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Neural Network Classification

1st Generation:

- Perceptrons, Hopfield Networks, MLP with
threshold units

2nd Generation:

- Networks with non-linear activation units and
real-valued, continuous set of output units

31 Generation:

- Spiking neuron networks, using firing times of
neurons for information encoding



The Biological Neuron
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Traditional Spike Representation
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Hodgkin-Huxley Model

Models membrane potential

- Conductance-based
« Defined in 1952 (Note: Na-K Pump disc. in 1957)
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Leaky Integrate & Fire Model

Considers spike as event
Ions leak out, requiring time constant, t
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Izhikevhich’s Firing Behaviors

20 Possible Neuron Firing Behaviors
LIF can only accommodate 3 (A,G, & L)
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Izhikevich Neuron Model

Two variables
- Voltage Potential (v)

- Membrane Recovery (activation of K currents
and inactivation of Na currents) (u)

- W is the weighted input(s), a, b, c & d are
abstract parameters of the model

When (v > threshold), v and u are reset:
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Spike Response Model

Adds a refractory period
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Model Advantages

Hodgkin-Huxley
- Accurate Modeling

- Predicts membrane potentials due to
pharmacological blocking of ion channels

Integrate & Fire

- Easy implementation

- Computation-light
Spike Response Model

- Includes refractory phase



Rate Coding v. Temporal Coding

Rate Coding
- Information transmitted by rates
- I.LE. number of spikes per unit time

Temporal Coding

- The exact timing of spikes matter



Rate Coding v. Temporal Coding
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Hhazisl ) Temporal Computing
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Figure 9: Shapes of postsynaptic potential (EPSP or IPSP) for computing a weighted sum in temporal coding.

Right: Example variation of neuron N; membrane potential for computing Zi{:l";- a;;r; and resulting firing
time t;. All the delays A;; have been set equal to A. Neuron Ny (third firing) is inhibitory whereas the other
three are excitatory. The slopes of the PSPs are modulated by the synaptic efficacies w;;.




Network Topology and Dynamics

Reviewed models describe single
neurons, still need to create networks
Traditional Architectures

- Use temporal coding to reduce SNN to NN
- Refer to previous slide

Echo State Networks & Liquid State
Machines



Echo State Networks

Produce an echo state network

Sample network training dynamics
Compute output weights, use any linear
regression algorithm

SNs implemented in ESN outperform
traditional ESNs
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Liquid State Machines

Turns time varying input into a spatiotemporal pattern of
activation

Large number of non-linear activation states

Activations go into readout neuron(s) (linear discriminate
units)

liquid ;_’ readout map

Figure 11: Architecture of a “Liquid State Machine”. A continuous stream of values u(.) is injected as input
into the liquid filter L™ . A sufficiently complex excitable “liquid medium” creates. at time £. the liquid state
™ (t). which is transformed by a memoryless readout map f™ to generate output y(t).




Cell Assemblies

“A group of neurons with strong mutual
excitatory connections.”

Excite one, excite all (many)
“Grandmother Neural Groups”™

Synfire chain: pool of in-sync neurons

Transient synchrony

- Leads to collective sync. event; computational
building block, “many variables are cur. ~equal”

Polychronization

- "reproducible time-locked but not synchronous
firing patterns”



Learning Rules

Traditional Methods
New SNN Methods
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Applying Traditional Learning
Rules to SNN

Hopfield Networks (Maass & Natschlager)
Kohonen SOMs (Ruf & Schmitt)

RBF Networks (Natschlager & Rug)

ML RBF Networks (Bohte, La Poutre & Kok)
SNN shown to be universal function
approximaters

7 units code x,

n x m neurons, with gaussian receptive fields.
encode a real—valued vector X into spike trains




Hebbian-based Learning

“When a pre-synaptic neuron repeatedly
fires right before a post-synaptic neuron
fires, the weight between the two neurons

increases.”
Hebbian Properties
* Synaptic Scaling
- Synaptic Redistribution
- Spike-timing dependent synaptic plasticity



Spike-timing Dependent
synaptic Plasticity (STDP)
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SNN Learning Theory Models

Maximization of mutual information
BCM model
Minimization of entropy

- Minimize the response variability in the post-
synaptic neuron given a particular input pattern



Software & Hardware
Implementation

Event-driven Simulation
- Vs. time-driven simulation
- Most of the time neurons aren’t firing, so

« Calculate when firing events occur, not what
every neuron is doing at every time step

- Delayed firing problem
Parallel

- SpikeNET

- DAMNED simulator



Applications
Hopfield and Brody, Digit Recognition

« Generalize from small number of examples

- Robust to noise

- Uses temporal integration of transient synchrony
« Time warp invariant

- A set of neurons fire synchronously to a
particular input (transient synchrony)

Many examples 1n
* Speech processing
- Computer Vision



Discussion

Spiking Neuron Networks
- Biologically motivated
- Computationally difficult without simplification
- Traditional learning rules don’t take advantage
of timing sequencing
- New learning rules will have to be forthcoming
before SNN show their potential
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