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TOMASO POGGIO, ASSOCIATE MEMBER, IEEE, AND FEDERICO GIROSI

Learning an input-output mapping from a set of examples, of the
type that many neural networks have been constructed to perform,
can be regarded as synthesizing an approximation of a multi-
dimensional function, that is solving the problem of hypersurface
reconstruction. From this point of view, this form of learning is
closely related to classical approximation techniques, such as gen-
eralized splines and regularization theory. This paper considers the
problem of the approximation of nonlinear mappings—especially
continuous mappings. We develop a theoretical framework for
approximation based on regularization techniques that leads to a
class of three-layer networks that we call regularization networks
and include as a special case the well-known Radial Basis Func-
tions method. Regularization networks are not only equivalent to
generalized splines, but are also closely related to pattern recog-
nition methods such as Parzen windows and potential functions
and to several neural network algorithms, such as Kanerva’s asso-
ciative memory, backpropagation, and Kohonen's topology pre-
serving map. They also have an interesting interpretation in terms
of prototypes that are synthesized and optimally combined during
the learning stage. This paper generalizes the theory of regulariza-
tion networks to a formulation that turns out to include task-
dependent clustering and dimensionality reduction. We also dis-
cuss briefly some intriguing analogies with neurobiological data.

I. LEARNING AS APPROXIMATION

The problem of learning amapping between aninputand
an output space is equivalent to the problem of synthe-
sizing an associative memory that retrieves the appropriate
outputwhen presented with the inputand generalizeswhen
presented with new inputs. It is also equivalent to the prob-
lem of estimating the system that transforms inputs into
outputs given a set of examples of input-output pairs. A
classical framework for this problem is approximation the-
ory. Related fields are system identification techniques
(when it is possible to choose the input set) and system esti-
mation techniques (when the input-output pairs are given).
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A suggestive point of view on networks and classical
approximation methods is provided by Omohundro [1]and
an interesting review of networks, statistical inference, and
estimation techniques has been given by Barron and Barron
[2]. Learning from the point of view of approximation has
been also considered among others by Schwartz [3], Pog-
gio et al. [4], [5], Aloimonos [6], Moody and Darken [7], and
Poggio[8]. Arelated area of research, concerned with learn-
ing of Boolean functions, has been developing rapidly since
the seminal work of Valiant [9].

Approximation theory deals with the problem of approx-
imating or interpolating acontinuous, multivariate function
f(X) by an approximating function (W, X) having a fixed
number of parameters W belonging to some set P (X and
W are real vectors X = (xq, X, * = * , Xp) and W = (wy, w,,
-+, w,,). For a choice of a specific F, the problem is then
to find the set of parameters W that provides the best pos-
sible approximation of f on the set of “examples.” This is
the learning step. Needless to say, it is very important to
choose an approximating function F that can represent fas
well as possible. There would be little pointin trying to learn,
if the chosen approximation function F(W, X) could only
give a very poor representation of f(X), even with optimal
parameter values. Therefore, itis useful todistinguish three
main problems:

1) the problem of which approximatioh to use, i.e.,
which classes of functions 7(X) can be effectively
approximated by which approximating functions
F(W, X). This is a representation problem.

2) the problem of which algorithm to use for finding
the optimal values of the parameters W for a given
choice of F.

3) the problem of an efficient implementation of the
algorithm in parallel, possibly analog, hardware.

This paper deals with the first two of these problems. it
is especially focused on the question of a good represen-
tation for learning continuous functions.

A. Networks and Approximation Schemes

Almost all approximation schemes can be mapped into
some kind of network that can be dubbed as a “neural net-
work.” Networks, after all, can be regarded as a graphic
notation for a large class of algorithms. In the context of our
discussion, a network is a function represented by the com-
position of many basic functions. To see how the approx-
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imation problem maps into such a network formulation, let
us introduce some definitions.

To measure the quality of the approximation, one intro-
duces a distance function p to determine the distance p[ f(X),
F(W, X)1of an approximation F(W, X) from f(X). The distance
is usually induced by a norm, for instance the standard L,
norm. The approximation problem can then be stated for-
mally as:

Approximation problem: If f(X) is a continuous function
defined on set X, and F(W, X) is an approximating function
that depends continuously on W € P and X, the approxi-
mation problem is to determine the parameters W* such
that

plF(W*, X), fX)] < plF(W, X), f(X)]

for all W in the set P.

A solution to this problem, if it exists, is said to be a best
approximation. The existence of a best approximation
depends ultimately on the class of functions to whom F(W,
X) belongs [10].

With these definitions we can consider a few examples
of approximating functions F(W, X): R" — R, that corre-
spond to multilayer networks (see [11]):

 the classical linear case is
FW, X) =W - X

where W and X are n-dimensional vectors. It corre-
sponds to a network without hidden units;

+ the classical approximation scheme is linear in a suit-
able basis {®;}., of functions of the original inputs
X, that is

FW, X) = 2 Wid(X)

and corresponds to a network with one layer of hidden
units. Spline interpolation and many approximation
schemes, such as expansions in series of orthogonal
polynomials, are included in this representation.
When the ®; are products and powers of the input
components, F is a polynomial.

+ the nested sigmoids scheme (of the type used with the
backpropagation learning scheme, see [12]) can be
written as

= (gna(oe( - o(305) )

where o is a sigmoid function. It corresponds to a mul-
tilayer. network of units that sum their inputs with
“"weights” W = {w,, v, u;, - - -} and then perform a
sigmoidal transformation of this sum. This scheme (of
nested nonlinear functions) is unusual in the classical
theory of the approximation of continuous functions.
Its motivation is that

FW, X) = a<2 wna<Z u,~X,~>>
n j

with ¢ being a linear threshold function, can represent
all Boolean functions (any mapping S: {0, 1}" = {0,
1} can be written as a disjunction of conjunctions,
which in terms of threshold elements becomes the
above expression, where biases or dummy inputs are
allowed). Networks of this type, with one layer of hid-
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den units, can approximate arbitrarily well any con-
tinuous multivariate functions [13], [14] (Cybenko [15]
and Moore and Poggio [16], among others, proved the
same result for the case of two layers of hidden units).

in general, each approximation scheme has some spe-
cific algorithm for finding the optimal set of parameters W.
An approach that works in general, though it may not be
the most efficient in any specific case, is some relaxation
method, such as gradient descent or conjugate gradient or
simulated annealing in parameter space, attempting to min-
imize the error p over the set of examples. In any case, our
discussion suggests that networks of the type used recently
for simple learning tasks can be considered as specific
methods of function approximation. This observation sug-
gests that the network version of the problem of learning
can be approached from the point of view of classical
approximation theory.

In this paper, we will be mainly concerned with the first
of the problems listed earlier, that is the problem of devel-
oping a well-founded and sufficiently general approxima-
tion scheme, which maps into multilayer networks.

Before discussing more extensively the approximation
problem, it is obviously important to answer the question
of whether an exact representation exists for continuous
functions in terms of simpler functions. For instance, if all
multivariate functions could be represented exactly and
nicely as sums or products of univariate ones, we could use
networks consisting of units with just one input and one
output. Recently, it has been claimed that atheorem of this
type, due to Kolmogorov [17], could be used to justify the
use of multilayer networks [2] (see also [18]). Unfortunately,
the claim is not warranted, as revealed by an analysis of Kol-
mogorov’s result [19] to which we refer the reader.

