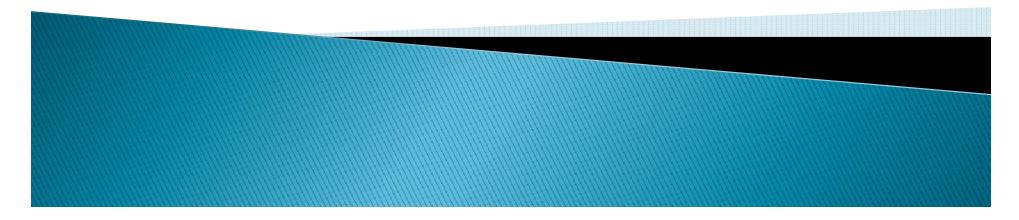
An Interactive Approach for CBIR Using a Network of Radial Basis Functions

by P. Muneesawang and L. Guan IEEE Transactions on Multimedia, 2004

Joseph Lee

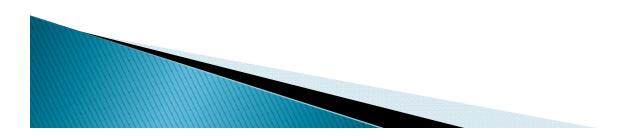


Contents

- 1. Background
- 2. General Framework
- 3. Previous Models
- 4. Proposed RBF Model
- 5. Learning Strategy
- 6. Experimental Results
- 7. Conclusion

Content-based Image Retrieval (CBIR)

- use colors, shapes, textures \rightarrow rely on image itself
- \circ without image content \rightarrow rely on metadata



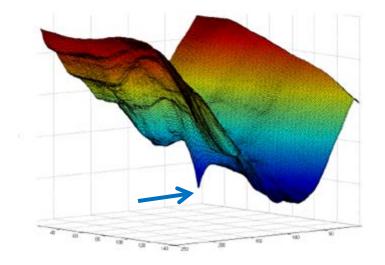
Content-based Image Retrieval (CBIR)

- use colors, shapes, textures \rightarrow rely on image itself
- without image content \rightarrow rely on metadata

Relevance Feedback

 User refines the result by marking images as relevant or non-relevant and repeats search.

Image Similarity



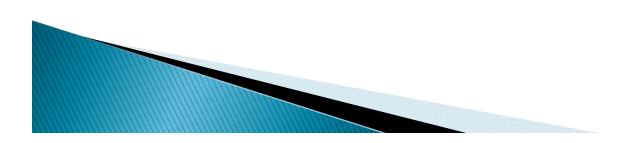
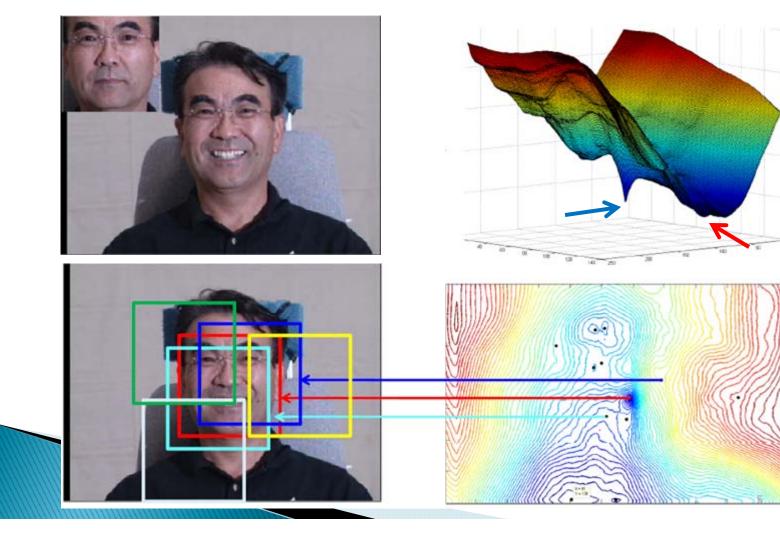
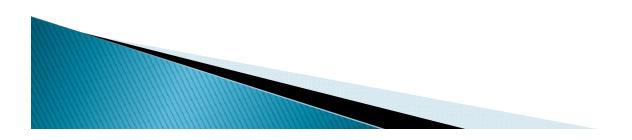


