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Real-Time Neuroevolution in the NERO Video Game

Kenneth O. Stanley, Bobby D. Bryant, Student Member, IEEE, and Risto Miikkulainen

Abstract—In most modern video games, character behavior
is scripted; no matter how many times the player exploits a
weakness, that weakness is never repaired. Yet, if game charac-
ters could learn through interacting with the player, behavior
could improve as the game is played, keeping it interesting. This
paper introduces the real-time Neuroevolution of Augmenting
Topologies (rtNEAT) method for evolving increasingly complex
artificial neural networks in real time, as a game is being played.
The rtNEAT method allows agents to change and improve during
the game. In fact, rtNEAT makes possible an entirely new genre of
video games in which the player frains a team of agents through
a series of customized exercises. To demonstrate this concept, the
Neuroevolving Robotic Operatives (NERO) game was built based
on rtNEAT. In NERO, the player trains a team of virtual robots for
combat against other players’ teams. This paper describes results
from this novel application of machine learning, and demonstrates
that rtNEAT makes possible video games like NERO where
agents evolve and adapt in real time. In the future, rtNEAT may
allow new kinds of educational and training applications through
interactive and adapting games.

Index Terms—Interactive, online, neural networks, neuro-
evolution, neuroevolution of augmenting topologies (NEAT),
neuroevolving robotic operatives (NERQ), real-time, video games.

1. INTRODUCTION

HE WORLD video game market in 2002 was valued

between $15 billion and $20 billion, larger than even
that of Hollywood [1]. Video games have become a facet
of many people’s lives and the market continues to expand.
Because there are millions of interactive players and because
video games carry perhaps the least risk to human life of any
real-world application, they make an excellent testbed for tech-
niques in artificial intelligence [2]. Such techniques are also
important for the video game industry: They can potentially
both increase the longevity of video games and decrease their
production costs [3].

One of the most compelling yet least exploited technologies
is machine learning. Thus, there is an unexplored opportunity
to make video games more interesting and realistic, and to build
entirely new genres. Such enhancements may have applications
in education and training as well, changing the way people in-
teract with their computers.

In the video game industry, the term nonplayer-character
(NPC) refers to an autonomous computer-controlled agent in
the game. This paper focuses on training NPCs as intelligent
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agents, and the standard Al term agents is, therefore, used to
refer to them. The behavior of such agents in current games is
often repetitive and predictable. In most video games, simple
scripts cannot learn or adapt to control the agents: Opponents
will always make the same moves and the game quickly be-
comes boring. Machine learning could potentially keep video
games interesting by allowing agents to change and adapt [3].
However, a major problem with learning in video games is that
if behavior is allowed to change, the game content becomes un-
predictable. Agents might learn idiosyncratic behaviors or even
not learn at all, making the gaming experience unsatisfying. One
way to avoid this problem is to train agents to perform complex
behaviors offline, and then freeze the results into the final, re-
leased version of the game. However, although the game would
be more interesting, the agents still could not adapt and change
in response to the tactics of particular players.

If agents are to adapt and change in real-time, a powerful
and reliable machine learning method is needed. This paper de-
scribes such a method, a real-time enhancement of the Neuro-
evolution of Augmenting Topologies (NEAT) method [4], [5].
NEAT evolves increasingly complex neural networks, i.e., it
complexifies. Real-time NEAT (rtNEAT) is able to complexify
neural networks as the game is played, making it possible for
agents to evolve increasingly sophisticated behaviors in real
time. Thus, agent behavior improves visibly during gameplay.
The aim is to show that machine learning is indispensable for
an interesting genre of video games, and to show how rtNEAT
makes such an application possible.

In order to demonstrate the potential of rtNEAT, the Digital
Media Collaboratory (DMC) at the University of Texas at
Austin initiated, based on a proposal by K. O. Stanley, the
Neuroevolving Robotic Operatives (NERO) project in Oc-
tober of 2003 (http://nerogame.org). The idea was to create
a game in which learning is indispensable, in other words,
without learning NERO could not exist as a game. In NERO,
the player takes the role of a trainer, teaching skills to a set
of intelligent agents controlled by rtNEAT. Thus, NERO is a
powerful demonstration of how machine learning can open up
new possibilities in gaming and allow agents to adapt.

NERO opens up new opportunities for interactive machine
learning in entertainment, education, and simulation. This
paper describes rtNEAT and NERO, and reviews results from
the first year of this ongoing project. The next section presents a
brief taxonomy of games that use learning, placing NERO in a
broader context. NEAT is then described, including how it was
enhanced to create rtNEAT. The last sections describe NERO
and summarize the current status and performance of the game.

II. RELATED WORK

Early successes in applying machine learning (ML) to board
games have motivated more recent work in live-action video
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games. For example, Samuel [6] trained a computer to play
checkers using a method similar to temporal difference learning
[7] in the first application of ML to games. Since then, board
games such as tic-tac-toe [8], [9], backgammon [10], Go [11],
[12], and Othello [13] have remained popular applications of
ML (see [14] for a survey). A notable example is Blondie24,
which learned checkers by playing against itself without any
built-in prior knowledge [15]; also, see [16].

Recently, interest has been growing in applying ML to video
games [2], [3]. For example, Fogel et al. [3] trained teams of
tanks and robots to fight each other using a competitive coevo-
lution system designed for training video game agents. Others
have trained agents to fight in first- and third-person shooter
games [17]-[19]. ML techniques have also been applied to
other video game genres from Pac-Man' [20] to strategy games
[21]-[23]. This section focuses on how ML can be applied to
video games.

From the human player’s perspective there are two types of
learning in video games. In out-game learning (OGL), game
developers use ML techniques to pretrain agents that no longer
learn after the game is shipped. In contrast, in in-game learning
(IGL), agents adapt as the player interacts with them in the
game; the player can either purposefully direct the learning
process or the agents can adapt autonomously to the player’s
behavior. IGL is related to the broader field of interactive
evolution, in which a user influences the direction of evolution
of, e.g., art, music, or any other kind of phenotype [24]. Most
applications of ML to games have used OGL, though the
distinction may be blurred from the researcher’s perspective
when online learning methods are used for OGL. However, the
difference between OGL and IGL is important to players and
marketers, and ML researchers will frequently need to make a
choice between the two.

In a Machine Learning Game (MLG), the player explicitly
attempts to train agents as part of IGL. MLGs are a new genre
of video games that require powerful learning methods that can
adapt during gameplay. Although some conventional game de-
signs include a “training” phase during which the player accu-
mulates resources or technologies in order to advance in levels,
such games are not MLGs because the agents are not actually
adapting or learning.

Prior examples in the MLG genre include the Tamagotchi vir-
tual pet? and the video “God game” Black & White.? In both
games, the player shapes the behavior of game agents with pos-
itive or negative feedback. It is also possible to train agents by
human example during the game, as van Lent and Laird [25]
described in their experiments with Quake I1.4 While these ex-
amples demonstrated that limited learning is possible in a game,
NERO is an entirely new kind of MLG; it uses a reinforcement
learning method (neuroevolution) to optimize a fitness function
that is dynamically specified by the player, while watching and
interacting with the learning agents. Thus, agent behavior con-
tinues to improve as long as the game is played.

1Pac-Man is a registered trademark of Namco, Ltd., of Tokyo, Japan.
2Tamagotchi is a registered trademark of Bandai Co., Ltd., of Tokyo, Japan.

3Black & White is a registered trademark of Lionhead Studios, Ltd., of Guild-
ford, U.K.

4Quake II is a registered trademark of Id Software, Inc., of Mesquite, TX.