Thus, exact representations with the required properties
do not exist. Good and general approximating represen-
tations, however, may exist. The next section discusses the
formulation of the problem of learning from examples as
the problem of approximation of mappings. From this point
of view, regularization techniques used for surface recon-
struction are a natural framework for the problem of learn-
ing. This leads to the following problem: is there a con-
nection between regularization techniques and feed-
forward, multilayer networks? Sections Il and IV provide
a solution to this problem by showing that regularization
leads to an approximation scheme which is general, pow-
erful, and maps into a class of networks with one layer of
hidden units that we call regularization networks. We show
that regularization networks are strictly related to the well-
known interpolation method of Radial Basis Functions (RBF).
A subset of regularization networks consists of Radial Basis
Functions (though not all of them). The Appendix reviews
some of the existing results about RBF. Section IV also pro-
vides powerful extensions of the basic regularization net-
works. In this paper we refer to the most powerful and gen-
eral of the regularization networks as Hyper Basis Functions
(HyperBF). The possible relevance of the work to neuro-
physiology is then briefly outlined in section V, together
with a number of properties of Gaussian radial basis func-
tions. Section VI sketches some of the applications of the
technique, while the last section mentions several classical
algorithms that can be regarded as special cases of HyperBF.
We conclude with some comments on the crucial problem
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of dimensionality faced by this and almost any other learn-
ing or approximation technique.

Il.  LEARNING AS HYPERSURFACE RECONSTRUCTION

If we consider learning from the perspective of approx-
imation, we can draw an equivalence between learning
smooth mappings and a standard approximation problem,
surface reconstruction from sparse data points. In this anal-
ogy, learning simply means collecting the examples, i.e.,
the input coordinates x;, y; and the corresponding output
values at those locations, the height of the surface d;. This
builds a look-up table. Generalization means estimating d
in locations x, y where there are no examples, i.e., no data.
This requires interpolating or, more generally, approxi-
mating the surface between the data points. Interpolation
is the limit of approximation when there is no noise in the
data. This example, given for a surface, i.e., the graph in R?
X R, corresponding to the mapping from R? to R, can be
immediately extended to mappings from R" to R™ (and
graphs in R" x R™). In this sense learning is a problem of
hypersurface reconstruction. Notice that tasks of classifi-
cation and of learning Boolean functions may be regarded
in a similar way. They correspond to the problems of
approximating a mapping R" — {0, 1} and a mapping
{0, 1}" — {0, 1}, respectively.

B. Approximation, Regularization, and Generalized
Splines

From the point of view of learning as approximation, the
problem of learning a smooth mapping from examples is
ill-posed [20], [21] in the sense that the information in the
data is not sufficient to reconstruct uniquely the mapping
inregions where dataare not available. In addition, the data
are usually noisy. A priori assumptions about the mapping
are needed to make the problem well-posed. Generaliza-
tion is not possible if the mapping is completely random.
For instance, any number of examples for the mapping rep-
resented by a telephone directory (people’s names into
telephone numbers) do not help in estimating the tele-
phone number corresponding to a new name. General-
ization is based on the fact that the world in which we live
is usually—at the appropriate level of description—redun-
dant. In particular, it may be smooth:small changes in some
input parameters determine a correspondingly small
change in the output (it may be necessary in some cases to
accept piecewise smoothness). This is one of the most gen-
eral and weakest constraints that makes approximation
possible. Other, stronger a priori constraints may be known
before approximating amapping, forinstance that the map-
ping is linear, or has a positive range, or a limited domain
or is invariant to some group of transformations. Smooth-
ness of a function corresponds to the function being not
fully local: the value at one point depends on other values
nearby. Smoothness can be measured in a number of dif-
ferent ways. As we will explain later, our measure of devia-
tion from smoothness is some functional containing deriv-
atives of the function considered. The results of Stone [22]
(see section VII-C) suggest that, if nothing else is known
about a high dimensional function to be approximated, the
only option may be to assume a high degree of smoothness.
Otherwise, the number of examples required would be
totally unpractical.

POGGIO AND GIROSI: NETWORKS FOR APPROXIMATION AND LEARNING

B. Regularization Techniques for Learning

Techniques that exploit smoothness constraints in
approximation problems are well known under the term of
standard regularization. Consider the inverse problem of
finding the hypersurface values z, given sparse data d. Stan-
dard regularization replaces the problem with the varia-
tional problem of finding the surface that minimizes a cost
functional consisting of two terms [21], [23] (the first to intro-
duce this technique in computer vision was Grimson, in
1981[24)). The first term measures the distance between the
data and the desired solution z; the second term measures
the cost associated with a functional of the solution ||Pz|*
that embeds the a priori information on z. P is usually a dif-
ferential operator. Thus, the problem is to find the hyper-
surface z that minimizes

2 (z — d)* + A|Pz|? M

where i is a collective index representing the points in fea-
ture space where data are availableand ), the regularization
parameter, controls the compromise between the degree
of smoothness of the solution and its closeness to the data.
Therefore \ is directly related to the degree of general-
ization that is enforced. It is well known that standard regu-
larization provides solutions that are equivalent to gen-
eralized splines [25]. A large body of results in fitting and
approximating with splines may be therefore exploited.

C. Learning, Bayes Theorem and Minimum Length
Principle

The formulation of the learning problem in terms of regu-
larization is satisfying from a theoretical point of view. A
variational principle such as equation (1) can be solidly
grounded on Bayesian estimation (see [11]). Using Bayes
theorem one expresses the conditional probability distri-
bution P,4(z; d) of the hypersurface z given the examples
d in terms of a prior probability P,(z) that embeds the con-
straint of smoothness and the conditional probability Py,(d;
2) of d given z, equivalent to a model of the nosie:

Pud(z; d) o P,(2) Py d; 2).

This can be rewritten in terms of complexities of hypoth-
esis, defined as C(-) = —log P(+)

Clz|d) = C2) + Cd|z2) + ¢ 2)

where ¢, which is related to P,(d), depends only on d. The
MAP estimate corresponds to considering the z with min-
imum complexity C(z|d). Maximum likelihood is the special
case of MAP for uniform C(z) (perfect a priori ignorance).

The maximum of this posterior probability (the MAP esti-
mate) coincides with standard regularization, that is equa-
tion (1), provided that the noise is additive and Gaussian
and the prioris a Gaussian distribution of alinear functional
of z (see [11]). Under these conditions, the first term —L;
(z; — d)y*—in the regularization principle of equation (1) cor-
responds to C(d|z), whereas the second term—||Pz||>—cor-
responds to the prior C(z) [26].

Outside the domain of standard regularization, the prior
probability distribution may represent other a priori knowl-
edge than just smoothness. Piecewise constancy, for
instance, could be used for classification tasks. Notice that
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in practice as much a priori information as possible must
be supplied in order to make the learning problem man-
ageable. Space invariance or other invariances to appro-
priate groups of transformations can play a very important
role in effectively countering the curse of dimensionality
(see [18)).

