence of Hopfield Network

Proposition 20: A Hopfield network with n units and asynchronous dynamics, which starts from
any given network state, eventually reaches a stable state at a local minimum of the energy
function.

Proof: We know energy function for state x: E(x) =-% ¥, XL, wy xi xj + X 05x;
If state of an unit changes, a new global state x" = (xy, ..., X',...%p)

The difference of E(x) and E(x’) is then given as:
E(x) = E(x') = (- Xja1 Wiy X Xy + O x5) = (- wig X'k Xy + 0 X3)
since wy, =0,
E(x) = E(X') = - (xx- X'x ) Lf=1 Wiy X+ O(xic- X'g)

= - (%= Xk ) L1 Wig Xj - Bk = (e X'y ) e

For state to change, ey has to have different sign than X, and X, so above equatmn is +ve,
therefore, E(x) — E(x’) >0 => total energ
changes.




The other proof:

» C(lassity units into 2 sets, one containing units with state 1 & other, units
with state -1

e Units are fully connected among themselves

 Randomly select an unit and compute its “attraction” by units in its sets and
units in second set. “attraction” = sum of weights of all edges between an
unit and other units in the sets.

e If attraction from other set is higher, unit changes state and side. Else, stays
in the same set.

* Repeat several times. Sum of weights of edges reduces over time.

* A global stable state is reached where attraction cannot be further reduced,
since network is finite.

e  Minimal Cut Problem



Hebbian Learning

Hopfield network can be used as associative memory — “imprint” m different
stable states.

Variation of BAM — which uses Hebbian learning — could use in Hopfield
network.
Implemented by loading m n-dimensional stable states on the network,
weights update according to,
w;  wytxfxk ij=1,.n&i#j

Weight matrix W with zero diagonal & symmetric, W;=x;1x;-1;

where [ is a nxn identity matrix.

Subtracting it guarantees that diagonal of W becomes zero, since for any
bipolar vector x;/ x;,/ =1.



Hebbian Learning

Then Hopfield energy function becomes:
E(x) =- % xWq x;T=- % (X X1 x;xT = x xT)

where x xT =n for bipolar vectors, E(x)= -% || xx;T|12+n/2
Solving gives,
E(x)= -n%/2 +n/2
which implies the function has local minimum at x = x, is a stable state.

For m different vectors, weight matrix W would be:
W=xTX+ X T X+, o+ X, F Xy, -
If the network is initialized with vector x;, excitation vector e of units becomes
@ =X;W =Xy X1 X1+ Xy X2 X+ ..o + X1 X Xpq += T X7 I
= (n-m) X+ Xi25 0y X;
a represents scalar product of first vector with other m-1 vectors.
27d term in perturbation term — which should small.



Observations for Hebbian learning on Hopfield network:
for m <n and small perturbation term, sgn(e) = sgn (x;)

best results achieved when vectors x;, X,,...x,, are orthogonal or
almost orthogonal

useful for computing weight matrix but sometimes cannot find a
a W for which m given vectors are not stable states
if the vectors lie near each other, perturbation term can grow very
large and not give a solution

Perceptron learning is used...



Perceptron learning & Hopfield network

Transform a Hopfield network learning problem into Perceptron learning problem.

HN 7 units (perceptrons), threshold # 0, step function,
state=1ife—0>0
state=-1ife-0<0
... perceptron learning could be used for finding W and thresholds

We have a Hopfield net, W = {wij} and threshold 0 <«

A vector x = (X3, X, ,..., X, ) to be imprinted on a HN will be a stable state does not change
network global state:

(e — O0) same sign as current state

First set of n inequalities:

for unit 1: sgn(x;) (0 + X,Wyy + XgWq3 + ...+ X Wy, — 05) <0
for unit 2: sgn(x,) (X;Wy; + 0 + XgWys + ...+ X, Wy, — 0,) <0
for unit n : sgn(x,) (W + XgWp + XgWpg + oot X ;W) + 0= 0,) <0 must hold

Factor sgn(x;) used to obtain same inequality operator — ‘<’