A flexible and powerful ML method is needed to allow agents
to adapt during gameplay. It is not enough to simply script sev-
eral key agent behaviors because adaptation would then be lim-
ited to the foresight of the programmer who wrote the script, and
agents would only be choosing from a limited menu of options.
Moreover, because agents need to learn online as the game is
played, predetermined training targets are usually not available,
ruling out supervised techniques such as backpropagation [26]
and decision tree learning [27].

Traditional reinforcement learning (RL) techniques such as
Q-Learning [28] and Sarsa(\) with a case-based function ap-
proximator (SARSA-CABA; [29]) adapt in domains with sparse
feedback [28], [30], [31]. These techniques learn to predict the
long-term reward for taking actions in different states by ex-
ploring the state space and keeping track of the results. While
in principle it is possible to apply them to real-time learning in
video games, it would require significant work to overcome sev-
eral common demands of video game domains.

1) Large state/action space. Since games usually have sev-
eral different types of objects and characters and many
different possible actions, the state/action space that RL
must explore is extremely high dimensional. Dealing with
high-dimensional spaces is a known challenge with RL in
general [31], but in a real-time game there is the additional
challenge of having to check the value of every possible
action on every game tick for every agent in the game.
Because traditional RL checks all such action values, the
value estimator must execute several times (i.e., once for
every possible action) for each agent in the game on every
game tick. Action selection may, thus, incur a very large
cost on the game engine, reducing the amount of compu-
tation available for the game itself.

2) Diverse behaviors. Agents learning simultaneously in
a simulated world should not all converge to the same
behavior: A homogeneous population would make the
game boring. Yet because many agents in video games
have similar physical characteristics and are evaluated
in a similar context, traditional RL techniques, many of
which have convergence guarantees [30], risk converging
to largely homogeneous solution behaviors. Without ex-
plicitly maintaining diversity, such an outcome is likely.

3) Consistent individual behaviors. RL depends on oc-
casionally taking a random action in order to explore
new behaviors. While this strategy works well in offline
learning, players do not want to constantly see the same
individual agent periodically making inexplicable and
idiosyncratic moves relative to its usual policy.

4) Fast adaptation and sophisticated behaviors. Because
players do not want to wait hours for agents to adapt,
it may be necessary to use a simple representation that
can be learned quickly. However, a simple representation
would limit the ability to learn sophisticated behaviors.
Thus, there is a tradeoff between learning simple behav-
iors quickly and learning sophisticated behaviors more
slowly, neither of which is desirable.

5) Memory of past states. If agents remember past events,
they can react more convincingly to the present situation.
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However, such memory requires keeping track of more
than the current state, ruling out traditional Markovian
methods. While methods for partially observable Markov
processes exist, significant challenges remain in scaling
them up to real-world tasks [32].
Neuroevolution (NE), i.e., the artificial evolution of neural
networks using an evolutionary algorithm, is an alternative RL
technique that meets each of these demands naturally.

1) NE works well in high-dimensional spaces [33]; evolved
agents do not need to check the value of more than one
action per game tick because agents are evolved to output
only a single requested action per game tick.

2) Diverse populations can be explicitly maintained through
speciation [4].

3) The behavior of an individual during its lifetime does not
change because it always chooses actions from the same
network.

4) A representation of the solution can be evolved, allowing
simple practical behaviors to be discovered quickly in the
beginning and complexified later [5].

5) Recurrent neural networks can be evolved that implement
and utilize effective memory structures; for example, NE
has been used to evolve motor-control skills similar to
those in continuous-state games in many challenging non-
Markovian domains [5], [15], [33]-[43].

In addition to these five demands, neural networks also make
good controllers for video game agents because they can com-
pute arbitrarily complex functions, can both learn and perform
in the presence of noisy inputs, and generalize their behavior to
previously unseen inputs [44], [45]. Thus, NE is a good match
for video games.

There is a large variety of NE algorithms [46]. While some
evolve only the connection weight values of fixed-topology net-
works [37], [47]-[49], others evolve both weights and network
topology simultaneously [38], [50]-[62]. Topology and weight
evolving artificial neural networks (TWEANNSs) have the ad-
vantage that the correct topology need not be known prior to
evolution. Among TWEANNSs, NEAT is unique in that it be-
gins evolution with a population of minimal networks and adds
nodes and connections to them over generations, allowing com-
plex problems to be solved gradually based on simple ones.

Our research group has been applying NE to gameplay for
about a decade. Using this approach, several NE algorithms have
been applied to board games [11], [12], [63], [64]. In Othello,
NE discovered the mobility strategy only a few years after its
invention by humans [63]. Recent work has focused on higher-
level strategies and real-time adaptation, which are needed for
success in both continuous and discrete multiagent games [5],
[22], [65]. Using such techniques, relatively simple ANN con-
trollers can be trained in games and game-like environments
to produce convincing purposeful and intelligent behavior [5],
[11], [36], [40], [65]-[67].

The current challenge is to achieve evolution in real time,
as the game is played. If agents could be evolved in a smooth
cycle of replacement, the player could interact with evolution
during the game and the many benefits of NE would be avail-
able to the video gaming community. This paper introduces
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such a real-time NE technique, rtNEAT, which is applied to
the NERO multiagent continuous-state MLG. In NERO, agents
must master both motor control and higher-level strategy to win
the game. The player acts as a trainer, teaching a team of virtual
robots the skills they need to survive. The next section reviews
the NEAT NE method, and Section IV how it can be enhanced
to produce rtNEAT.

III. NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)

The rtNEAT method is based on NEAT, a technique for
evolving neural networks for complex RL tasks using an evo-
lutionary algorithm (EA). NEAT combines the usual search for
the appropriate network weights with complexification of the
network structure, allowing the behavior of evolved neural net-
works to become increasingly sophisticated over generations.

The NEAT method consists of solutions to three fundamental
challenges in evolving neural network topology.

1) Whatkind of genetic representation would allow disparate
topologies to cross over in a meaningful way? The solu-
tion is to use historical markings to line up genes with the
same origin.

2) How can topological innovation that needs a few genera-
tions to optimize be protected so that it does not disappear
from the population prematurely? The solution is to sep-
arate each innovation into a different species.

3) How can topologies be minimized throughout evolution
so the most efficient solutions will be discovered? The
solution is to start from a minimal structure and add nodes
and connections incrementally.

This section explains how each of these solutions is imple-
mented in NEAT, using the genetic encoding described in the
first subsection.

A. Genetic Encoding

Evolving structure requires a flexible genetic encoding. In
order to allow structures to complexify, their representations
must be dynamic and expandable. Each genome in NEAT
includes a list of connection genes, each of which refers to
two node genes being connected (Fig. 1). Each connection
gene specifies the in-node, the out-node, the weight of the
connection, whether or not the connection gene is expressed
(an enable bit), and an innovation number, which allows finding
corresponding genes during crossover.

