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1st Generation: 
• Perceptrons, Hopfield Networks, MLP with 

threshold units 
2nd Generation:

• Networks with non-linear activation units and 
real-valued, continuous set of output units

3rd Generation:
• Spiking neuron networks, using firing times of 

neurons for information encoding
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Alpha Function
 Integrator
Coincidence Detector



Models membrane potential
• Conductance-based
• Defined in 1952 (Note: Na-K Pump disc. in 1957)



Considers spike as event
 Ions leak out, requiring time constant, τ



20 Possible Neuron Firing Behaviors
LIF can only accommodate 3 (A,G, & L)



Two variables
• Voltage Potential (v)
• Membrane Recovery (activation of K currents 

and inactivation of Na currents) (u)
• W is the weighted input(s), a, b, c & d are 

abstract parameters of the model

When (v > threshold), v and u are reset:



Adds a refractory period

Spike & Spike Reset Weighted Sum 
of Inputs

External Current

s s



Hodgkin-Huxley
• Accurate Modeling 
• Predicts membrane potentials due to 

pharmacological blocking of ion channels
 Integrate & Fire

• Easy implementation
• Computation-light

Spike Response Model
• Includes refractory phase



Rate Coding
• Information transmitted by rates
• I.E. number of spikes per unit time

Temporal Coding
• The exact timing of spikes matter







Reviewed models describe single 
neurons, still need to create networks

Traditional Architectures
• Use temporal coding to reduce SNN to NN
• Refer to previous slide

Echo State Networks & Liquid State 
Machines



Produce an echo state network
Sample network training dynamics
Compute output weights, use any linear 

regression algorithm 
SNs implemented in ESN outperform 

traditional ESNs



 Turns time varying input into a spatiotemporal pattern of 
activation

 Large number of non-linear activation states
 Activations go into readout neuron(s) (linear discriminate 

units)



“A group of neurons with strong mutual 
excitatory connections.”

Excite one, excite all (many)
“Grandmother Neural Groups”
Synfire chain: pool of in-sync neurons
Transient synchrony

• Leads to collective sync. event; computational 
building block, “many variables are cur. ~equal”

Polychronization
• "reproducible time-locked but not synchronous 

firing patterns"



Traditional Methods
New SNN Methods



 Hopfield Networks (Maass & Natschlager)
 Kohonen SOMs (Ruf & Schmitt)
 RBF Networks (Natschlager & Rug)
 ML RBF Networks (Bohte, La Poutre & Kok)
 SNN shown to be universal function 

approximaters



“When a pre-synaptic neuron repeatedly 
fires right before a post-synaptic neuron 
fires, the weight between the two neurons 
increases.”

Hebbian Properties
• Synaptic Scaling
• Synaptic Redistribution
• Spike-timing dependent synaptic plasticity 





Maximization of mutual information
BCM model
Minimization of entropy

• Minimize the response variability in the post-
synaptic neuron given a particular input pattern



Event-driven Simulation
• Vs. time-driven simulation
• Most of the time neurons aren’t firing, so
• Calculate when firing events occur, not what 

every neuron is doing at every time step
• Delayed firing problem

Parallel
• SpikeNET
• DAMNED simulator



Hopfield and Brody, Digit Recognition
• Generalize from small number of examples
• Robust to noise
• Uses temporal integration of transient synchrony
• Time warp invariant
• A set of neurons fire synchronously to a 

particular input (transient synchrony)
Many examples in

• Speech processing
• Computer Vision



Spiking Neuron Networks
• Biologically motivated
• Computationally difficult without simplification
• Traditional learning rules don’t take advantage 

of timing sequencing
• New learning rules will have to be forthcoming 

before SNN show their potential
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