Image Similarity

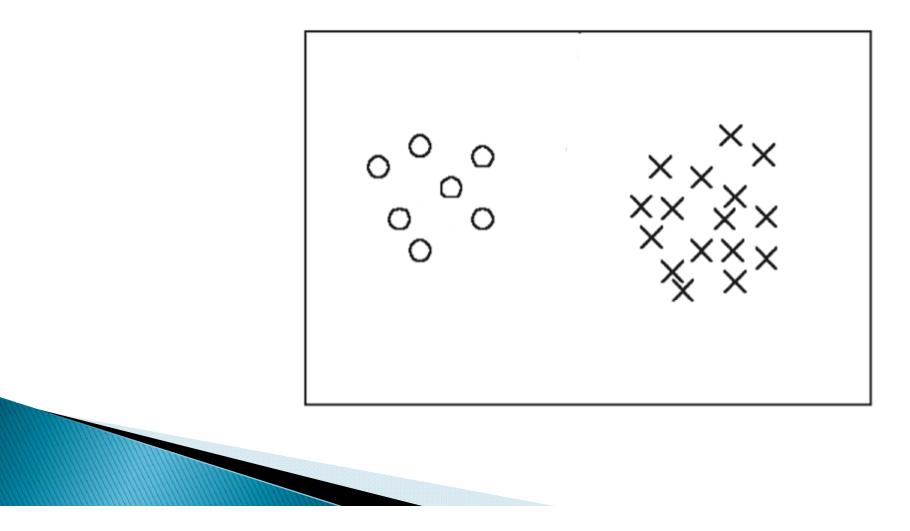


Examples of Image Similarity Problems

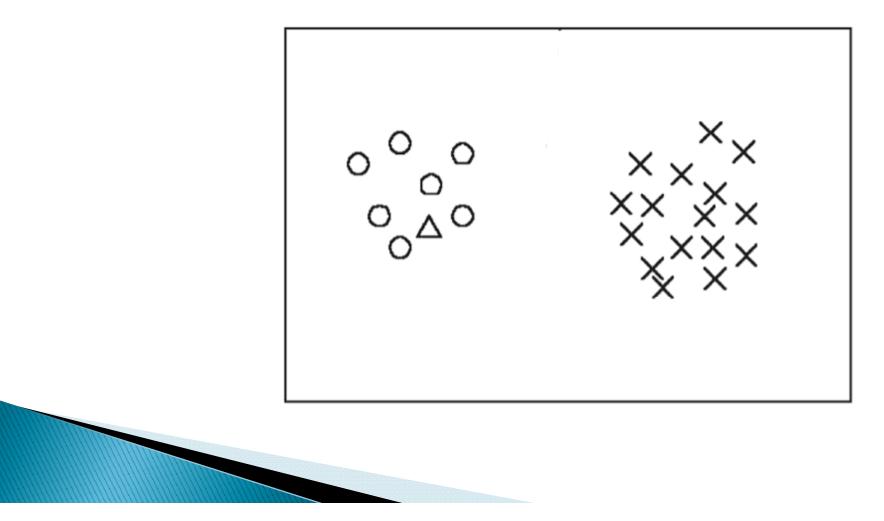
RBF



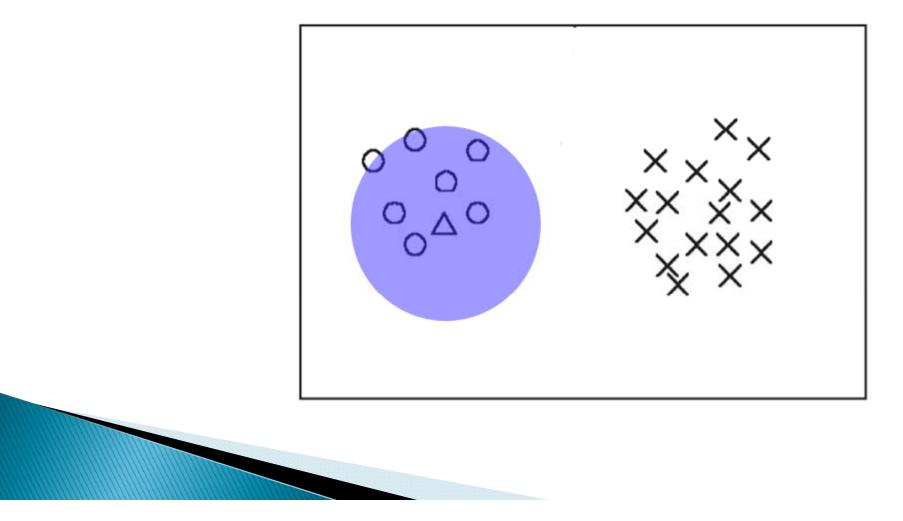
Ideal Case



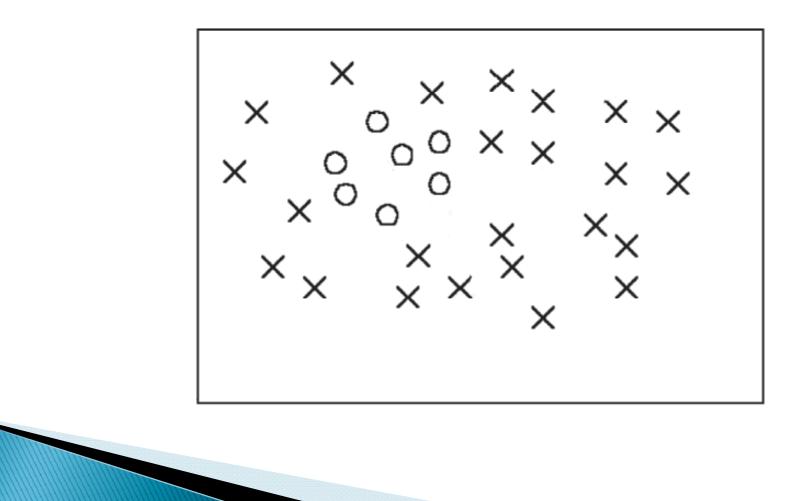
Ideal Case – User Query



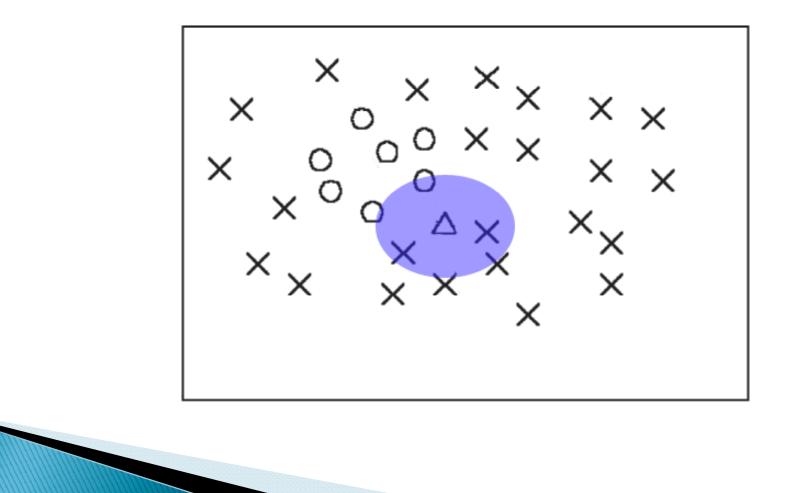
Ideal Case – Similarity Measure



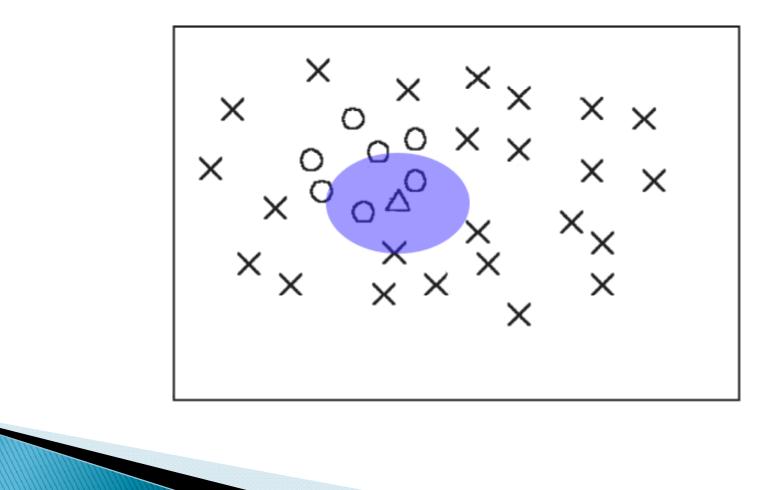
Real Case



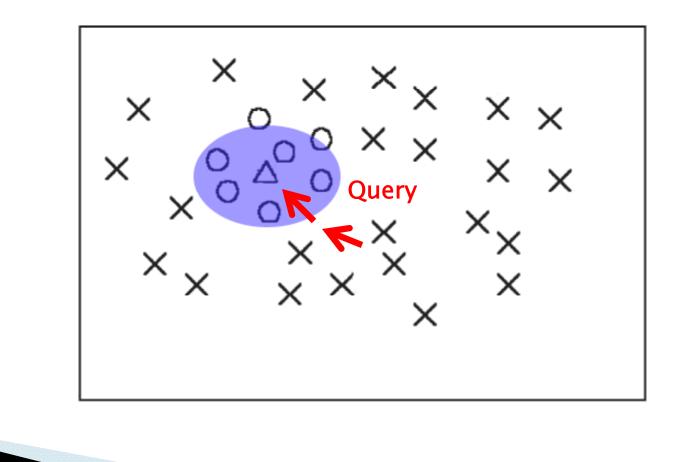
Real Case – Inaccurate Query



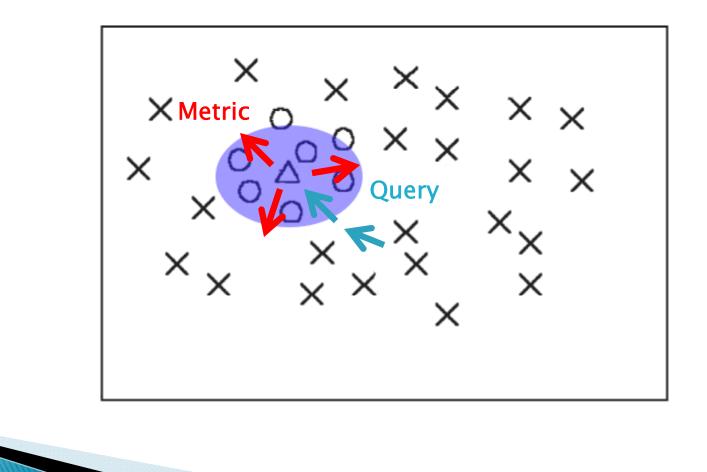
Real Case – Inaccurate Query



We should refine Query



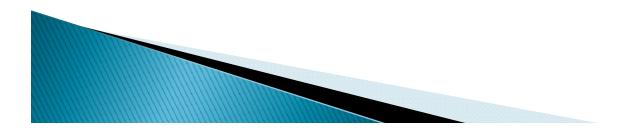
• We should refine Query & Metric



- Query Reformulation Model
 - Relevance feedback \rightarrow learn query representation
- Adaptive Metric Model
 - $\circ~$ Relevance feedback $\rightarrow~$ learn similarity function