Mutation in NEAT can change both connection weights and
network structures. Connection weights mutate as in any NE
system, with each connection either perturbed or not. Struc-
tural mutations, which form the basis of complexification, occur
in two ways (Fig. 2). Each mutation expands the size of the
genome by adding genes. In the add connection mutation, a
single new connection gene is added connecting two previously
unconnected nodes. In the add node mutation, an existing con-
nection is split and the new node placed where the old connec-
tion used to be. The old connection is disabled and two new
connections added to the genome. The connection between the
first node in the chain and the new node is given a weight of one,
and the connection between the new node and the last node in
the chain is given the same weight as the connection being split.
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Genome (Genotype)

Node  Hode 1|Node 2|lMode 3|MNode 4|Node 5

Genes |1 ot | Loput |Tnput Output |Bidden

Connect. Innov L Ionov 2 Ionov 3 Innov 4 Innov 5 Innov & Innov 11

Genes |y, In2 In 3 In 2 In 5 In L In 4
Out 4 Qut 4 Qut 4 Qut 5 out 4 Qut 5 Qut 5
Weight 0.7 Weight-0.5 Weight 0.5|Weight 0.2|Weight 0.4 Weight 0.6 Weight 0.6
[Enabled  |DISABLED Enabled  |Enabled |Enabled  Enabled  Enabled
Network (Phenotype)
Fig. 1. A NEAT genotype to phenotype mapping example. A genotype is

depicted that produces the shown phenotype. There are three input nodes, one
hidden node, one output node, and seven connection definitions, one of which
is recurrent. The second gene is disabled, so the connection that it specifies
(between nodes 2 and 4) is not expressed in the phenotype. The genotype can
have arbitrary length, and thereby represent arbitrarily complex networks.
Innovation numbers, which allow NEAT to identify which genes match up
between different genomes, are shown on top of each gene. This encoding is
efficient and allows changing the network structure during evolution.

Add Connection Mutation
120304 slel [1]2]3]a]ls]el7
>4 2->4 3->4|2->5 5->4|1->5 L->4(2->4|3->4 2->5 5->4|1->5]3>5
DIS DIS

L 20 *)
Add Node Mutation
1L 2 3 4 5|6/ 1 2 3 4 s5/6|s8la
1->4]2->4 3-54 2-5>5 554/ [->5  1->4 2->4[3->4|2->5 5->4/1->5|3->6 6->4

DIS | DIS| DIS

Fig. 2. The two types of structural mutation in NEAT. In each genome, the
innovation number is shown on top, the two nodes connected by the gene in
the middle, and the “disabled” symbol at the bottom; the weights and the node
genes are not shown for simplicity. A new connection or a new node is added
to the network by adding connection genes to the genome. Assuming the node
is added after the connection, the genes would be assigned innovation numbers
7, 8, and 9, as the figure illustrates. NEAT can keep an implicit history of the
origin of every gene in the population, allowing matching genes to be identified
even in different genome structures.

Splitting the connection in this way introduces a nonlinearity
(the sigmoid function) where there was none before. This non-
linearity changes the function only slightly, and the new node
is immediately integrated into the network. Old behaviors en-
coded in the preexisting network structure are not destroyed and
remain qualitatively the same, while the new structure provides
an opportunity to elaborate on these original behaviors.
Through mutation, the genomes in NEAT will gradually get
larger. Genomes of varying sizes will result, sometimes with dif-
ferent connections at the same positions. Any crossover operator

must be able to recombine networks with differing topologies,
which can be difficult [68]. The next section explains how NEAT
addresses this problem.

B. Tracking Genes Through Historical Markings

The historical origin of each gene can be used to determine
exactly which genes match up between any individuals in the
population. Two genes with the same historical origin represent
the same structure (although possibly with different weights),
since they were both derived from the same ancestral gene at
some point in the past. Thus, in order to properly align and
recombine any two disparate topologies in the population, the
system only needs to keep track of the historical origin of each
gene.

Tracking the historical origins requires very little com-
putation. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers, thus, represent
a chronology of every gene in the population. As an example,
say the two mutations in Fig. 2 occurred one after another. The
new connection gene created in the first mutation is assigned
the number 7, and the two new connection genes added during
the new node mutation are assigned the numbers 8 and 9. In the
future, whenever these genomes cross over, the offspring will
inherit the same innovation numbers on each gene. Thus, the
historical origin of every gene is known throughout evolution.

A possible problem is that the same structural innovation will
receive different innovation numbers in the same generation if
it occurs by chance more than once. However, by keeping a
list of the innovations that occurred in the current generation,
it is possible to ensure that when the same structure arises more
than once through independent mutations in the same genera-
tion, each identical mutation is assigned the same innovation
number.

Through innovation numbers, the system now knows exactly
which genes match up with which (Fig. 3). Genes that do not
match are either disjoint or excess, depending on whether they
occur within or outside the range of the other parent’s innovation
numbers.

When crossing over, the genes with the same innovation
numbers are lined up. The offspring is then formed in one of
two ways: In uniform crossover, matching genes are randomly
chosen for the offspring genome. In blended crossover [69], the
connection weights of matching genes are averaged. These two
types of crossover were found to be most effective in NEAT in
extensive testing compared with one-point crossover.

The disjoint and excess genes are inherited from the more fit
parent, or if they are equally fit, from both parents. Disabled
genes have a chance of being reenabled during crossover, al-
lowing networks to make use of older genes once again.

Historical markings allow NEAT to perform crossover
without analyzing topologies. Genomes of different organi-
zations and sizes stay compatible throughout evolution, and
the variable-length genome problem is essentially avoided.
This methodology allows NEAT to complexify structure while
different networks still remain compatible.

However, it turns out that it is difficult for a population of
varying topologies to support new innovations that add structure
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Parentl

1 2| 3| 4|5]|8
1>4|2->4 3->4|2->5 5>4|1->5
DIS
4

Parent2

2 3, 4|5 6 7, 9 10
1->42->43>4|2->5 5>4 5>6 6->4 3->5 1->6
DIS DIS

i d'lsjo‘mt‘
L 20 | RS R | A | Y 8
Parentl L1=>42->4 3>42->55>4 1>5
DIS
L 2 3 4,56 7 9 10
Parent2 | 1->4 2->4 3>42->5 5>45>6 6>4 3>51->6
DIS DIS
disjoini disjoint CXCCSS CXCCSS

12/ 3/als]e  7/8 o9t
Offspring | 1->4|2->4 3->4[2->55>4|5->6 6->4[l->5|3->5/1->6
DIS DIS

Fig. 3. Matching up genomes for different network topologies using
innovation numbers. Although Parents 1 and 2 look different, their innovation
numbers (shown at the top of each gene) indicate that several of their genes
match up even without topological analysis. A new structure that combines
the overlapping parts of the two parents as well as their different parts can be
created in crossover. In this case, the two parents are assumed to have equal
fitness and, therefore, the offspring inherits all such genes from both parents.
Otherwise, these genes would be inherited from the more fit parent only. The
disabled genes may become enabled again in future generations: There is a
preset chance that an inherited gene is enabled if it is disabled in either parent.
By matching up genes in this way, it is possible to determine the best alignment
for crossover between any two arbitrary network topologies in the population.

to existing networks. Because smaller structures optimize faster
than larger structures, and adding nodes and connections usu-
ally initially decreases the fitness of the network, recently aug-
mented structures have little hope of surviving more than one
generation even though the innovations they represent might be
crucial toward solving the task in the long run. The solution is
to protect innovation by speciating the population, as explained
in the next section.

C. Protecting Innovation Through Speciation

NEAT speciates the population so that individuals compete
primarily within their own niches instead of with the popula-
tion at large. This way, topological innovations are protected and
have time to optimize their structure before they have to com-
pete with other niches in the population. Protecting innovation
through speciation follows the philosophy that new ideas must
be given time to reach their potential before they are eliminated.
A secondary benefit of speciation is that it prevents bloating of
genomes: Species with smaller genomes survive as long as their
fitness is competitive, ensuring that small networks are not re-
placed by larger ones unnecessarily.
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The Genome LooOp:
Take the next genome g from population P
The Species Loop:
If all species in S have been checked,
create new species spew and place g in it
Else
Get the next species s from S
If g is compatible with s, add g to s
If g has not been placed,
continue the Species Loop
Else exit the Species Loop
If not all genomes in G have been placed,
continue the Genome Loop
Else exit the Genome Loop

Fig. 4. Procedure for speciating the population in NEAT. The speciation
procedure consists of two nested loops that allocate the entire population into
species. Fig. 6 shows how it can be done continuously in real time.