As pointed out by Rivest (in preparation), one can reverse
the relationship between prior probabilities and complex-
ity (see (2)). Instead of determining the complexity C(z) in
(2) from the prior, one may measure the complexity of the
apriori hypotheses to determine the prior probabilities. Ris-
sanen[27]for instance, proposes to measure the complexity
of a hypothesis in terms of the bit length needed to encode
it. In this sense, the MAP estimate is equivalent to the Min-
imum Description Length Principle: the hypothesis zwhich
for given d can be described in the most compact way is
chosen as the “‘best”’ hypothesis. Similar ideas have been
explored by others (for instance [28]). They connect data
compression and coding with Bayesian inference, regular-
ization, hypersurface reconstruction, and learning.

D. From Hypersurface Reconstruction to Networks

In the section above we have sketched the strict relations
between learning, Bayes estimation, regularization, and
splines; splines are equivalent to standard regularization,
itself a special case of MRF models, which are a subset of
Bayesian estimators. All these methods can be imple-
mented in terms of parallel networks: in particular, we and
others have proposed that MRFs can be implemented in
terms of hybrid networks of coupled analog and digital ele-
ments [26]. Standard regularization can be implemented by
resistive grids, and has been implemented on an analog VLSI
chip [29]. Itis then natural to ask whether splines, and more
generally standard regularization, can be implemented by
feedforward multilayer networks. The answer is positive,
and will be given in the next few sections in terms of what
we call Regularization Networks. Regularization Networks
are closely related to an interpolation technique called
Radial Basis Functions (RBF), which has recent theoretical
foundations (see the review of Powell [30]) and has been
used with very promising results [31]-[36].

I1l. REGULARIZATION THEORY AND REGULARIZATION
NETWORKS

In this section we apply regularization theory to the
approximation/interpolation problem and we show the
equivalence between regularization and a class of three-
layer networks that we call regularization networks. These
networks are not only equivalent to generalized splines,
butare also closely related to the classical Radial Basis Func-
tions used for interpolation tasks, which are discussed in
some detail in Appendix A.

A. Regularization Theory

Let S = {(x;, y) e R" x Rli =1, -+ - N} be a set of data
that we want to approximate by means of a function f. The
regularization approach [37], [21], [38], [23] determines the
function f that minimizes the functional

N
HIfL = 2 (y; = foa)* + NP @)
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where Pis a constraint operator (usually a differential oper-
ator), ||| is a norm on the function space to which Pf
belongs (usually the L* norm) and X is a positive real num-
ber, the so called regularization parameter. The structure of
the operator P embodies the a priori knowledge about the
solution, and therefore depends on the nature of the par-
ticular problem that has to be solved. Minimization of the
functional H leads to the associated Euler-Lagrange equa-
tions [39], that in this case can always be written as

N
PP = T (y, - foolx = x) @

where P is the adjoint of the differential operator P and the
right side comes from the functional derivative with respect
to f of the data term of H.

Equation (4) is a partial differential equation, and it is well
known that its solution can be written as the integral trans-
formation of its right side with a kernel given by the Green’s
function of the differential operator PP, that is the function
G satisfying the following distributional differential equa-
tion:

PPG(x; y) = 8(x — y).

Because of the delta functions appearing in (4) the integral
transformation becomes a discrete sum and fcan then be
written as

Mz

f(x) = (y; = fx)G&x; x)). (5)

>

i=1

]

Equation (5) says that the solution of the regularization
problem lies in an N-dimensional subspace of the space of
smooth functions. A basis for this subspace is given by the
N functions G(x; x)). In the following we will refer to G(x;
x;) as to the Green’s function “‘centered” at the point x;, and
to the points x; as to the “centers’”” of the expansion. The
reason for this lies in the fact that usually the Green’s func-
tion is translationally invariant, that is G = G(x — X)), and
in this case G(x) and G(x — x;) are equivalent modulo a coor-
dinates translation that maps x; in the origin.

A set of equations for the unknown coefficients c; = y; —
f(x)/\ is easily obtained by evaluating equation (5) at the N
data points x;. A straightforward calculation yields the fol-
lowing linear system:

(G+ N)c=y (6)
where [ is the identity matrix, and we have defined

=Y (0); = G, (G)ij = Glx; Xj)-

We then conclude that the solution to the regularization
problem is given by

N
f(x) = _;1 ciGx; x;) )

where the coefficients satisfy the linear system (6).

We notice however that this expression is not the com-
plete solution of the minimization problem. In fact all the
functions that lie in the null space of the operator P are
“invisible’’ to the smoothing term in the functional (3), so
that the previous expansion is the solution modulo a term
that lies in the null space of P. The form of this term depends
on the stabilizer that has been chosen and on the boundary
conditions, and therefore on the particular problem that
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has to be solved. For this reason, and since its inclusion does
not modify the main conclusions, we will disregard itin the
following. We just mention that for a stabilizer that is a
homogeneous, rotationally invariant operator of degree n,
the null space is the space of polynomials of degree 2n —
1. This and other aspects of the minimization problem (3)
can be found in the book of Wahba [40], where a result sim-
ilar to the one of (7) is derived in a rigorous way by means
of the technique of reproducing kernels.

Since the operator PP in equation (4) is self-adjoint, its
Green's function is symmetric: G(x; y) = G(y; x). As a con-
sequence the matrix G of equation (6) is symmetric and its
eigenvalues are real numbers. The matrix G + N is then of
full rank (unless —X\ is equal to one of its eigenvalues) and
the linear system (6) always has a solution. The existence
of a solution in the case of A = 0, that corresponds to pure
interpolation, depends on the properties of the Green's
function G. If the Green’s function is positive definite this
limit always exists, and an expansion of the type (7) inter-
polates the data without any null space term. If the Green’s
function is conditionally positive definite of some order (see
Appendix A), well known results of approximation theory
[41] guarantee that the addition to the expansion (7) of a
polynomial of appropriate degree, that is the polynomial
that lies in the null space of P, makes it always possible to
interpolate the data points. Conditionally positive defi-
niteness of the Green’s function, as well as other proper-
ties, derives from the structure of the stabilizer P (see the
next section for some examples). If the operator P is trans-
lationally invariant, G will depend on the difference of its
arguments (G = G(x — y)) and if it is rotationally and trans-
lationally invariant G will be a radial function: G =
G(|lx = yll). In the last case the regularized solution is given
by the following expansion:

N
foo = 4 ¢;Glx - xilb ®)

and the method of Radial Basis Functions may be recovered
(see Appendix A). There are strict connections between the
Radial Basis Function method and variational principles,
some of which are sketched in the following subsection.
Interesting results can be found in the paper of Dyn [42],
where the work of Madych and Nelson [43] on semi-repro-
ducing kernels and variational principles is discussed.