Learning user perception

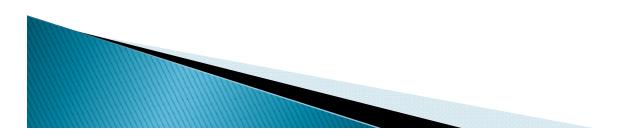
$$y_s = f(\mathbf{x})$$



Learning user perception

$$y_s = f(\mathbf{x})$$

• MARS-1 $y_s = f_{\text{cosine}}(\mathbf{x}, \mathbf{x}_{\hat{q}})$ $\mathbf{x}_{\hat{q}} = \alpha \mathbf{x}_q + \gamma(\max_{l_i=1} \{\mathbf{x}_i\}) - \varepsilon(\max_{l_i=0} \{\mathbf{x}_i\})$

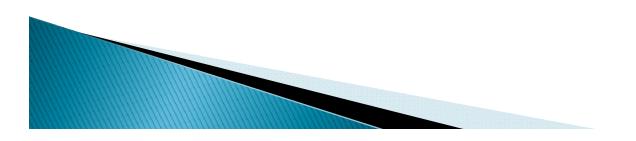


Learning user perception

$$y_s = f(\mathbf{x})$$

• MARS-1 $y_s = f_{\text{cosine}}(\mathbf{x}, \mathbf{x}_{\hat{q}})$ $\mathbf{x}_{\hat{q}} = \alpha \mathbf{x}_q + \gamma(\max_{l_i=1} \{\mathbf{x}_i\}) - \varepsilon(\max_{l_i=0} \{\mathbf{x}_i\})$

• MARS-2
$$y_s = f(\mathbf{x}, \mathbf{x}_q) = (\mathbf{x} - \mathbf{x}_q)^T W(\mathbf{x} - \mathbf{x}_q)$$



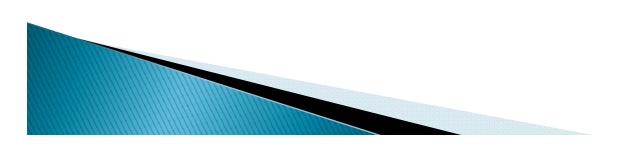
Learning user perception

$$y_s = f(\mathbf{x})$$