Historical markings make it possible for the system to divide
the population into species based on how similar they are topo-
logically (Fig. 4). The distance ¢ between two network encod-
ings can be measured as a linear combination of the number of
excess (F) and disjoint (D) genes, as well as the average weight
differences of matching genes (W)

5:%4-%4-03'”/. )
The coefficients ¢y, c2, and c3 adjust the importance of the three
factors, and the factor IV, the number of genes in the larger
genome, normalizes for genome size (/V can be set to one unless
both genomes are excessively large). Genomes are tested one at
a time; if a genome’s distance to a randomly chosen member of
the species is less than §;, a compatibility threshold, the genome
is placed into this species.

If a genome is not compatible with any existing species, a
new species is created. The problem of choosing the best value
for ¢; can be avoided by making 6, dynamic; that is, given a
target number of species, the system can slightly raise 8, if there
are too many species, and lower 0 if there are too few. Each
genome is placed into the first species from the previous gener-
ation where this condition is satisfied, so that no genome is in
more than one species. Keeping the same set of species from one
generation to the next allows NEAT to remove stagnant species,
i.e., species that have not improved for several generations.

As the reproduction mechanism, NEAT uses explicit fitness
sharing [70], where organisms in the same species must share
the fitness of their niche. Thus, a species cannot afford to be-
come too big even if many of its organisms perform well. There-
fore, any one species is unlikely to take over the entire popula-
tion, which is crucial for speciated evolution to support a variety
of topologies. The adjusted fitness f/ for organism ¢ is calculated
according to its distance ¢ from every other organism j in the
population

/ f 7
f= S GG ) @

The sharing function sh is set to 0 when distance 6(i,j) is
above the threshold 6;; otherwise, sh(6(¢, 7)) is set to 1 [71].
Thus, »°7_; sh(8(4, j)) reduces to the number of organisms
in the same species as organism ¢. This reduction is natural
since species are already clustered by compatibility using the
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threshold 6;. Every species is assigned a potentially different
number of offspring in proportion to the sum of adjusted
fitnesses f! of its member organisms.

The net effect of fitness sharing in NEAT can be summarized
as follows. Let F}, be the average fitness of species & and |P| be
the size of the population. Let Fio; = > & F}. be the total of all
species fitness averages. The number of offspring 7, allotted to
species k is

Fy
nE = =

Ftot

| Pl 3)

Species reproduce by first eliminating the lowest performing
members from the population. The entire population is then re-
placed by the offspring of the remaining individuals in each
species.

The main effect of speciating the population is that structural
innovation is protected. The final goal of the system, then, is to
perform the search for a solution as efficiently as possible. This
goal is achieved through complexification from a simple starting
structure, as detailed in the next section.

D. Minimizing Dimensionality Through Complexification

Other systems that evolve network topologies and weights
begin evolution with a population of random topologies [38],
[46], [54], [58]. In contrast, NEAT begins with a uniform popu-
lation of simple networks with no hidden nodes, differing only
in their initial random weights. Speciation protects new innova-
tions, allowing diverse topologies to gradually accumulate over
evolution. Thus, NEAT can start minimally, and grow the nec-
essary structure over generations.

New structures are introduced incrementally as structural
mutations occur, and only those structures survive that are found
to be useful through fitness evaluations. In this way, NEAT
searches through a minimal number of weight dimensions, sig-
nificantly reducing the number of generations necessary to find
a solution, and ensuring that networks become no more com-
plex than necessary. This gradual increase in complexity over
generations is similar to complexification in biology [72]-[75].
In effect, then, NEAT searches for the optimal topology by
incrementally complexifying existing structure.

E. NEAT Performance

In previous work, each of the three main components of
NEAT (i.e., historical markings, speciation, and starting from
minimal structure) were experimentally ablated in order to
determine how they contribute to performance [4]. The ablation
study demonstrated that all three components are interdepen-
dent and necessary to make NEAT work.

The NEAT approach is also highly effective: NEAT outper-
forms other NE methods, e.g., on the benchmark double pole
balancing task [4], [76]. In addition, because NEAT starts with
simple networks and expands the search space only when ben-
eficial, it is able to find significantly more complex controllers
than fixed-topology evolution [5]. These properties make NEAT
an attractive method for evolving neural networks in complex
tasks such as video games. The next section explains how NEAT
can be enhanced to work in real time.

Q

2 high-fitness agents

(4
1 low-fitness agent q X p

Cross over
Mutate

:

New agent

Fig. 5. The main replacement cycle in rtNEAT. NE agents (represented as
small circles with an arrow indicating their direction) are depicted playing a
game in the large box. Every few ticks, two high-fitness agents are selected
to produce an offspring that replaces another of lower fitness. This cycle of
replacement operates continually throughout the game, creating a constant
turnover of new behaviors that is largely invisible to the player.

IV. REAL-TIME NEAT (rtNEAT)

Like most EAs, NEAT was originally designed to run offline.
Individuals are evaluated one or two at a time, and after the
whole population has been tested, a new population is created to
form the next generation. In other words, in a normal EA it is not
possible for a human to interact with the evolving agents while
they are evolving. This section describes how NEAT can be
modified to make it possible for players to interact with evolving
agents in real time.

A. Motivation

At each generation, NEAT evaluates one complete generation
of individuals before creating the next generation. Real-time NE
is based on the observation that in a video game, the entire pop-
ulation of agents plays at the same time. Therefore, fitness sta-
tistics are collected constantly as the game is played, and the
agents could in principle be evolved continuously as well.

The central question is how the agents can be replaced contin-
uously so that offspring can be evaluated. Replacing the entire
population together on each generation would look incongruous
to the player since everyone’s behavior would change at once.
In addition, behaviors would remain static during the large gaps
of time between generations.

The alternative is to replace a single individual every few
game ticks as is done in some evolutionary strategy algorithms
[77]. One of the worst individuals is removed and replaced with
a child of parents chosen from among the best. If this cycle of
removal and replacement happens continually throughout the
game (Fig. 5), evolution is largely invisible to the player.

Real-time evolution using continuous replacement was first
implemented using conventional NE before NEAT was devel-
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The rtNEAT LooOp:

Calculate the adjusted fitness of all current
individuals in the population

Remove the agent with the worst adjusted
fitness from the population provided one has
been alive sufficiently long so that it has
been properly evaluated. _

Re-estimate the average fitness F for all
species

Choose a parent species to create the new
offspring

Adjust d: dynamically and reassign all agents
to species

Place the new agent in the world

Fig. 6. Operations performed every n ticks by rtNEAT. These operations allow
evolution to proceed continuously, with the same dynamics as in original NEAT.

oped and applied to a Warcraft II5-like video game [65]. A sim-
ilar real-time conventional NE system was later demonstrated
by Yannakakis et al. [23] in a predator/prey domain. However,
conventional NE is not sufficiently powerful to meet the de-
mands of modern video games. In contrast, a real-time ver-
sion of NEAT offers the advantages of NEAT: Agent neural
networks can become increasingly sophisticated and complex
during gameplay. The challenge is to preserve the usual dy-
namics of NEAT, namely protection of innovation through spe-
ciation and complexification. While original NEAT assigns off-
spring to species en masse for each new generation, rtNEAT
cannot do the same because it only produces one new offspring
at a time. Therefore, the reproduction cycle must be modified to
allow rtNEAT to speciate in real-time. This cycle constitutes the
core of rtNEAT.