Perceptron learning in Hopfield network

In previous set of inequalities, n(n-1)/2 entries of W & n thresholds
Define a n+(n-1)/2 vector v

components: non-diagonal entries of W (i <j), n thresholds with *-" sign

V = ( le, W13,..., Wll’l’ W23 7 W24 XXXV’ Wzn,..., W(n—l)n ,'61,...,' en)
( Y )\ Y } ( J J

n-1 n-2 1 n

Then the vector x is transformed into n+(n-1)/2 dim auxiliary vector z :
2= (Xo X3 ,-.4,%,,0,0,...,1,0,...,0)
l—Y—J k_Y_J

n-1 n

L )\ 7
Y Y
n-1 n-2 n
2= (00,%,0,0,...,%,0,0,...,0,0,...,1)
n-1 n-2 n



Perceptron learning in Hopfield network

So the first set of inequalities become:
unit 1: sgn(x;) z;- v>0
unit 2: sgn(x,) z,» v>0

unit n: sgn(x,) z, v>0

Solution is found by computing linear separation of vectors z,, z,,..., z,.

sgn(x) holds for those belonging to +ve half-space
sgn(x) = -1 for those in —ve half-space

Vector v of weights is used for the linear separation. W is deduced from this.
For m given vectors:

nm unique auxiliary vectors — to be linearly separated

solution in v <— if z’s linearly separable

Learning problem of a n unit HN transformed into n+(n-1)/2 dimension learning problem
for a perceptron



Each iteration updates weights of edges to a single unit & its threshold
If sign of unit’s excitation # sign of desired state,

weights of individual unit ( perceptron) corrected
Perceptron learning can be used locally

Every learning algorithm for perceptrons can be used as learning method for
HN

They take polynomial time..eg linear separation of nm vectors in polynomial
time
Therefore, learning problem for HN can be solved in polynomial time



Problems of Combinatorics using Hopfield network

Multiflop problem:

Binary n dim vector where all zeros except for single 1.

When an unit is set to 1, inhibits other units through edges w = -2
Threshold = -1

Set all units to 0 = e =0 > threshold
First unit selected will flip to state to 1 — a stable state
Energy function: E(xy,...x,) =Y. " (x;-1)?

also written as, E(xy...,x,) = x7 + Y xx;—2 ) x;+1
for binary states, x; = x;?
Finally get,
E(xy...x)=-% Y (-2) xx;+ L (-1) x; + 1

2

this energy function isomorphic to Hopfield
network one. .% °



The Eight Rooks Problem:

Position 1 rooks on a chess board such that no one figure can take another. Each rook will be
positioned in a different row and column.

In each row only one square set to 1. Generalization of multiflop probl 2

The network set up and initialized same as multiflop problem.

Overlapping of multiflop problems. To find weights of the network: NEE

X;; — state of unit corresponding to square ij on board E

)

# of 1s given by ) x

ij s

If only single 1 allowed in each column/row, minimize following functions:
E 0= X(Xx;-1) minimum when only 1 rook in every column
E.0 =X x;- 1)?

Each is sum of n independent functions ( each row/column)
Threshold of row and column =-1 + -1 =-2 —> upto 2 units set to 1. Not what we want.

Threshold set to -1 = only one unit in each row or column set to 1, rest set to 0



Eight Queens Problem:
Each diagonal of a 4x4 matrix can be occupied at most once by a queen.

Three multiflop problems overlap — row, column & diagonal.

w;=-2  wherei#j, belong to same row and column

However, this connection pattern does not always give correct solution.
Diagonal can or cannot be occupied

energy function too complex, compromise weights we choose for row, column &
diagonal




Traveling Salesman & Hopfield Network

Find paths through = cities 51, 52, ...5n such that every city is visited at least once and the
length of a round trip is minimal.

Distance dj is distance between cities S, and S;. 1234
Round trip represented by nxn matrix g : é ? g g
n rows — associated with a city slo010
n columns — associated with n necessary visits. 50001

n+1 column = 1%, roundtrip
Matrix fulfills the same condition as in the Rooks problem.