Notice that the requirement of rotational and transla-
tional invariance on P is very common in practical appli-
cations. Clearly, regularization with a non-radial stabilizer
Pjustifies the use of appropriate non-radial basis functions,
retaining all the approximation properties associated with
the Tikhonov technique. An example involving non-radial
stabilizers is the case of tensor product splines. Tensor
product splines correspond to non-radial stabilizing oper-
ators that are the product of “one-dimensional’ operators.
In two dimensions, for example, they correspond to sta-
bilizers of the form P = P, P, where P, (P,) is a differential
operator involving only derivatives with respecttox (y). The
Green'’s function associated to PP, is the product of the
Green’s functions associated to P, and P,. The two dimen-
sional problem is then regarded as the ““tensor product”
of two one-dimensional problems.

We now give some examples of stabilizers P and of their
properties.

POGGIO AND GIROSI: NETWORKS FOR APPROXIMATION AND LEARNING

1) Examples
Multidimensional Splines: A widely used class of sta-
bilizers is given by the functionals considered by Duchon
[44] and Meinguet [45] in their variational approach to mul-
tivariate interpolation. In particular they considered func-
tionals of the form

n
o™ = 2 S dx(@;,. . .;, F))?

i1 im JRP
where 8;,...;, = d™dx;, * * * 3x;, and m = 1. Stabilizers of
this type are invariant under rotations and translations.
Moreover, since the differential operator involved is homo-
geneous, a scale transformation of the variables affects this
functional multiplying it by a constant, implying that the
operations of finding the solution and scaling the data com-
mute.

The Green'’s function associated to this stabilizer is radial,

translation invariant and satisfies the following differential
equation (in the sense of the distributions):

(=1)"V27G(x) = 8(x)

where V2" is the m-iterated Laplacian in n dimensions. The
solution of this differential equation can be found using the
method of generalized Fourier transforms, and it is shown
to be (see Gelfand and Vilenkin, pp. 202, 1964)

Ix|>™="In ||x||  if2m > n and n is even
Gx) = 9

lIx|[2m=n otherwise.

It is clear from equation (9) that the constraint 2m > n
has to be imposed on the degree of smoothness m in order
to obtain a Green's function that is not singular in the ori-
gin. Suppose now that the condition 2m > n is fulfilled: it
is well known from spline theory that if the stabilizer is of
order m then the Green'’s function is conditionally positive
definite of the same order. This means that, given m, in order
to interpolate the set § of data, § = {(x;, y) € R" X R|i =1,
-+ N}, the following function can be used:

N

f) = X ;G = x) + pm-i®)

where p,,_4(x) is a polynomial of degree m — 1.
In the case n = m = 2 the functional to be minimized is

= [ acay|(20) 4o )+ (22)
IO = R2 xdy \a2) ¥ axdy ay?

and the Green’s function h is the well known “thin plate
spline” h(r) = r* In r. In this case a linear term appears as
the second term of the right hand side of equation (9). Thin
plate splines have been introduced by engineers for aero-
elastic calculations [46], their name coming from the fact
that || O%f]|? is the bending energy of a thin plate of infinite
extent.

A Generalization of Multidimensional Splines: We now
consider the following generalization of the class of sta-
bilizers previously shown:

M
Il = 2 a0l 10

The stabilizer is rotationally and translationally invariant
and the Green'’s function satisfies the distributional dif-
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ferential equation:

M
Z_O (=02, V*"Gx — y) = 8(x — y). (1)

By Fourier transforming both sides of equation (11) we
obtain:

M
Z_JO an(s - s)" G(s) = 1

and by Fourier anti-transforming G(s) we have for the
Green's function G(x):

Gl = SR ds ——— = SR dse™ * dV(s)  (12)

2 ap(s 8"
m=0

where V(s) is a bounded non-decreasing function if a; # 0.
Now we can apply Bochner’s theorem [47], which states that
a function is positive definite if and only if it can be written
in the form (12), to conclude that G(x) is positive definite.
Notice that the condition ay > 0 is crucial in this particular
derivation, and, as it has been pointed out by Yuille and
Grzywacz [48], it is a necessary and sufficient condition for
the Green’s function to fall asymptotically to zero. If ag is
zero a similar result holds, the Green’s function being con-
ditionally positive definite of some order, as in the case of
the spline functions previously shown.

One simple one-dimensional example is provided by the
following choice of the coefficients:

qg* q>0,ifn=0

a, =41 ifn=1
0 otherwise.

The Green'’s function for ¢ # 0 is shown to be [49]:

Gylx — y) = 5%e—qlx—yl_

Clearly this function is not very smooth, reflecting the fact
that the stabilizer consists of derivatives of order 0 and 1
only. Smoother functions can be obtained allowing a larger
number of coefficients to be different from zero. Here we
give an example of a stabilizer of the type (10) in which the
degree, and then the number M of terms, is let go to infinity.
In this case the differential operator defining the Green’s
function ceases to be a differential operator in the standard
sense, and it is called a pseudo-differential operator. As an
example we consider the choice a,,, = ¢*"/m!2™, that leads
to the pseudodifferential equation:

aZm
mi2™

Z_)O (-=1)" VXG(x) = 8(x).

Standard Fourier techniques yield the Green'’s function
Gx) = Ae™*)

where A is a normalization constant. The regularized solu-
tion is then a linear superposition of Gaussians centered
on the data points x;, and has interesting properties that will
be shown in section (7).

B. Regularization Networks

An obvious property of this technique is that it can be
implemented by a simple network with just one layer of

hidden units, as shown in Fig. 1. The first layer of this net-
work, that we call regularization network consists of “input’’
units whose number is equivalent to the number of inde-
pendent variables of the problem. The second layer is com-
posed of nonlinear “hidden’ units fully connected to the
first layer. There is one hidden unit for each data point x;
= (x;, Vi, Z, * * *), and the connections between the ith hid-
den unit and the input units are given by the coordinates
(x;, yi,zj, - * *)of the ith data point. The “‘activation function”’
of the hidden units is the Green’s function G, so that the
output of the ith hidden unit is G(x; x;). The output layer,
fully connected to the hidden layer, consists of one (or more)
linear unit(s), whose ““weights’” are the unknown coeffi-
cients of the expansion (7). It is straightforward to see that
gradient descent, that minimizes the interpolation error on
the data points, can be used to solve the system (6) with X
set to zero. If the Green'’s function is positive definite this
solution will be the ““optimal” interpolant, that is the inter-
polant that minimizes the functional ||Pf|?, even without
the polynomial terms. If the Green’s function is condition-
ally positive definite some appropriate polynomial units
should be added to the network in order to obtain the opti-
mal interpolant (Fig. 1 shows the case of a polynomial of
order 1, i.e., linear).

Fig. 1. The regularization network used to approximate a
mapping between x4, X5, * * *, X, and y, given a set of sparse,
noisy data. In addition to the linear combination of Green's
functions constantand linear terms are shown here as direct
connections from the input to the output with weights a,,
a, ay, * * *,a, Constant, linearand higherorder polynomials
may be needed, depending on the stabilizer P.