• MARS-1 $y_s = f_{\text{cosine}}(\mathbf{x}, \mathbf{x}_{\hat{q}})$ $\mathbf{x}_{\hat{q}} = \alpha \mathbf{x}_q + \gamma(\max_{l_i=1} \{\mathbf{x}_i\}) - \varepsilon(\max_{l_i=0} \{\mathbf{x}_i\})$

• MARS-2
$$y_s = f(\mathbf{x}, \mathbf{x}_q) = (\mathbf{x} - \mathbf{x}_q)^T W(\mathbf{x} - \mathbf{x}_q)$$

• OPT-RF
$$y_s = f(\mathbf{x}, \mathbf{x}_q) = (\mathbf{x} - \mathbf{x}_q)^T W(\mathbf{x} - \mathbf{x}_q) \quad \mathbf{x}_{\hat{q}} = \frac{\mathbf{X}^T \mathbf{v}}{\sum_{i=1}^N v_i}$$



Learning user perception

$$y_s = f(\mathbf{x})$$

• MARS-1 $y_s = f_{\text{cosine}}(\mathbf{x}, \mathbf{x}_{\hat{q}})$ $\mathbf{x}_{\hat{q}} = \alpha \mathbf{x}_q + \gamma(\max_{l_i=1} \{\mathbf{x}_i\}) - \varepsilon(\max_{l_i=0} \{\mathbf{x}_i\})$

• MARS-2
$$y_s = f(\mathbf{x}, \mathbf{x}_q) = (\mathbf{x} - \mathbf{x}_q)^T W(\mathbf{x} - \mathbf{x}_q)$$

