
Presentation by Brittany A. Duncan

Paper by Kenneth O. Stanley, Bobby D. Bryant,
and Risto Miikkulainen

 Neural networks can be used to train game
agents in much less time than it would take
to program the actions

 Neural networks also allow these actions to
be reversed or adjusted as needed

 It is important to have speciation in order to
foster innovation and population limitation in
order to maintain speciation

 People

 Introduction

 Related Work

 Neuroevolution of Augmenting Topologies
(NEAT)

 Real-Time NEAT (rtNEAT)

 Neuroevolving Robotic Operatives

 Playing NERO

 Discussion

 Conclusion

 What next?

 Kenneth Stanley:
◦ Assistant Professor at University of Central Florida

◦ Director of the Evolutionary Complexity Research Group

 Bobby Bryant:
◦ Assistant Professor at the University of Nevada, Reno

◦ Director of the Neuroevolution and Behavior Laboratory

◦ Director of the CCRC Agent Modeling Laboratory

 Risto Miikkulainen:
◦ Professor at University of Texas at Austin

◦ Director of the UTCS Neural Networks Research Group

 Why video games?
◦ Decrease production cost, increase longevity

◦ Millions of players

◦ Drawback: unpredictable game play

 What is NERO?
◦ Neuroevolving Robotic Operatives game

◦ Proposed by Kenneth Stanley in October 2003

◦ The idea is “without learning NERO could not exist
as a game.”

 Machine Learning in games
◦ Blondie24 playing checkers

◦ Out-game-learning vs. In-game-learning

 Learning complete when game ships

 Learning from player interactions

◦ Machine Learning Games

 Player explicitly trains agents

Machine Learning Neuroevolution

Large state/ action space
Large cost to game

engine
Agents only output one

action per tick

Diverse behaviors
Convergence is

guaranteed
Speciation

Consistent individual behaviors
Random action

required

Does not change,
chooses from same

network

Fast adaptation and sophisticated
behaviors

Simple behaviors can
be learned quickly,
sophisticated are
slower to develop

Representation is
evolved, which allows

them to be complexified

Memory of past states Unrealistic to scale
Implements and utilizes

effective memory
structures

 Topology and weight evolving artificial neural
networks (TWEANNs) are different from other
neural networks because they adapt based on
the evolution

 Have we read about any others?

 NEAT is unique because it starts with minimal
networks and adds nodes and connections
over generations
◦ This allows simple problems to help solve complex

problems

 Genetic Encoding

 Genetic Encoding
◦ Add node makes

the new weight
between 3 and 6
equal to 1, and the
weight between 4
and 6 equal to .5

◦ This creates the
nonlinearity

 Tracking Genes through
Historical Markings
◦ Global innovation numbers

track changes

◦ Tracking generations
prevents the same change
being given two numbers

◦ Uniform crossover randomly
chooses matching genes

◦ Blended crossover averages
the connection weights of
matching genes

 Speciation
◦ Allows individuals to compete with similar

individuals rather than the population at large

◦ Helps prevent bloating of genomes by allowing
smaller genomes to survive as long as they are
competitive

◦ In order to divide the species, Formula 1 is used.

◦ can be made dynamic in order to create the right
number of species

 Speciation
◦ Species reproduce by eliminating the lowest

performing members and then using the remaining
members’ offspring to replace them

 Minimizing Dimensionality through
Complexification
◦ Begins with simple networks with no hidden nodes,

but different initial weights

◦ New structures are introduced through mutations
and survival is based on fitness

◦ This is similar to complexification in biology

 NEAT Performance
◦ Necessity of components proven in previous work

through testing interactions

◦ Also proven to outperform other neuroevolution
methods in previous works

 Motivation
◦ Need to update NEAT to run online, on the entire

population

◦ Cannot replace the entire population at the same
time

◦ As in some evolutionary strategy algorithms, one
individual is replaced every few game ticks

 The rtNEAT Algorithm
1. Calculating Adjusted Fitness

 Fitness of the individual/ number of individuals in
the species

2. Removing the Worst Agent

 Agent with the worst adjusted fitness to protect
small species

3. Reestimating Average Fitness

 Can change significantly between steps

4. Creating Offspring

 Chooses based on the average fitness compared to
other species, preserving speciation

 The rtNEAT Algorithm
5. Reassigning Agents to Species

 The interval for this varies by game

 Every 5 replacements for NERO because the game
progresses quickly

6. Replacing the Old Agent with the New One

 Depends on the game and whether the agent’s
“head” can be replaced without the agent’s body
being destroyed

 Running the Algorithm
◦ Law of eligibility describes the percentage of the

population which will be ineligible for replacement
when the evolution has reached a steady state

 I=m/Pn

 m is minimum time for evaluation, P is population size,
and n is the number of ticks between replacements

◦ The user should choose I and allow rtNEAT to
compute n

 Training Mode
◦ The exercises should start simply and then build

upon the basic skills

◦ The players can place objects on the field and
determine goals using sliders

 These sliders are the coefficients for the fitness
components

◦ Training is standardized by having all agents
appear in the same area

 Agents are only replaced when they are in this area

 Agents are only evaluated when they are in this area

 Training Mode
◦ A true average of the agent’s fitness is maintained

for the first few trials

◦ A continuous leaky average is maintained after that

 This allows agents to have an up-to-date average, but
still one that takes all of their experiences into account

◦ Teams can be saved when they reach a satisfactory
level

 Training Mode

 Battle Mode
◦ Team is 20 agents from as many different trained

teams as desired

◦ Designed to run over a server for competitions

◦ The agents are destroyed after being shot several
times

◦ Action can cease before complete defeat if agents
are continuously avoiding each other

◦ Field can be made complex or simple

 Training Basic Battle Skills
◦ Seeking behavior is most simple

 Can be trained in 99.7 seconds for 90% of agents

◦ Different from most applications of EAs because the
entire population is judged

◦ Flexible enough to devolve a population from
seeking behavior to avoidance behavior

 Through this they learned to run backwards so they
could still see to shoot

 Training More Complex Behaviors
◦ Could train to run around walls, through this and the

addition of more walls they could navigate a maze
 Generalized enough to navigate varied mazes

 Battling Other Teams
◦ An aggressive seeking team won twice as many battles

as an avoidant team (6 to 3), though this was noted as
only a slight advantage

◦ More interesting is that the challenge is to conceive
clearly dominant strategies

◦ A team based on avoiding a turret placed against a wall
won the tournament and all games against the
aggressive team

 Neuroevolution can be deployed in a real
game

 rtNEAT could be used in MMOGs to
continually adapt them
◦ Do you feel this would be beneficial?

 Open issue: how to assess results?

 These results could allow better training
games

 Players are able to evaluate the population as
it evolves asynchronously

 rtNEAT allowed a new type of game to be
created

 The researchers at UT Austin are currently
developing OpenNERO, funded by Google.

 The researchers at UCF are working on how
to teach animated characters to dance using
interactive evolution.

 At UCF, they are also working on Picbreeder,
which breeds pictures by combining two
pictures to create a “child” picture.

 The researchers at UNR are looking at
Neuroevolution in the Quake II video game.

 Neural networks can be used to train game
agents in much less time than it would take
to program the actions

 Neural networks also allow these actions to
be reversed or adjusted as needed

 It is important to have speciation in order to
foster innovation and population limitation in
order to maintain speciation

 Thank you for your attention. Any questions,
comments, or concerns are welcome.