B. The rtNEAT Algorithm

In the rtNEAT algorithm, a sequence of operations aimed at
introducing a new agent into the population are repeated at a reg-
ular time interval, i.e., every n ticks of the game clock (Fig. 6).
The new agent will replace a poorly performing individual in the
population. The algorithm preserves the speciation dynamics of
original NEAT by probabilistically choosing parents to form the
offspring and carefully selecting individuals to replace. Each of
the steps in Fig. 6 is discussed in more detail below.

1) Calculating Adjusted Fitness: Let f; be the orig-
inal fitness of individual :. Fitness sharing adjusts it to
(f:)/(]S]), where |S| is the number of individuals in the
species (Section III-C).

2) Removing the Worst Agent: The goal of this step is to re-
move a poorly performing agent from the game, hopefully to be
replaced by something better. The agent must be chosen care-
fully to preserve speciation dynamics. If the agent with the worst
unadjusted fitness were chosen, fitness sharing could no longer
protect innovation because new topologies would be removed
as soon as they appear. Thus, the agent with the worst adjusted
fitness should be removed, since adjusted fitness takes into ac-
count species size, so that new, smaller species are not removed
as soon as they appear.

It is also important that agents are evaluated sufficiently
before they are considered for removal. In original NEAT,

SWarcraft I is a registered trademark of Blizzard Entertainment, of Irvine,
California.
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networks are generally all evaluated for the same amount of
time. However, in rtNEAT, new agents are constantly being
born, meaning different agents have been around for different
lengths of time. Therefore, rtNEAT only removes agents that
have played for more than the minimum amount of time m.
This parameter is set experimentally, by observing how much
time is required for an agent to execute a substantial behavior
in the game.

Reestimating F': Assuming there was an agent old enough to
be removed, its species now has one less member and, therefore,
its average fitness F' has likely changed. It is important to keep
F up-to-date because F is used in choosing the parent species in
the next step. Therefore, F' needs to be calculated in each step.

3) Creating Offspring: Because only one offspring is cre-
ated at a time, (3) does not apply to rtNEAT. However, its effect
can be approximated by choosing the parent species probabilis-
tically based on the same relationship of adjusted fitnesses

Pr(Sy) = = @

In other words, the probability of choosing a given parent
species is proportional to its average fitness compared with the
total of all species’ average fitnesses. Thus, over the long run,
the expected number of offspring for each species is propor-
tional to my, preserving the speciation dynamics of original
NEAT. A single new offspring is created by recombining two
individuals from the parent species.

4) Reassigning Agents to Species: As was discussed in
Section III-C, the dynamic compatibility threshold ¢; keeps the
number of species relatively stable throughout evolution. Such
stability is particularly important in a real-time video game
since the population may need to be consistently small to ac-
commodate CPU resources dedicated to graphical processing.

In original NEAT, §; can be adjusted before the next gener-
ation is created. In rtNEAT, changing 6, alone is not sufficient
because most of the population would still remain in their cur-
rent species. Instead, the entire population must be reassigned to
the existing species based on the new ;. As in original NEAT,
if a network does not get assigned to any of the existing species,
a new species is created with that network as its representative.
Depending on the specific game, species do not need to be re-
organized at every replacement. The number of ticks between
adjustments can be chosen by the game designer based on how
rapidly the species evolve. In NERO, evolution progresses rather
quickly, and the reorganization is done every five replacements.

5) Replacing the Old Agent With the New One: Since an in-
dividual was removed in step Section IV-B2, the new offspring
needs to replace it. How agents are replaced depends on the
game. In some games (such as NERO), the neural network can
be removed from a body and replaced without doing anything
to the body. In others, the body may have been destroyed and
need to be replaced as well. The rtNEAT algorithm can work
with any of these schemes as long as an old neural network gets
replaced with a new one.

C. Running the Algorithm

The six-step rtNEAT algorithm is necessary to approximate
original NEAT in real-time. However, there is one remaining
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Scenario L: Enemy Turret Scenario 2: 2 Enemy Turrets
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Fig.7. A turret training sequence. The figure depicts a sequence of increasingly difficult and complicated training exercises in which the agents attempt to attack
turrets without getting hit. In the first exercise, there is only a single turret but more turrets are added by the player as the team improves. Eventually, walls are added
and the turrets are given wheels so they can move. Finally, after the team has mastered the hardest exercises, it is deployed in a real battle against another team.

issue. The entire loop should be performed at regular intervals,
every n ticks: How should n be chosen?

If agents are replaced too frequently, they do not live long
enough to reach the minimum time m to be evaluated. On the
other hand, if agents are replaced too infrequently, evolution
slows down to a pace that the player no longer enjoys.

Interestingly, the appropriate frequency can be determined
through a principled approach. Let I be the fraction of the pop-
ulation that is too young and, therefore, cannot be replaced. As
before, n is the number of ticks between replacements, m is
the minimum time alive, and |P| is the population size. A law
of eligibility can be formulated that specifies what fraction of
the population can be expected to be ineligible once evolution
reaches a steady state (i.e., after the first few time steps when no
one is eligible)

m
I= Pl o)
According to (5), the larger the population and the more time be-
tween replacements, the lower the fraction of ineligible agents.
This principle makes sense since in a larger population it takes
more time to replace the entire population. Also, the more time
passes between replacements, the more time the population has
to age and, hence, fewer are ineligible. On the other hand, the
larger the minimum age, the more are below it, and fewer agents
are eligible.

It is also helpful to think of (m)/(n) as the number of indi-
viduals that must be ineligible at any time; over the course of m
ticks, an agent is replaced every n ticks, and all the new agents
that appear over mn ticks will remain ineligible for that duration
since they cannot have been around for over m ticks. For ex-
ample, if | P| is 50, m is 500, and n is 20, 50% of the population
would be ineligible at any one time.

Based on the law of eligibility, rtNEAT can decide on its own
how many ticks n should lapse between replacements for a pre-
ferred level of ineligibility, specific population size, and min-
imum time between replacements

m
= —. 6
Itis best to let the user choose I because in general it is most crit-
ical to performance; if too much of the population is ineligible
at one time, the mating pool is not sufficiently large. Equation
(6) then allows rtNEAT to determine the appropriate number of

ticks between replacements. In NERO, 50% of the population
remains eligible using this technique.

By performing the right operations every n ticks, choosing
the right individual to replace and replacing it with an offspring
of a carefully chosen species, rtNEAT is able to replicate the
dynamics of NEAT in real-time. Thus, it is now possible to de-
ploy NEAT in areal video game and interact with complexifying
agents as they evolve. The next section describes such a game.

V. NEUROEVOLVING ROBOTIC OPERATIVES

NERO is representative of a new MLG genre that is only pos-
sible through ML. The idea is to put the player in the role of a
trainer or a drill instructor who teaches a team of agents by de-
signing a curriculum. Of course, for the player to be able to teach
agents, the agents must be able to learn; rtNEAT is the learning
algorithm that makes NERO possible.

In NERO, the learning agents are simulated robots, and the
goal is to train a team of these agents for military combat. The
agents begin the game with no skills and only the ability to
learn. In order to prepare for combat, the player must design
a sequence of training exercises and goals. Ideally, the exercises
are increasingly difficult so that the team can begin by learning
basic skills and then gradually build on them (Fig. 7). When the
player is satisfied that the team is well prepared, the team is de-
ployed in a battle against another team trained by another player,
making for a captivating and exciting culmination of training.
The challenge is to anticipate the kinds of skills that might be
necessary for battle and build training exercises to hone those
skills. The next two sections explain how the agents are trained
in NERO and how they fight an opposing team in battle.