Length function that needs to be minimized:
L="% 3}k Ay X Xpiar where Xy, X1 = 1
Add constraints for legal path, use rooks problem function for new energy function:
L =% X85 dy X Xj g + Y2 (To1(Dieg (- 1D + 21 (Teq (-1

y regulates weight given to minimization of length or generation of legal path



Traveling Salesman & Hopfield network

Weights of the network set to —y and threshold to —y/2.
weights are modified by adding length between states

Therefore, weight of edge between unit ik and j,k+1:

Wik i1 = =i + L it
tix jiker = -Y for units of same row, column. Otherwise is 0.

Issues:
paths generated are not always legal. Can force to generate only legal paths :
set v to a very large value — ignores distances completely
Very large Y means large # of cities — many local minimums —> no global minimum.

Need massively parallel systems to solve TSP
no. of units increase quadratically with no. of cities (1)
no. of weights increase proportionally to n*



Limits of Hopfield Network

NP class — are a set of non-deterministic problems whose possible solutions can be
verified in polynomial time but cannot be found since time taken increases rapidly as
size of problem grows.

Eg. — Traveling Salesman

NP-complete —is a subset of NP.

A problem p in NP is said to be in NP-C iff all other problems in NP can be transformed
into p in polynomial time. Also known as “NP-hard”.

P class — problems with algorithms that reach a solution in polynomial time belong to
this class.

Here, the application of Hopfield Network is extended to NP-hard problems.
Observations:
size of network explodes during attempts to transform all local minima of HN into

an optimal solution.

Complement of NP class...



Limits of Hopfield Network

In class P, for a member problem its complement belongs to P as well.

e.g.: “For problem instance X, is X true for I?”
complement —> “ For problem instance X, is X false for I?”
A polynomial time algorithm will terminate on each.

Not true for problems in NP. For Traveling Salesman Decision Problem computation of
tour’s length can be verified in polynomial time.

However, complementary problem “ Is there no tour with a total length smaller than R?”
for a “yes” —no polynomial time algorithm to verify this assertion

To prove the assertion — new data structure Co-NP # NP
Computer scientists hope this will be proven eventually.

Few lemmas to determine conditions under which NP = Co-NP ...



Lemma 1: If there is an NP-C problem X whose complement X¢ belongs to NP, then NP = co-NP

Problem Y in NP — reduced to X ( NP-C) in polynomial time, implies Y¢ reduced to X°.
Since a solution of X¢ can be verified in polynomial time, same stands true for Y¢.
Therefore, NP = co-NP

Lemma 2: Let L be an NP —C decision problem and H a Hopfield network with a number of
weights bounded by a polynomial on the size of the problem. If H can solve L (100% success rate)
then NP = co-NP.

Given L assigned a size, there is a polynomial bound on no. of weights for H to be
derived from energy function.

100% success rate — all local minima help decide truth or falsity of L. H used to verify
whether solution found is indeed local minimum.

Polynomial size of net makes the decision possible in polynomial time. In TSDP, “yes” by
comparing tour with decision threshold. For complement, optimal tour compared with
same.

Both belong to NP. So from Lemma 1, NP = co-NP.
H does not exist otherwise.



Implementation of Hopfield Network

Electrical Implementation:
X1 ,Xg,... Xy equivalent to states of HN
Resistance, 13 = 1/ wys

Inhibiting connections, inverted outputs

Network of n amplifiers, current I, ( excitation of unit i)

I;= Z?=1 Xj / I = Z?=1 X; Wi

ry is —ve if input of an unit is the inverted output.
Total excitation transformed intoOor 1

vl

vl -




Optical Implementation:

Used to perform matrix multiplication

faster.

States x; projected using
LED.

Luminosity proportional

to state.

Incoming light at lens - light
from a column of the mask -
collected at single position.

- n
8 = Li=1WjX;

input from
light emitting
diodes

lluminated row
‘R7/Z

lens

SLM mask

JUA

excitation
of the j-th unit

total excitation processed by analog/digital circuit. The unit state used for new iteration.

Weights are normalized. No direct connections. Easy to implement large networks.



Comments

Hopfield networks is a very effective tool for analyzing convergence of neural
networks.

It has a simple implementation.
Not applicable to NP problems

Need special hardware to compete with methods used in sequential
computers.