• OPT-RF
$$y_s = f(\mathbf{x}, \mathbf{x}_q) = (\mathbf{x} - \mathbf{x}_q)^T W(\mathbf{x} - \mathbf{x}_q) \quad \mathbf{x}_{\hat{q}} = \frac{\mathbf{X}^T \mathbf{v}}{\sum_{i=1}^N v_i}$$

Assumption

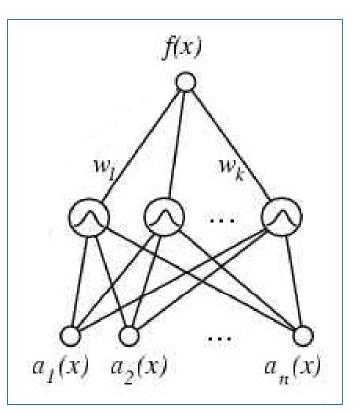
same distance gives same degree of similarity

4. Proposed RBF Model

CBIR

- online learning
- two-class problem

$$f(\mathbf{x}) = \sum_{j=1}^{N} w_j G(\mathbf{x}, \mathbf{z}_j)$$
$$= \sum_{j=1}^{N} w_j \exp\left(-\frac{1}{2\sigma_j^2} \sum_{i=1}^{P} (x_i - z_{ji})^2\right)$$

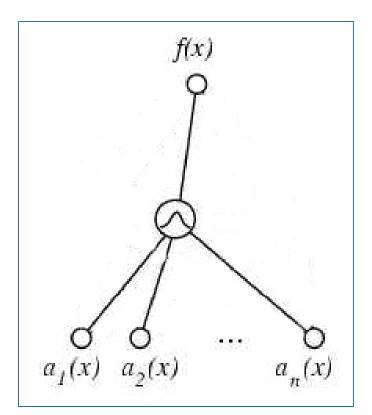


4. Proposed RBF Model

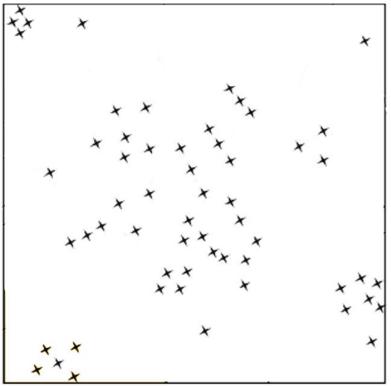
► CBIR

- online learning
- two-class problem

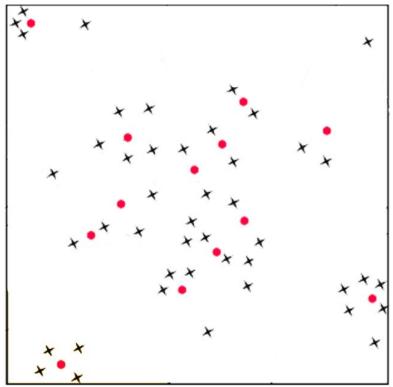
$$f(\mathbf{x}) = \sum_{i=1}^{P} G_i(x_i, z_i)$$
$$= \sum_{i=1}^{P} \exp\left(-\frac{(x_i - z_i)^2}{2\sigma_i^2}\right)$$