A. Training Mode

The player sets up training exercises by placing objects on the
field and specifying goals through several sliders (Fig. 8). The
objects include static enemies, enemy turrets, rovers (i.e., turrets
that move), flags, and walls. To the player, the sliders serve as an
interface for describing ideal behavior. To rtNEAT, they repre-
sent coefficients for fitness components. For example, the sliders
specify how much to reward or punish approaching enemies, hit-
ting targets, getting hit, following friends, dispersing, etc. Each
individual fitness component is normalized to a Z-score (i.e., the
number of standard deviations from the mean) so that each fit-
ness component is measured on the same scale. Fitness is com-
puted as the sum of all these components multiplied by their
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Fig. 8.

Setting up training scenarios. These NERO screenshots show examples of items that the player can place on the field, and sliders used to control the

agents’ behavior. (a) Three types of enemies are shown from left to right: a rover that runs in a preset pattern, a static enemy that stands in a single location, and a
rotating turret with a gun. To the right of the turret is a flag that NERO agents can learn to approach or avoid. Behind these objects is a wall. The player can place
any number and any configuration of these items on the training field. (b) Interactive sliders specify the player’s preference for the behavior the team should try to
optimize. For example, the “E” icon means “approach enemy,” and the descending bar above it specifies that the player wants to punish agents that approach the
enemy. The crosshair icon represents “hit target,” which is being rewarded. The sliders are used to specify coefficients for the corresponding components of the
fitness function that NEAT optimizes. Through placing items on the field and setting sliders, the player creates training scenarios where learning takes place.
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Fig. 9. NERO input sensors and action outputs. Each NERO agent can see
enemies, determine whether an enemy is currently in its line of fire, detect
objects and walls, and see the direction the enemy is firing. Its outputs specify
the direction of movement and whether or not to fire. This configuration has
been used to evolve varied and complex behaviors; other variations work, as
well and the standard set of sensors can easily be changed in NERO.

slider levels, which can be positive or negative. Thus, the player
has a natural interface for setting up a training exercise and spec-
ifying desired behavior.

Agents have several types of sensors. Although NERO
programmers frequently experiment with new sensor config-
urations, the standard sensors include enemy radars, an “on
target” sensor, object rangefinders, and line-of-fire sensors.
Fig. 9 shows a neural network with the standard set of sensors
and outputs, and Fig. 10 describes how the sensors function.

Training mode is designed to allow the player to set up a
training scenario on the field where the agents can continually
be evaluated while the worst agent’s neural network is replaced
every few ticks. Thus, training must provide a standard way for
agents to appear on the field in such a way that every agent has
an equal chance to prove its worth. To meet this goal, the agents
spawn from a designated area of the field called the facrory.
Each agent is allowed a limited time on the field during which its
fitness is assessed. When their time on the field expires, agents
are transported back to the factory, where they begin another
evaluation. Neural networks are only replaced in agents that
have been put back in the factory. The factory ensures that a new
neural network cannot get lucky (or unlucky) by appearing in an
agent that happens to be standing in an advantageous (or diffi-
cult) position: All evaluations begin consistently in the factory.

The fitness of agents that survive more than one deployment
on the field is updated through a diminishing average that gradu-
ally forgets deployments from the distant past. A true average is
first computed over the first few trials (e.g., 2) and a continuous

(c)

Fig. 10. NERO sensor design. All NERO sensors are egocentric, i.e., they tell
where the objects are from the agent’s perspective. (a) Several enemy radar
sensors divide the 360° around the agent into slices. Each slice activates a sensor
in proportion to how close an enemy is within that slice. If there is more than
one enemy in it, their activations are summed. (b) Rangefinders project rays at
several angles from the agent. The distance the ray travels before it hits an object
is returned as the value of the sensor. Rangefinders are useful for detecting long
contiguous objects whereas radars are appropriate for relatively small, discrete
objects. (c) The on-target sensor returns full activation only if a ray projected
along the front heading of the agents hits an enemy. This sensor tells the agent
whether it should attempt to shoot. (d) The line of fire sensors detect where
a bullet stream from the closest enemy is heading. Thus, these sensors can be
used to avoid fire. They work by computing where the line of fire intersects rays
projecting from the agent, giving a sense of the bullet’s path. Together, these four
kinds of sensors provide sufficient information for agents to learn successful
behaviors for battle. Other sensors can be added based on the same structures,
such as radars for detecting a flag or friendly agents on the same team.

leaky average (similar to TD(0) RL update [31]) is maintained,
thereafter

ﬁﬂzﬁ+ﬁ7ﬁ ™)
where f; is the current fitness, s; is the score from the current
evaluation, and r controls the rate of forgetting. The lower r is
set, the sooner recent evaluations are forgotten. In this process,
older agents have more reliable fitness measures since they are
averaged over more deployments than younger agents, but their
fitness does not become out of date.

Training begins by deploying 50 agents on the field. Each
agent is controlled by a neural network with random connection
weights and no hidden nodes, which is the usual starting config-
uration for NEAT (see Appendix I for a complete description of
the rtNEAT parameters used in NERO). As the neural networks
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Fig. 11. Battlefield configurations. A range of possible configurations from
(a) an open pen to (c) a maze-like environment can be created for NERO. Players
can construct their own battlefield configurations and train for them. The basic
configuration, which is used in Section VI, is the empty pen surrounded by four
bounding walls, as shown in (a).

are replaced in real-time, behavior improves dramatically, and
agents eventually learn to perform the task the player sets up.
When the player decides that performance has reached a satis-
factory level, he or she can save the team in a file. Saved teams
can be reloaded for further training in different scenarios, or they
can be loaded into battle mode. In battle, they face off against
teams trained by an opponent player, as will be described next.

B. Battle Mode

In battle mode, the player discovers how well the training
worked out. Each player assembles a battle team of 20 agents
from as many different trained teams as desired. For example,
perhaps some agents were trained for close combat while
others were trained to stay far away and avoid fire. A player
may choose to compose a heterogeneous team from both
training sessions, and deploy it in battle.

Battle mode is designed to run over a server so that two
players can watch the battle from separate terminals on the
Internet. The battle begins with the two teams arrayed on oppo-
site sides of the field. When one player presses a “go” button,
the neural networks obtain control of their agents and perform
according to their training. Unlike in training, where being
shot does not lead to an agent body being damaged, the agents
are actually destroyed after being shot several times (currently
five) in battle. The battle ends when one team is completely
eliminated. In some cases, the only surviving agents may insist
on avoiding each other, in which case action ceases before one
side is completely destroyed. In that case, the winner is the
team with the most agents left standing.

The basic battlefield configuration is an empty pen sur-
rounded by four bounding walls, although it is possible to
compete on a more complex field with walls or other obstacles
(Fig. 11). In the experiments described in this paper, the battle-
field was the basic pen, and the agents were trained specifically
for this environment. The next section gives examples of actual
NERO training and battle sessions.

VI. PLAYING NERO

Behavior can be evolved very quickly in NERO, fast enough
so that the player can be watching and interacting with the
system in real time. The game engine Torque, licensed from
GarageGames (http://www.garagegames.com/), drives NERO’s
simulated physics and graphics. An important property of the
Torque engine is that its physics is slightly nondeterministic, so
that the same game is never played twice. In addition, Torque
makes it possible for the player to take control of enemy robots
using a joystick, an option that can be useful in training.