Notice thatthe architecture of the regularization network
iscompletely determined by the learning problem, and that,
unlike most of the current “‘neural’’ networks, all weights
between the input and the hidden layer are known. From
the point of view of approximation theory the regulariza-
tion network has three desirable properties:

1. Ithasbeen shown[50]thata regularization network
can approximate arbitrarily well any multivariate
continuous function on a compact domain, given
a sufficiently high number of units. This property
is shared by algebraic and trigonometric polyno-
mials, as is shown by the classical Weierstrass Theo-
rem, and by a large class of networks with one layer
of hidden units [13], [15], [14], [16], [51].

2. Since the approximation scheme derived from
regularization theory is linear in the unknown coef-
ficients, it is easy to prove that it has the so called
best-approximation property [50]. This means that
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given a function f, there always exists a choice of
coefficients that approximates f better than all other
possible choices. This property, which isimportant
mainly from the theoretical point of view, is shared
by all the classical approximating schemes, such as
approximation by polynomial and splines with fixed
knots, in which the approximating solution
depends linearly on the unknown parameters. It
can be shown [50], that multilayer feedforward net-
works, of the type usually considered for back-
propagation schemes, do not have this property.

3. The solution computed by the regularization net-
work is ““optimal”’ in the sense that it minimizes a
functional that measures how much it oscillates.
This eliminates solutions that perfectly interpolate
the data points but badly oscillate where there are
no data. This property is typical of the spline inter-
polation method, but it is not shared, for example,
by the polynomial interpolation scheme.

Notice that in the regularization networks output units
may also compute a fixed, nonlinear, invertible function ¢
([11]), as already observed by Broomhead and Lowe [34]. This
is useful for instance in the case of classification.tasks, the
function ¢ being naturally chosen to be a sigmoid function.
Clearly a similar nonlinear function could be applied to each
of the inputs. It seems possible that in some cases suitable
input and output processing of this type may be advan-
tageous. Poggio (see [18]) following Resnikoff [52], has
argued that the input and the output of the mapping to be
approximated should be processed by a nonlinear function
in order to match the domain and the range of the approx-
imating function. Resnikoff had proposed as nonlinear
functions for this processing the birational functions, the
exponential function, the logarithmic function, and the
composition of these functions, since they achieve the nec-
essary conversion of domain and range with minimal dis-
ruption of the algebraic structure of the input and output
spaces. Input and output coding of this type tries to lin-
earize the approximation as much as possible by exploiting
a priori information about the range and the domain of the
mapping to be approximated. Interestingly, the sigmoid
function used at the output of many neural networks can
be derived from the composition of a rational function and
an exponential and matches the range of functions used for
binary classification.

IV. EXTENSIONS OF THE REGULARIZATION APPROACH

In this section we extend the theory by defining a more
general form of regularization networks, that can perform
task-dependent clustering and dimensionality reduction
and that we call Hyper Basis Functions. The extensions we
propose are two:

1. The network associated with equation (7) has a
complexity (number of units) that is independent
of the dimensionality of the input space but is on
the order of the dimensionality of the training set
(number of examples), which is usually high. We
show how to justify an approximation of equation
(7) in which the number of units is much smaller
than the number of examples and the positions of
the “centers’” of the expansion are modified during
learning [11]. This scheme can be further extended
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by considering in equation (7) the superposition of
different types of functions G, such as Gaussians
of different scales.

2. Thenorm |x — x;| may be considered as a weighted
norm

Ix = x| = x = x) WWx — x)

where W is a square matrix and the superscript T
indicates the transpose. In the simple case of diag-
onal W the diagonal elements w;; assign a specific
weight to each input coordinate, and the standard
Euclidean norm is obtained when W is set to the
identity matrix. They play a critical role whenever
different types of inputs are present. We will show
how the weighted norm idea can be derived rig-
orously from a slightly more general regularization
principle than equation (3).

Inthe following we will introduce these two extensions and
show that the moving centers are related to clustering tech-
niques and that the norm-weights correspond to dimen-
sionality reduction. We also mentioned two further exten-
sions: learning in the presence of unreliable examples and
learning from positive and negative examples.

A. Moving Centers: An Approximation to the
Regularization Solution

The solution given by standard regularization theory to
the approximation problem can be very expensive in com-
putational terms when the number of examples is very high.
The computation of the coefficients of the expansion can
become then a very time consuming operation: its com-
plexity grows polynomially with N, (roughly as N°) since an
N x N matrix has to be inverted. In addition, the probability
of ill-conditioning is higher for larger and larger matrices
(it grows like N? for a N x N uniformly distributed random
matrix) [53]. In this section, we show how to reduce the com-
plexity of the problem, introducing an approximation to the
regularized solution.

A standard technique that has been used to find approx-
imate solutions of variational problems is to expand the
solution on a finite basis. The approximated solution f*(x)
has then the following form:

f*(x) = 2'1 Cidix) (13)

where {¢;}7_,is asetof linearly independent functions[54].
The coefficients ¢; are usually found according to some rule
that guarantees a minimum deviation from the true solu-
tion. In the case of standard regularization, when the func-
tional to minimize is given by equation (3), this method gives
the exact solution if n is equal to the number of data points
N, and {¢;}"-1 = {G(x; x)} 1+, where Gis the Green's func-
tion of the operator PP. In this case the unknown coeffi-
cients of the expansion (13) can be obtained in a simple way
by substituting expansion (13) in the regularization func-
tional (3), that becomes a function H[f*] = H*(cq, = * * , Cn),
and then by minimizing H[f*] with respect to the coeffi-
cients, that is by setting:

BHIF]
aCi =0

It can be easily shown [11] that if the Green’s function
vanishes on the boundary of the region that is considered

=1, ,N. (14)

1487



the set of equations (14) is equivalent to the linear system
(6). In more general cases the basis {¢;}]_; should be
enlarged, to include terms that generate the null space of
P, in order to obtain the correct solution. For simiplicity, we
disregard these terms in the following, since they do not
change the main conclusions. A natural approximation to
the exact solution will then be of the form:

f*(x) = g c,Gix; t,) (15)

where the parameters t,, that we call “centers’’, and the
coefficients c, are unknown, and are in general fewer than
the data points (n < N). This form of solution has the desir-
able property to be a universal approximator for contin-
uous functions [50] and to be the only choice that guar-
antees that in the case of n = Nand {t,}0-; = {x;}/-1the
correct solution (of equation (3)) is consistently recovered.
We will see later how to find the unknown parameters of
this expansion.

B. Different Types of Basis Functions and Multiple Scales

This scheme can be further extended by considering in
equation (15) the superposition of different types of func-
tions G, such as Gaussians at different scales. The function
fto be approximated is regarded as the sum of p compo-
nentsf™, m=1,- - -, p,each componenthaving a different
prior probability. Therefore the functional H[f]to minimize
will contain p stabilizers P™ and will be written as

N p 2 p
Hifl = % < 2 f™(x) — y,-> + 2 AIPTEMIR (16)
i=1 \m=1 m=1
Analyzing the structure of the Euler-Lagrange equations
associated to equation (16) it can be shown that the function
F(x) that minimizes the functional (16) is a linear superpo-
sition of linear superpositions of the Green’s functions G™
corresponding to the stabilizers P™. Exactly as in the pre-
vious section, an approximated solution f* to the vari-
ational problem is sought of the following form:

p  Knm

frx) = 2 2 cTG™(x; t7) (17)
m=1a=1

where K,, < N and the coefficients ¢ and the centers t7

are to be found.