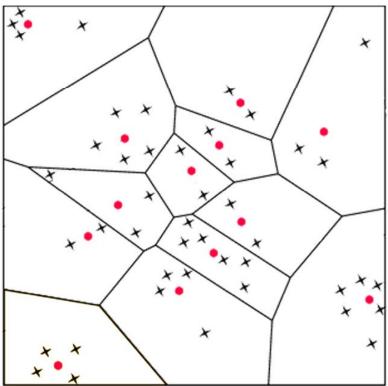
Example Vectors



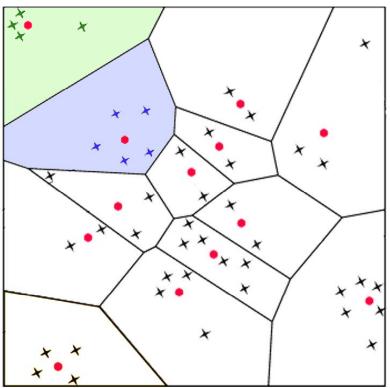
Voronoi Vectors



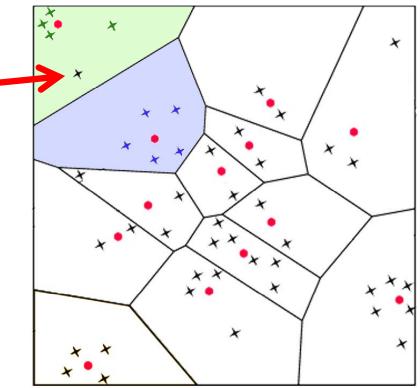
Voronoi Cells



Learning Vector Quantization

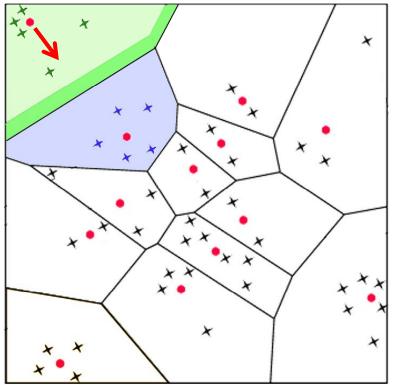


Learning Vector Quantization



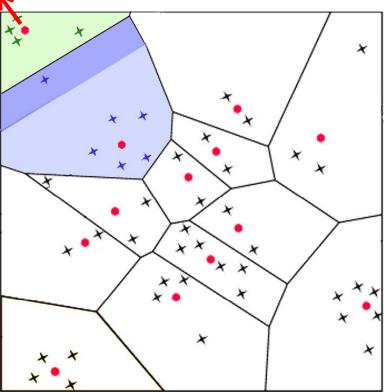
Learning Vector Quantization

 $\mathbf{z}_c(n+1) = \mathbf{z}_c(n) + \alpha_n [\mathbf{x}_i(n) - \mathbf{z}_c(n)]$



Learning Vector Quantization

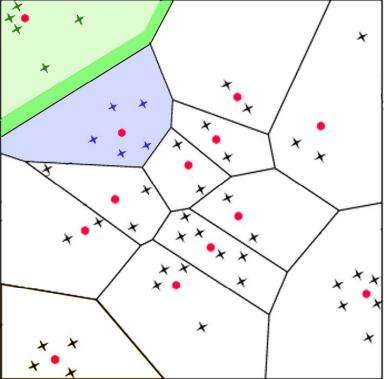
 $\mathbf{z}_{c}(n+1) = \mathbf{z}_{c}(n) + \alpha_{n}[\mathbf{x}_{i}(n) - \mathbf{z}_{c}(n)]$ $\mathbf{z}_{c}(n+1) = \mathbf{z}_{c}(n) - \alpha_{n}[\mathbf{x}_{i}(n) - \mathbf{z}_{c}(n)]$



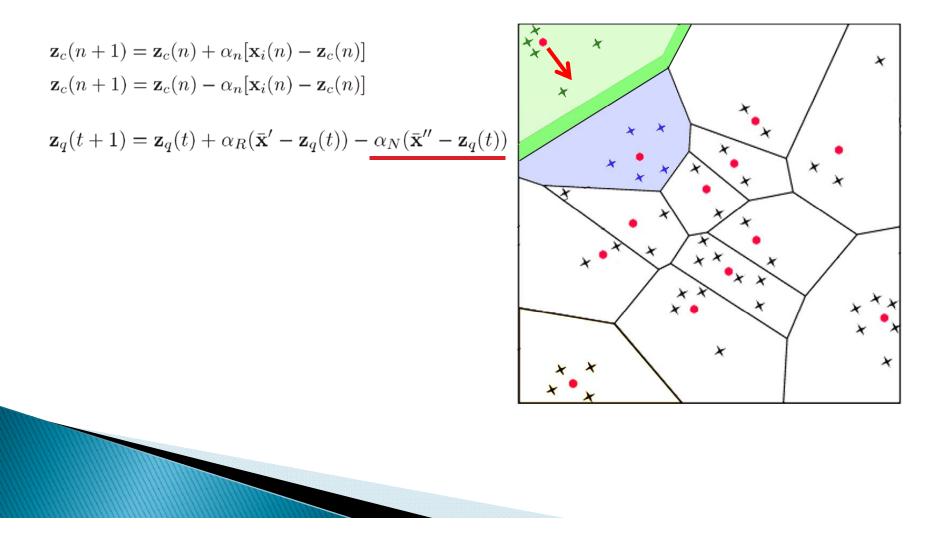


Modified LVQ (Model 1)

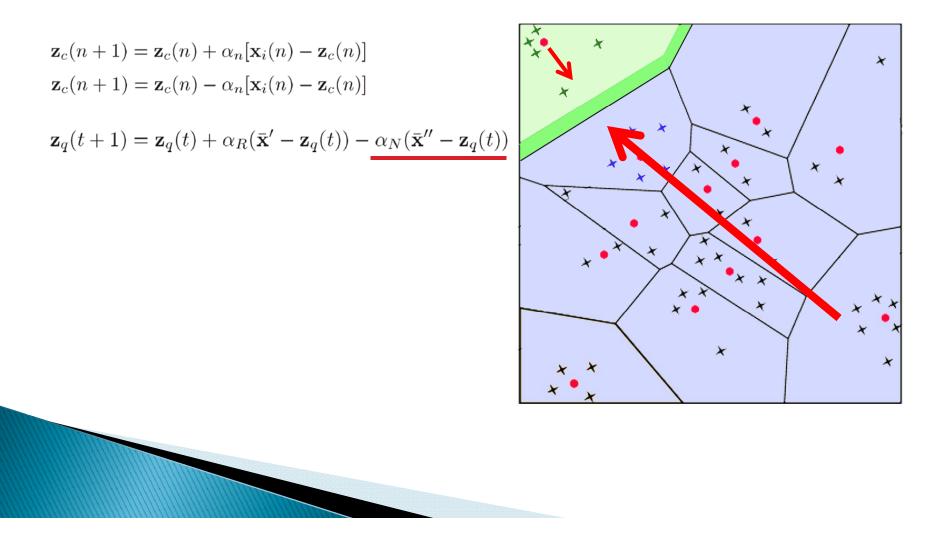
 $\mathbf{z}_{c}(n+1) = \mathbf{z}_{c}(n) + \alpha_{n}[\mathbf{x}_{i}(n) - \mathbf{z}_{c}(n)]$ $\mathbf{z}_{c}(n+1) = \mathbf{z}_{c}(n) - \alpha_{n}[\mathbf{x}_{i}(n) - \mathbf{z}_{c}(n)]$