(a) (b)

Fig. 12. Learning to approach the enemy. These screenshots show the
training field before and after the agents evolved seeking behavior. The factory
is at the bottom of each panel and the enemy being sought is at the top.
(a) Five seconds: Confusion. Five seconds after the training begins, the agents
scatter haphazardly around the factory, unable to effectively seek the enemy.
(b) 100 seconds: Success. After 90 seconds, the agents consistently travel to
the enemy. Some agents prefer swinging left, while others swing right. These
pictures demonstrate that behavior improves dramatically in real-time over
only 100 seconds.

The first playable version of NERO was completed in May
of 2004. At that time, several NERO programmers trained their
own teams and held a tournament. As examples of what is pos-
sible in NERO, this section outlines the behaviors evolved for
the tournament, the resulting battles, and the real-time perfor-
mance of NERO and rtNEAT.

A. Training Basic Battle Skills

NERO is capable of evolving behaviors very quickly in real-
time. The most basic battle tactic is to aggressively seek the
enemy and fire. To train for this tactic, a single static enemy
was placed on the training field, and agents were rewarded for
approaching the enemy. This training required agents to learn
to run toward a target, which is difficult since agents start out in
the factory facing in random directions. Starting from random
neural networks, it takes on average 99.7 s for 90% of the agents
on the field to learn to approach the enemy successfully (ten
runs, sd = 44.5 s). It is important to note that the criterion
for success is partly subjective, based on visually assessing the
team’s performance. Nevertheless, success in seeking is gener-
ally unambiguous, as shown in Fig. 12.

NERO differs from most applications of EAs in that the
quality of evolution is judged from the player’s perspective
based on the performance of the entire population, instead of
that of the population champion. However, even though the
entire population must solve the task, it does not converge to the
same solution. In seek training, some agents evolved a tendency
to run slightly to the left of the target, while others run to the
right. The population diverges because the 50 agents interact as
they move simultaneously on the field at the same time. If all
the agents chose exactly the same path, they would often crash
into each other and slow each other down, so naturally some
agents take slightly different paths to the goal. In other words,
NERO is actually a massively parallel coevolving ecology in
which the entire population is evaluated together.
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Fig. 13. Avoiding the enemy effectively. This training screenshot shows
several agents running away backward and shooting at the enemy, which is
being controlled from a first-person perspective by a human trainer with a
joystick. Agents discovered this behavior during avoidance training because it
allows them to shoot as they flee. This result demonstrates how evolution can
discover novel and effective behaviors in response to the tasks that the player
sets up for them.

Fig. 14. Avoiding turret fire. The black arrow points in the current direction
of the turret fire (the arrow is not part of the NERO display and is only added
for illustration). Agents learn to run safely around turret’s fire and attack
from behind. When the turret moves, the agents change their attack trajectory
accordingly. This behavior shows how evolution can discover behaviors that
combine multiple goals.

After the agents learned to seek the enemy, they were fur-
ther trained to fire at the enemy. It is possible to train agents
to aim by rewarding them for hitting a target, but this behavior
requires fine tuning that is slow to evolve. It is also aestheti-
cally unpleasing to watch while agents fire haphazardly in all
directions and slowly figure out how to aim. Therefore, the fire
output of neural networks was connected to an aiming script
that points the gun properly at the enemy closest to the agent’s
current heading within a fixed distance of 30 m. Thus, agents
quickly learn to seek and accurately attack the enemy.

Agents were also trained to avoid the enemy. In fact, tNEAT
was flexible enough to devolve a population that had converged
on seeking behavior into a completely opposite, avoidance,
behavior.

For avoidance training, players controlled an enemy robot
with a joystick and ran it toward the agents on the field. The
agents learned to back away in order to avoid being penalized
for being too near the enemy. Interestingly, the agents preferred
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Fig. 15. Navigating a maze. Incremental training on increasingly complex wall
configurations produced agents that could navigate this complex maze to find
the enemy. The agents spawn from the factory at the top of the maze and proceed
down to the enemy at the bottom. In this picture, the numbers above the agents
specify their species. Notice that species “4” evolved to take the path through
the right side of the maze, while other species evolved to take the left path. This
result suggests that protecting innovation in rtNEAT supports a range of diverse
behaviors, each with its own network topology.

Fig. 16. Successfully navigating different maze configurations. The agents
spawn from the left side of the maze and proceed to an enemy at the right.
The agents trained to navigate mazes can run through both the maze in Fig. 15
and the maze in this figure, showing that a general path-navigation ability was
evolved.

to run away from the enemy backward, because that way they
could still see and shoot at the enemy (Fig. 13).

By placing a turret on the field and asking agents to approach
it without getting hit, agents were able to learn to avoid enemy
fire (Fig. 14). Agents evolved to run to the side that is opposite
of the spray of bullets, and approach the turret from behind, a
tactic that is promising for battle.

B. Training More Complex Behaviors

Other interesting behaviors were evolved to test the limits of
rtNEAT, rather than specifically prepare the troops for battle.
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(b)

Fig. 17. Adapting to changing situations. The agents spawn from the top of the screen and must approach the flag (circled) at the bottom left. White arrows point
in the direction of their general motion. (a) Agents approach flag. The agents first learn to take the left hallway since it is the shortest path to the flag. (b) Player
attacks on left. A human-controlled enemy (identified by a square) attacks inside the left hallway and decimates the agents. (c) Agents learn new approach. The
agents learn that they can avoid the enemy by taking the right hallway, which is protected from the enemy’s fire by a wall. The rtNEAT method allows the agents
to adapt in this way to the player’s tactics in real time, demonstrating its potential to enhance a variety of video game genres outside of NERO.

For example, agents were trained to run around walls in order
to approach the enemy. As performance improved, players in-
crementally added more walls until the agents could navigate
an entire maze (Fig. 15). This behavior is remarkable because
it is successful without any path-planning. The agents devel-
oped the general strategy of following any wall that stands be-
tween them and the enemy until they found an opening. Interest-
ingly, different species evolved to take different paths through
the maze, showing that topology and function are correlated in
rtNEAT, and confirming the success of real-time speciation. The
evolved strategies were also general enough to navigate signifi-
cantly varied mazes (Fig. 16).

In a powerful demonstration of real-time adaptation, agents
that were trained to approach a designated location (marked by
a flag) through a hallway were then attacked by an enemy con-
trolled by the player (Fig. 17). After two minutes, the agents
learned to take an alternative path through an adjacent hallway
in order to avoid the enemy’s fire. While such training is used in
NERO to prepare agents for battle, the same kind of adaptation
could be used in any interactive game to make it more realistic
and interesting.

C. Battling Other Teams

In battle, some teams that were trained differently were never-
theless evenly matched, while some training types consistently
prevailed against others. For example, an aggressive seeking
team had only a slight advantage over an avoidant team, win-
ning six out of ten battles in the tournament, losing three, and
tying one (Table I). The avoidant team runs in a pack to a corner
of the field’s enclosing wall (Fig. 18). Sometimes, if they make it
to the corner and assemble fast enough, the aggressive team runs
into an ambush and is obliterated. However, slightly more often
the aggressive team gets a few shots in before the avoidant team
can gather in the corner. In that case, the aggressive team traps
the avoidant team with greater surviving numbers. The conclu-
sion is that seeking and running away are fairly well-balanced
tactics, neither providing a significant advantage over the other.
The interesting challenge of NERO is to conceive strategies that
are clearly dominant over others.