This method leads in particular to radial basis functions
of multiple scales for the reconstruction of the function f.
Suppose we know a priori that the function to be approx-
imated has components on a number p of scales oy,

-, 0p: we can use this information to choose a set of p
stabilizers whose Green’s functions are, for example,
Gaussians of variance gy, - -+, 0,. As a result, the solution
will be a superposition of superpositions of Gaussians of
different variance. Of course, the Gaussians with large o
should be préset, depending on the nature of the problem,
to be fewer and therefore on a sparser grid, than the Gauss-
ians with a small o.

This method yields also non-radial Green’s functions—by
using appropriate stabilizers—and also Green’s functions
with a lower dimensionality—by using the associated ™ and
P™ in a suitable lower-dimensional subspace. Again this
reflects a priori information that may be available about the
nature of the mapping to be learned. In the latter case the
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information is that the mapping is of lower dimensionality
or has lower dimensional components.

C. Weighted Norm and Regularization

The norm in equation (15) is usually intended as an Euclid-
ean norm. If the components of x are of different types, it
is natural to consider a weighted norm defined as [|x[[} =
x"WTWx, since the relative scale of the components is oth-
erwise arbitrary. The case in which the matrix W is known
(from prior information) does not present any difficulty. It
is interesting, however, to see what it means in terms of the
underlying regularization principle.

The regularization principle consists of finding the f that
minimizes the functional:

N
Hylf] = 5 (y; — fx)* + NPFI2 (18)

where we assume that Pis radially symmetricin the variable
y and that y = Wx (i.e. y is a known linear transformation
of x that depends on the parameters W). This means that
the smoothness constraintis given in a space that is an affine
transformation of the original x space. The Green's function
associated with equation (18) is G(lylI») = G(Ix|l§). If this
formulation is used together with the moving center
scheme, the approximated solution of the regularization
problem has the form:

0 = 2 caGlllx = &l (19)

Suppose now that the parameters W are unknown. We
can formulate the problem of finding fand Wthat minimize
the functional Hy(f). Thus finding the optimal W corre-
sponds to finding the best stabilizer among those that are
expressed in a coordinate system which is a linear trans-
formation of the original one.

The simplest case is the case of W diagonal and G(x) =
e™. In this case

Gllxlff) = e™xMe s . . - =i
and thus the diagonal elements w; of W are equivalent to
the inverse of the variance o of each component of the mul-

tidimensional Gaussian.

D. Learning with Unreliable and Negative Examples

In the standard regularization approach, as well as in the
extensions shown above, the set of data g is fixed, and all
the data points are used in order to obtain a solution. It is
possible to modify the functional (3) to take in account the
possibility of excluding unreliable data, thatare “spurious”
or “too noisy”. An analysis, similar to the one performed
by Geiger and Girosi [55] on the problem of reconstructing
piecewise smooth surfaces, shows that in the presence of
unreliable data the functional (3) has to be replaced with
the functional [56]

N
H'Ifl = 2 vVia) + NIPFP. (20)

Here we have defined the “‘effective potential” V as the
function

1 2
Vix) = x2 — 5 In (1 + e P9
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where e is a positive number and § is a positive parameter,
that is usually let go to infinity. In the case of 8 going to
infinity the meaning of the effective potential is the follow-
ing: closeness to the ith data point is enforced only if the
interpolation error 4, is smaller that Ve (in this region V(x)
= x? as in the standard regularization case). If the inter-
polation error s larger than Jeitis very likely that the datum
is spurious, so that there is no need to enforce the function
to go through that datum (V(x) = constant = ¢, while in the
standard regularization case it is still quadratic).

The effective potential can be used also to deal with the
problem of negative examples. Suppose we know that the
function at the points {t,} ~—1 has to assume values that are
far from the values {y,}X_+. This a priori knowledge can be
introduced in the standard regularization functional by
adding an appropriate term, that is, by minimizing

N N
HIf) = 5 AF = 2 Vad) + NP @1)

where v is a positive parameter. Due to the minus sign in
equation (21) the interpolation error A, at the points
{t,}X_, is enforced to be larger than V. Notice that the
solutions of the minimization problems (20) and (21) still
have the form of linear superposition of Green’s functions,
and then can be implemented by a regularization network
whose “weights” are found using a gradient-descent pro-
cedure.

E. How to Learn Centers’ Positions and Norm Weights

Suppose that we look for an approximated solution of the
regularization problem of the form (19). We now have the
problem of finding the n coefficients c,, the d X n coor-
dinates of the centers t, and the d* elements of the matrix
W so that the expansion (19) is optimal. In this case we can
make use of a natural definition of optimality, given by the
functional H. We then impose the condition that the set {Car
t o =1, -+ ,n} and the matrix W must be such that they
minimizes H[f*], and the following equations must be sat-
isfied:

OHLF] _ OHL*] _ OHLf*T _
ac, =0 at, =0 oW =0
a=1"",n

Gradient-descent is probably the simplest approach for
attempting to find the solution to this problem, though, of
course, it is not guaranteed to converge. Several other iter-
ative methods, such as versions of conjugate gradient and
simulated annealing [57] or variations of the Metropolis
algorithm (Caprile and Girosi, in preparation) may be better
than gradient descentand should be used in practice. Since
the function H[f*] to minimize is in general non-convex, a
stochastic term in the gradient descent equations may be
advisable to avoid local minima. In the gradient descent
method the values of c,, t,, and W that minimize H[f*] are
regarded as the coordinates of the stable fixed point of the
following dynamical system:
_BHIM _BHIfX _BHIM
T A YA =T aw

a=1-",n

o

where w is a parameter determining the microscopic time-
scale of the problem and is related to the rate of conver-
gence to the fixed point. Defining
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A=y = 0 =y = X Gl - Gl

and setting X = 0 for simplicity (the more general case can
be approached in a similar way) in equation (3) we obtain

N
HIfY = Howe = 2 ()"
The important quantities—that can be used in more effi-

cient schemes than gradient descent—are:

+ for the c,
BH[f*] J "
5 = 72 2 A,G(lx; = talli; (22)

« for the centers t,

* N
-a';—[cf—] = 4c, 2 AG (X — ) W, — t)  (23)
. and for W
" N N
SHIT _ 4w ¥ ¢, T AGx - 10Q. 29
ow a=1 i=1 !

where Q; , = (x; — ) (x; — t,) is a dyadic product and
G’ is the first derivative of G. Instead of Wwe have also
used M = W'W with the appropriate equivalent of
equation (24).

Remarks

1. Equation (22) has a simple interpretation: the cor-
rection is equal to the sum over the examples of
the products between the error on that example
and the “activity’” of the ““unit” that represents
with its center that example. Notice that H[f*]is
quadratic in the coefficients c,, and if the centers
and the matrix W are kept fixed, it can be shown
[11] that the optimal coefficients are given by

c = (G'G + \g)~'G'y (25)

where we have defined (y); =y, (€ = Co (Glig =
G(x; t,) and (g)as = Gty o). If N is let go to zero
the matrix on the right side of equation (25) con-
verges to the pseudoinverse of G [58], and if the
Green’s function is radial the approximation
method of Broomhead and Lowe [34] is recovered.