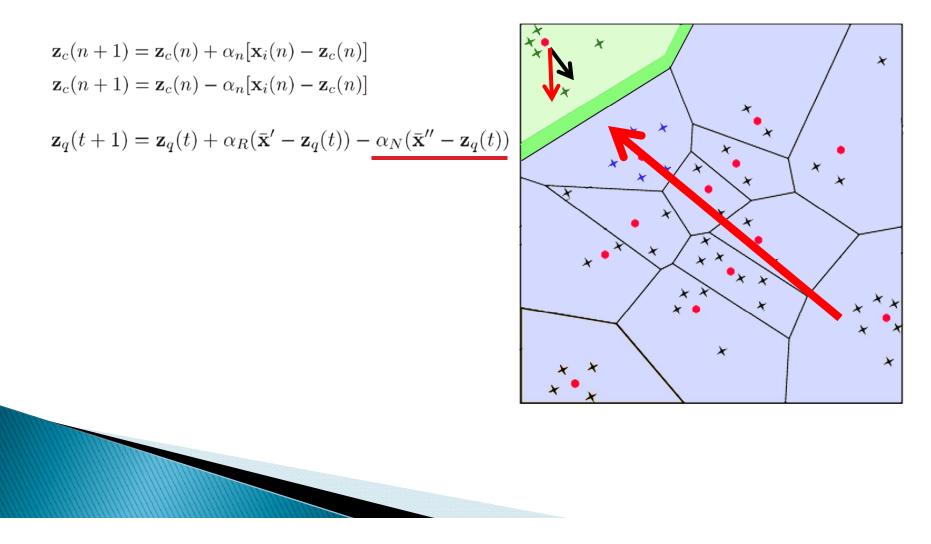
Modified LVQ (Model 1)



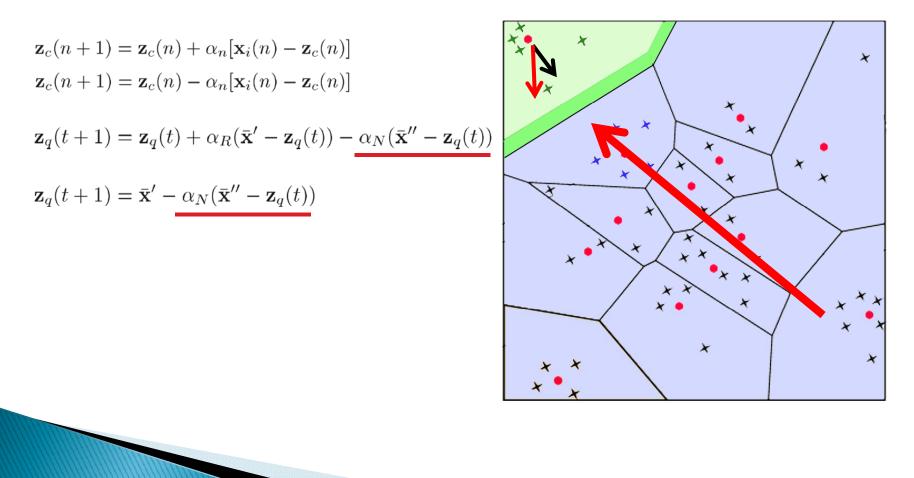
Modified LVQ (Model 1)



Modified LVQ (Model 1)

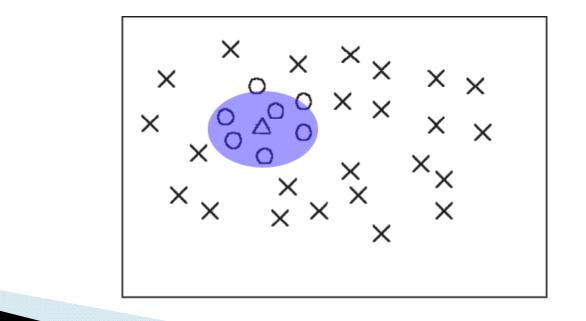


Modified LVQ (Model 2)