One of the best teams was trained by observing a phenom-
enon that happened consistently in battle. Chases among agents

TABLE 1
SEEKERS VERSUS AVOIDERS

Battle Number | Seekers | Avoiders

\O[ 00| J| O\ | ] W DO —|
Q0| W h| n| O\ S0 | 0| | &\
—
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The number of agents still alive at the end of ten battles
are shown between a team trained to aggressively seek
and attack the enemy and another team taught to run away
backwards and shoot at the same time. The seeking team
won six out of the ten games, tied one, and lost three. This
outcome demonstrates that even when strategies contrast
they can still be evenly matched, making the game inter-
esting. Results like this one can be unexpected, teaching
players about relative strengths and weaknesses of dif-
ferent tactics.

e

Fig. 18. Seekers chasing avoiders in battle. In this battle screenshot, agents
trained to seek and attack the enemy pursue avoidant agents that have backed
up against the wall. Teams trained for different tactics are clearly discernable in
battle, demonstrating the ability of the training to evolve diverse tactics.

from opposing teams frequently caused them to eventually reach
the field’s bounding walls. Particularly for agents trained to
avoid turret fire by attacking from behind (Fig. 14), enemies
standing against the wall present a serious problem since it is
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TABLE 1II
WALL-FIGHTERS VERSUS SEEKERS

Battle Number | Wall-fighters

7
9
3
7
10
8
12
7
3
0 9

The final scores from ten battles between a team trained
to fight near walls and another trained to aggressively
seek and attack the enemy are shown. The wall-fighters
win every battle because they know how to avoid fire near
a wall, while the aggressive team runs directly into fire
when fighting near a wall. The total superiority of the
wall-fighters shows that the right tactical training indeed
matters in battle, and that rtNEAT was able to evolve so-
phisticated fighting tactics.

Seekers
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Fig. 19. Simplest successful seeker and wall-fighter networks. Nodes are
shown as squares beside their node numbers, and line thickness represents the
strength of connections. (a) Seeker. The aggressive seeking strategy is simple
enough so that it does not require any hidden nodes. (b) Wall-fighter. Fighting
near a wall requires an agent to move away when an enemy points in its
direction. This more sophisticated strategy always utilized at least two hidden
nodes. These examples demonstrate that NERO can evolve the appropriate
network complexity for each desired strategy.

not possible to go around them. Thus training a team against a
turret with its back against the wall, it was possible to familiarize
agents with attacking enemies that are against a wall. This team
learned to hover near the turret and fire when it turned away, but
back off quickly when it turned toward them. This tactic works
when several agents from the same team are nearby since an
enemy can only be facing one direction at a time. In fact, the
wall-based team won the first NERO tournament by using this
strategy: In particular, it won all games against the aggressive
seeking team (Table II).

Fig. 19 shows the simplest networks evolved for successful
seekers and wall-fighters. While the simplest seeking network
does not include hidden nodes, the simplest wall-trained net-
work utilizes two, demonstrating that more complex networks

665

indeed evolve to produce more sophisticated strategies. Thus, it
is possible to learn sophisticated tactics that dominate over sim-
pler ones like seek and avoid.

VII. DISCUSSION

Participants in the first NERO tournament agreed that the
game was engrossing and entertaining. Battles were exciting
events for all the participants, evoking plentiful clapping and
cheering. Players spent many hours honing behaviors and as-
sembling teams with just the right combination of tactics. This
experience is promising, suggesting that NERO succeeded as a
game, i.e., that it was fun to play it.

An important point of this project is that NERO would not
be possible without rtNEAT. With rtNEAT, it was possible to
evolve interesting tactics quickly in real-time while players in-
teracted with NERO, showing that NE can be deployed in a real
game and work fast enough to provide entertaining results. This
result suggests that rtNEAT could also be applied to commer-
cial games. Any game in which agent behavior is repetitive or
scripted can potentially be improved by allowing rtNEAT to at
least partially modify them in real-time. Especially, in persis-
tent video games such as Massive Multiplayer Online Games
(MMOGs) that last for months or years, rtNEAT could be used
to continually adapt and optimize agent behavior, thereby per-
manently altering the gaming experience for millions of players
around the world.

Since the first tournament took place, new features have been
added to NERO, increasing its appeal and complexity. For ex-
ample, agents can now duck behind walls and milestones can be
set to ensure that previously learned behaviors are not forgotten
even after later training for different tasks. The game continues
to be developed and new features and sensors are constantly
being added. The goal is to have a full network-playable ver-
sion with an intuitive user interface in the near future.

An important issue for the future is how to assess results in
a game in which behavior is largely subjective. One possible
approach is to train benchmark teams and measure the success
of future training against those benchmarks. This idea and others
will be employed as the project matures and standard strategies
are identified.

NERO is also being used as a common platform for quickly
implementing complicated real-time NE experiments. While
video games are intended mainly for entertainment, they are
an excellent catalyst for improving ML technology. Because of
the gaming industry’s financial success and low physical risk,
it makes sense to explore gaming as a stepping stone to other
more critical applications.

In the long term, the real-time NE technology could be used
to adapt the game as human players get better. In this manner,
it may finally be possible to use games for training people as
has long been envisioned. Such applications would begin with
a population of agents with rudimentary skills that provide a
gentle initiation to the domain. As the player improves, evolu-
tion develops increasingly challenging behaviors in response.
Thus, the game becomes more sophisticated at the same rate as
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the player improves, a highly desirable property in any training
situation.

For example, young children could improve hand-eye coordi-
nation by interacting with agents that survive by avoiding being
collected or arranged. At first, the agents would need almost
no skills to provide a challenge, but as the child improves at
the basic task, the agents would need to invent new behaviors.
More adult applications include training police or emergency
workers in catastrophic situations, or teaching citizens how to
evacuate buildings during increasingly hostile conditions. By
making such applications possible, rtNEAT creates new oppor-
tunities for interactive entertainment and educational media.

VIII. CONCLUSION

A real-time version of NEAT (rtNEAT) was developed to
allow users to interact with evolving agents. In rtNEAT, an en-
tire population is simultaneously and asynchronously evaluated
as it evolves. Using this method, it was possible to build a new
kind of video game, NERO, where the characters adapt in real
time in response to the player’s actions. In NERO, the player
takes the role of a trainer and constructs training scenarios for a
team of simulated robots. The rtNEAT technique can make fu-
ture video games more interesting and extend their longevity,
and eventually make it possible to use gaming as a method for
training people in sophisticated tasks.

APPENDIX
NERO SYSTEM PARAMETERS

The coefficients for measuring compatibility were
c1 = 1.0,co = 1.0, and ¢35 = 0.4. The initial compati-
bility distance was §; = 4.0. The population was kept small,
i.e., 50, so that the CPU could accommodate all the agents
being evaluated simultaneously. A target of four species was
assigned. If the number of species grew larger than four, 6,
was increased by 0.3. Conversely, if the number of species fell
below four, ¢; was decreased by 0.3. The interspecies mating
rate was 0.001. The probability of adding a new node was 0.05
and the probability of a new connection mutation was 0.03.
These parameter values were found experimentally, but they
do follow intuitively meaningful rules: Links need to be added
significantly more often than nodes, and weight differences are
given low weight since the population is small. Performance is
robust to moderate variations in these values.

The percentage of the population allowed to be ineligible at
one time, I, was 50%, the number of ticks between replacements
was 20, and the minimum evaluation time was 500. The number
of ticks between replacements can also be derived from (6). The
rate of forgetting (Section V-A) r was 2. The values for these pa-
rameters were determined through extensive testing, and again
the system was found to be robust against minor variations.
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