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Echo state Networks (ESN)

ESN Is a Recurrent Neural Network (RNNs)

RNN: is a class of NN where connections between units form a directed cycle.

Winisa KX N matrix Wb is a LX N matrix

W isa N x N matrix Wout s a (K+N) X N matrix




ESN-UnNits

Unit activation functions are typically sigmoid

v = tanh{x) ¥ =

tanhx
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ESN-System Equations

X(n+1) = f(WinU(n+1)+WX(n)+Wmy(n))
X: N dimensional Reservoir state : K-dimensional input signal

N: time Y: L-dimensional output signal

f :Sigmoid function




ESN-System Equations

y(n) = g( Wout Z(n)) where  Z(n)=[X(n); U(n)]

Y: L-dimensional output signal X: N dimensional Reservoir state

. K-dimensional input signal £: Output activation function (typically

the identity or a sigmoid)

teacher
d(n)

Z: extended system state W




Echo State Property

This condition in essence states that the effect of a previous state x(n) and
a previous input u(n) on a future state x(n + k) should vanish gradually as
time passes (i.e., k ( )), and not persist or even get amplified.

Having echo states (or not having them) is a property of the network
prior to training, that is, a property of the weight matrices Win, W, and
(optionally, if they exist) Wb

The property is also relative to the type of training data: the same untrained
network may have echo states for certain training data but not for others.

Unfortunately, there is no known necessary and sufficient algebraic
condition which allows one to decide, given (Win, W, Wfb), whether the
network has the echo state property.



Building ESNs

Step by step approach



Stepl: Create Reservoir (W)

There are many Reservoir recepies. However, weights (W) and topology are selected
randomly, in all of them:

1. Big: sufficiently large, with order ranging from tens to thousands.

2. Sparsely: the weight matrix W is sparse, with up to 20 % of possible
connections.

I. Classic

3. Randomly: the weights of the connections are usually generated
randomly from a uniform distribution symmetric around the zero value.

Il. Different topologies of the reservoir from sparsely randomly connected ones.
lll. Modular reservoirs: dividing the reservoir into sub-reservoirs

IV. Layered Reservoir and ...

Optimizing reservoirs for a particular task or a class of tasks in an automated
fashion is currently the most important field of ESN research.



Step 2: Attach input units to the reservoir (Win)

Absolute size of input weights

Random all-to-all connections

Small: the network state is only slightly excited around the DR’s resting
(zero) state. the network units operate around the linear central part of the
sigmoid, i.e. one obtains a network with an almost linear dynamics.

Large: network is strongly driven by input and the internal units go closer
to the saturation of the sigmoid, which results in a more nonlinear
behavior of the resulting model.

Very large: the internal units will be driven into an almost pure—1/ +1
valued, binary dynamics. -

Manual adjustment and repeated @ - - ----- - - o=
learning trials will often be required
to find the task appropriate scaling.
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Step 3:Wrb

If the task requires output feedback

install randomly generated output-to-reservoir connections
(all-to-all).




Step 4: Training

Given: A training input/output sequence (u(1), d(1)), ..., (u(T), d(T)).

Wanted: A trained ESN (Wout) whose output y(n) approximates
the teacher output d(n), when the ESN is driven by the training
input u(n). In other words, Minimize error.




Step 4: Training

Minimize Error = Z{ﬁﬂ:ﬂ} —p{n))*

n=1 ]
n:time

= N: reservoir size
while () = wa-ﬁfr (n) T: # of Training pairs
=1 y: L-dimensional output signal
X: N dimensional Reservoir state

Any method for computing linear regressions

can be used to obtain W



Previous Works

teacher Minimize error (d(n)-y(n))
a(n)
output Recurrent

deumn}o adapt all connections (input,

) recurrent, output) by some
17 . .
version of gradient descent.

Reservoirs have 5-10 neurons

The learning process is slow, may find suboptimal solutions, and is prone
to become disrupted by bifurcations
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Chaotic Systems

Chaotic systems: Time-dependent (dynamical) systems that are highly
sensitive to initial conditions.

Arbitrarily small perturbation of the current trajectory may lead to
significantly different future behavior (Butterfly Effect)

“Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in
Texas?” By Edward Lorenz (1970)

Chaotic systems are not periodic, not forever increasing and not
approaching a fixed point. But, they are not random!

Long-term prediction of chaotic systems is impossible (weather)

Lasers, oscillating chemical reactions, and fluid
dynamics are other examples of chaotic systems




Other Methods

wavelet networks (Liangyue Cao, et al., 1995)

Likelihood and Bayesian (Berliner, 1991)

Regression using Support Vector Machines
(Mukherjee , 1997) and RBF (Rosipal etal, 1998)

feedforward network trained with backpropagation
Chakroporty et al (1992), Elsner et al (1991), Andresia etal(2000)

Recurrent Neural NetwoD——> Echo State Networks (ESN)

—

real-time recurrent learning (Williams and Zipser 1989)

backpropagation through time (Werbos 1990)
Previous Works —

extended Kalman filtering based methods (Puskorius etal 2004),

Atiya-Parlos algorithm (Atiya and Parlos 2000)



Mackey-Glass System

It is a standard benchmark system

Reservoir size (N) = 1000 —> A 1000 X 1000 matrix was constructed

Random weights drawn from a

The connectivity was 1%
y ° uniform distribution over (-1,1)

Uses feedback connections

First 1000 steps were discarded to wash out initial transient.

Echo signals x(n) were sampled from remaining 2000 steps and the network
trained by them

The results show a jump in modeling accuracy with respect to previous models
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High-frequency signal

II Transmission
High
Distortion
Modulation
High - High
d(n) Efficiency

)
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Equalization of wireless channels

A 46-neuron reservoir and W were randomly generated
with a connectivity of 20%, and nonzero connection
weights drawn from a uniform distribution over ( -1, 1).

Output neuron was a linear neuron

Results Showed an improvement of two magnitudes for high
signal-to-noise ratios.



Summary and conclusion

* The mathematical properties of large RNNs such that they can be
used with a linear, trainable readout mechanism for general blackbox
modeling are elucidated.

« ESN is faster and more applicable than previous methods that
try to train all the connections.

« ESNs can be applied to all basic tasks of signal processing and
control

* ESNSs have been developed from a mathematical and engineering
perspective, but exhibit typical features of biological RNNs