2. Equation (23) is similar to task-dependent clus-
tering [11]. This can be best seen by assuming that
A, are constant: then the gradient descent updat-
ing rule makes the centers move towards the
majority of the data, to find the position of the
cluster. Equating dH[ f*/at, to zero we notice that,
when the matrix W is set to the identity matrix,
the optimal centers t, satisfy the following set of
nonlinear equations:

2 P2x;
t, =~
o ZP?

where P* = A;G'(lx; — t,I). The optimal centers
are then a weighted sum of the data points. The
weight P} of the data point i for a given center t,
is high if the interpolation error A; is high there
andthe radial basis function centered on that knot
changes quickly in a neighborhood of the data
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point. This observation could suggest faster
methods for finding a quasi-optimal set of knots
7.

3. Equa’don(24)contains’(hequantityE,N:"1 i,eWhich
is an estimate of the correlation matrix of all the
examples relative to t, (modulus a normalization
factor). Notice that L, Q; . can be written as the
product of a matrix containing N columns, each
being one example (minus the quantity t,) times
the transpose of the same matrix: it is therefore
a d x d matrix (d being the number of compo-
nents of x). It can be shown [59] that equation (24),
under strong simplifying conditions, converges
toa Wwith rows thatare close to the eigenvectors
of Q with the smallest eigenvalues. In other
words, the equation would then converge to rows
of W that span the space orthogonal to the space
spanned by the principal components of the input
examples (i.e. the eigenvectors of Q with the larg-
est eigenvalues).

4. Equation (24) is similar to an operation of (task-
dependent) dimensionality reduction [60]
whereas equation (23) is similar to a clustering
process. Itis conceivable that learning the weights
ofthe normis even more important than learning
the centers and that in many cases it may be pref-
erable to set the centers to a representative sub-
set of the data and to keep them fixed thereafter.

5. Aspecific matrix W corresponds to a specific met-
ric in the multidimensional input space: W pro-
jects the input vector into the subspace spanned
by its rows. In the case of the rows of W spanning
the space orthogonal to the principal compo-
nents of the inputs, W assigns a metric ellipsoid
with the larges axes (corresponding to a large ¢,
if the Green's function is a Gaussian) along the
principal components and the small axis (corre-
sponding to asmall ¢ in the Gaussian) orthogonal
to it: thus even vectors that are far away (in the
ordinary Euclidean metric) are close in this metric
if they lie in the hyperplane of the principal com-
ponents and even close vectors (in the ordinary
metric) are far away in the metric induced by W
if they are orthogonal to the principal compo-
nents.

6. In the case of N examples, n = N fixed centers
and W = |, there are enough data to constrain the
N c, to be found. Moving centers add another n
X d parameters (d is the number of input com-
ponents) and the matrix W'W another d” param-
eters. Thus the number of examples N must be
sufficiently large to constrain adequately the free

parameters—n d-dimensional centers, n coeffi- -

cients c, and d? entries of the matrix W (notice
that only (d* + d)/2 entries will be independent).
Thus the condition N > K + Kd + d? should be
satisfied.

7. Inthe case of Gaussian basis functions, learning
the entries of a diagonal W is equivalent to learn
the o of each two-dimensional (or one-dimen-
sional) Gaussian receptive field for each center.

8. In the gradient descent equations nothing for-
bids that two or more centers may move towards
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each other until they coincide. Clearly, this should
be avoided, for example adding to the functional
(3) a term of the form £,z ¥(l|t, — tl), where ¥
is an appropriate repulsive potential. The gra-
dient descent equation can be easily modified to
reflect this additional term.

F. A Practical Algorithm

It seems natural to try to find a reasonable initial value
for the parameters c,, t,, and W to start the minimization
process. In absence of more specific prior information the
following heuristics seems reasonable.

+ Setthe number of centers n and set the centers posi-
tions to a subset of the examples;

+ Set the rows of W to be vectors orthogonal to the
eigenvectors of L, L; Q; , with largest eigenvalues;

+ Use matrix pseudo-inversion to find the c,;

+ Usethet, Wand c, found so far as initial values for
gradient descent equations.

As discussed in [59] even more general strategies may
make sense.

V. GAUSSIAN BAsls FUNCTIONS AND SCIENCE-FICTION
NEUROBIOLOGY

In this section we point out some remarkable properties
of Gaussian Basis Functions, that may have significant
implications for neurobiology and, to a lesser extent, for
VLSI circuit implementations.

A. Factorizable Radial Basis Functions

The synthesis of radial basis functions in many dimen-
sions may be easier if they are factorizable. It can be easily
proven that the only radial basis function which is factoriz-
able is the Gaussian (tensor product splines correspond to
factorizable Green functions which are not radial). A mul-
tidimensional Gaussian function can be represented as the
product of lower dimensional Gaussians. For instance a 2D
Gaussian radial function centered in t can be written as:

G(“X _ t”2) = e“lnr—t‘u2 = e~ —tlg=ly=t2 (26)

This dimensionality factorization is especially attractive
from the physiological point of view, since it is difficult to
imagine how neurons could compute G(|lx — t,/|? in a sim-
ple way for dimensions higher than two. The scheme of Fig.
2, on the other hand, is physiologically plausible. Gaussian
radial functions in one and two dimensions can be readily
implemented as receptive fields by weighted connections
from the sensor arrays (or some retinotopic array of units
representing with their activity the position of features).

Physiological speculations aside, this scheme has three
interesting features from the point of view of a hardware
implementation and also in purely conceptual terms. Con-
sider the example of a Gaussian Radial Basis Function net-
work operating on images:

1. The multidimensional radial functions are synthe-
sized directly by appropriately weighted connec-
tions from the sensor arrays, without any need of
an explicit computation of the norm and the expo-
nential.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990



Fig. 2. A three-dimensional radial Gaussian implemented
by multiplying two-dimensional Gaussian and one-dimen-
sional Gaussian receptive fields. The latter two functions are
synthesized directly by appropriately weighted connections
from the sensor arrays, as neural receptive fields are usually
thought to arise. Notice that they transduce the implicit
position of stimuli in the sensor array into a number (the
activity of the unit). They serve the dual purpose of providing
the required “number’’ representation from the activity of
the sensor array and of computing a Gaussian function. 2D
Gaussians acting on a retinotopic map can be regarded as
representing 2D “‘features,” while the radial basis function
represents the “‘template” resulting from the conjunction
of those lower-dimensional features.

2. 2D Gaussians operating on the sensor array or on
a retinotopic array of features extracted by some
preprocessing transduce the implicit position of
features in the array into a number (the activity of
the unit). They thus serve the purpose of providing
the required “number” representation from the
““array”’ representation.

3. 2D Gaussians acting on a retinotopic map can be
regarded as representing 2D “features”, while each
radial basis function represents the “‘template”
resulting from the conjunction of those lower-
dimensional features. Notice that in this analogy
the radial basis function is the AND of several fea-
tures and could also include the negation of certain
features, that is the AND NOT of them. The scheme
is also hierarchical, in the sense that a multidi-
mensional Gaussian ““template”” unit may be a “fea-
ture’” input for another radial function (again
because of the factorization property of the Gauss-
ian). Of course a whole network may be one of the
inputs to another network.