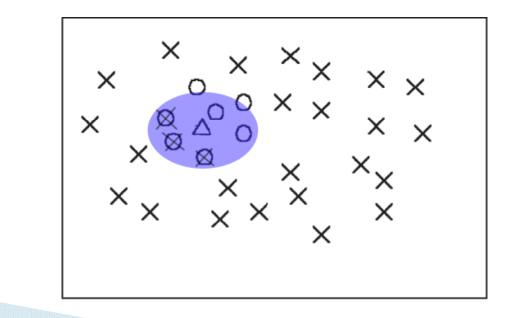


- Effects of Positive and Negative Learning
 - Relevant samples \rightarrow common interest
 - Non-relevant samples \rightarrow specific interest

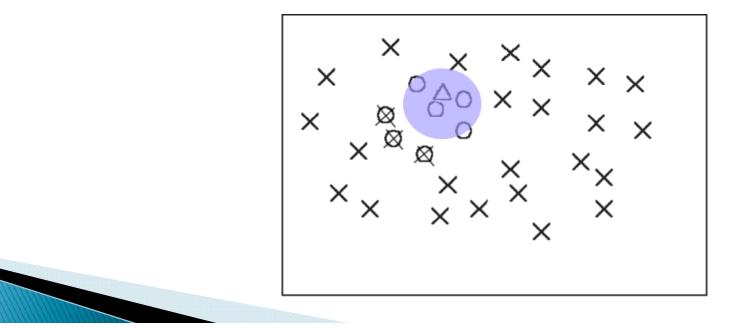
- Effects of Positive and Negative Learning
 - Relevant samples \rightarrow common interest
 - Non-relevant samples \rightarrow specific interest



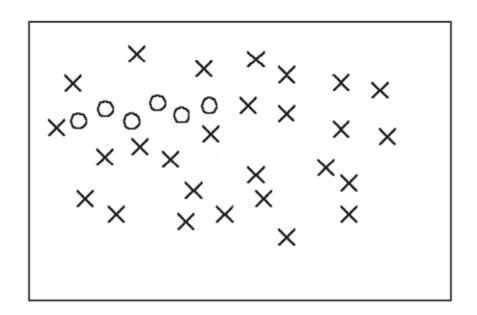
- Effects of Positive and Negative Learning
 - Relevant samples \rightarrow common interest
 - Non-relevant samples \rightarrow specific interest



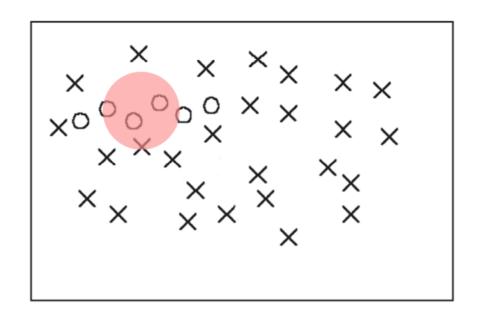
- Effects of Positive and Negative Learning
 - Relevant samples \rightarrow common interest
 - Non-relevant samples \rightarrow specific interest



Selection of RBF Width



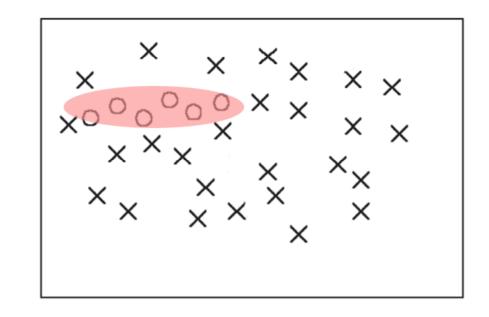
Selection of RBF Width



Selection of RBF Width

•
$$\sigma_i = \eta \max_{m} |x'_{mi} - z_i|$$

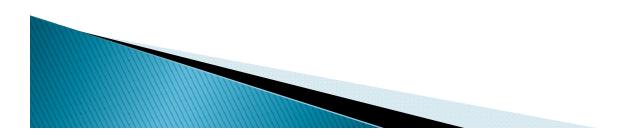
• $\sigma_i = \exp(\beta \cdot \operatorname{Std}_i)$



6. Experimental Results

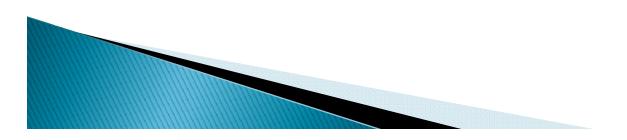
Method	t=0	t=1	t=2	t=3	CPU time (second per iteration)
RBF	44.82	79.82	88.75	91.79	2.34
MARS-2	44.82	60.18	61.61	61.96	1.26
OPT-RF	44.82	72.14	79.64	80.54	1.27 ←
Simple CBIR	44.82	-	-	-	0.90

Average Precision Rate (%)



6. Conclusion

- Non-linear model for similarity evaluation
- Learning from positive and negative samples



References

- http://videolectures.net/minh_hoai_nguyen/
- http://www.mqasem.net/vectorquantization/vq.html