B. Style of Computation and Physiological Predictions

The multiplication operation required by the previous
interpretation of Gaussian networks to perform the “con-
junction” of Gaussian receptive fields is not too implau-
sible from a biophysical point of view. It could be per-
formed by several biophysical mechanisms, as discussed
in more detail by [11], directly on the dendritic tree of the
neuron representing the corresponding radial function.

The scheme also requires a certain amount of memory
per basis unit, in order to store the center vector. In the
Gaussian case the center vector is effectively stored in the
position of the 2D (or 1D) receptive fields and in their con-
nections to the product unit(s). This is plausible physio-

POGGIO AND GIROSI: NETWORKS FOR APPROXIMATION AND LEARNING

logically. The update equations are probably not. Equation
(22) or a somewhat similar, quasi-hebbian scheme is not too
unlikely and may require only a small amount of plausible
neural circuitry. Equations (23) seem more difficult toimple-
ment for a network of real neurons. It should be stressed,
however, that the centers may be moved in other ways—or
not at all! In the Gaussian case, with basis functions syn-
thesized through the product of Gaussian receptive fields,
moving the centers means establishing or erasing connec-
tions to the product unit. This can be done on the basis of
rules that are different from the full equation (23), such as,
for instance, competitive learning, and that are biologically
more plausible. The same can be said about the process that
determines the weights in the norm.

Regularization networks with a Gaussian Green’s func-
tion suggest an intriguing metaphor for a computational
strategy that the brain may use. Computation, in the sense
of generalization from examples, would be done by super-
position of receptive fields in a multidimensional input
space. In the case of Gaussian radial basis functions, the
multidimensional receptive fields could be synthesized by
combining lower dimensional receptive fields, possibly in
multiple stages. From this point of view, some cells would
correspond to radial functions with centers ina high dimen-
sional input space, somewhat similar to prototypes or
coarse ‘“‘grandmother cells,” a picture that seems super-
ficially consistent with physiological evidence. They could
be synthesized as the conjunction of Gaussian weighted
positive and negative features in 2D retinotopic arrays.

Notice that from this perspective the computation is per-
formed by Gaussian receptive fields and their combination
(through some approximation to multiplication), rather than
by threshold functions. The basis units may not even need
to be all radial, as obvious from the regularization for-
mulation. The view is in the spirit of the key role that the
concept of receptive field has always played in neuro-
physiology. It predicts the existence of low-dimensional
feature-like cells and multidimensional Gaussian-like
receptive fields, somewhat similar to template-like cells, a
fact that could be tested experimentally on cortical cells.

VI. SOME APPLICATIONS

Many problems in several different fields such as system
estimation, computer vision, speech understanding, sta-
tistical estimation, analysis of time series, signal processing
can be formulated as problems of approximating multi-
variate functions from sparse data or, equivalently, as prob-
lems of learning from examples. In all these cases, espe-
cially when the problem involves continuous output values
rather than binary (as in classification tasks), regularization
networks can be used. This section sketches just three
applications.

A. Recognizing a 3D Object from its Perspective Views

Consider the problem of recognizing a wire-frame 3D
object from any of its perspective views. Aview of the object
is represented, for instance, as a 2N vector xy, y1, Xy Y

-, xn, yn Of the coordinates on the image plane of N
labeled and visible points on the object. Additional differ-
ent types of features can also be used, such as angles
between vertices. The network learns to map any view of
the object into a classification function. The results with
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images generated with computer graphics tools are encour-
aging, using a small number of training views [61]. Other
encoding schemes are roughly equivalent, such as angles
between the edges or segments lengths. A similar network
with the same centers but different c can be used to provide
the attitude of the object in space for any of its views [62].

B. Learning Dynamical Systems

HyperBF can be used to “’learn’ a dynamical system from
the time course of its output. In fact, RBF have been often
suggested as a good technique for this problem and have
been successfully tested in some cases [34, 36]. The tech-
nique involves the approximation of the “iterated map”
underlying the dynamical system (the crucial problem is,
of course, the estimation of the dimension of the attractor
and the choice of the input variables). We have every reason
tobelieve that HyperBF will perform on this problem at least
as well as the linear techniques of Farmer and Sidorowich
[63] and the backpropagation algorithm of Lapedes and Far-
ber [64]. The task of learning filters, especially recursive fil-
ters, for signal processing applications, is a closely related
problem.

C. Learning Perceptual and Motor Tasks

Regularization networks have a good chance of being
capable of synthesizing several vision algorithms from
examples, since several problems in vision have satisfac-
tory solutions in terms of regularization. The use of regu-
larization networks is not restricted to sensory processes
and they may also be used to learn motor tasks and even
to model biological motor control. In support of this latter
point, notice that simple biological trajectory control seems
to be well explained by variational formulations of the regu-
larization type [65]. Regularization networks are equivalent
to regularization and may have attractive neural interpre-
tations: basis functions, possibly radial, may correspond to
motor units with a multidimensional motor field, whereas
their sum may be implicitly performed by the whole
mechanical system, say a multijoint arm.

VII. CoNCLUSIONS

In this final section we discuss the structure of HyperBF,
their relation to classical techniques, some general points
about the most crucial problem of learning, the ‘“curse of
dimensionality”’, and its relation with the key assumption
underlying regularization and regularization networks—the
assumption of smoothness.

A. How Regularization Networks Really Work

Regularization networks have a rather simple structure
that seems to capture some of the main lessons that are
becoming evident in the fields of statistics and neural net-
works.

To have a feeling of how regularization networks work
let us consider a specific, extreme case, in which we con-
sider aregularization network as a classifier, something the
formal theory does notactually allow. Imagine using aregu-
larization scheme to classify patterns, such as handwritten
digits, in different classes. Assume that the input is a binary
8-bit vector of length N and each of the basis functions is
initially centered on the point in the N-dimensional input
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space that corresponds to one of the training examples
(fixed centers case). The system has several outputs, each
corresponding to one of the digit classes. Let us consider
a series of special cases of regularization networks of
increasing generality:

1. Each of the unit (its center corresponds to an exam-
ple) is an hypersphere and is connected, with
weight 1, to its output class only. Classification is
done by reading out the class with maximum out-
put. In this case, the system is performing a Parzen
window estimate of the posterior probability and
then using a MAP criterion. The Parzen-window
approach is similar (and asymptotically equivalent)
to the k, nearest-neighbor estimation, of which the
nearest-neighbor rule is a special case. The net-
work is equivalent here to a hypersphere classifier.

2. We now replace the hypersphere by a multidi-
mensional Gaussian that is an allowed radial basis
function (the hypersphere does not satisfy Mic-
chelli’s condition and cannot be derived from regu-
larization). At least for the task of approximating
smooth functions the network should perform bet-
ter than in the non-Gaussian case. The centers of
the radial basis functions may be regarded as rep-
resenting ‘“templates’’ against which the input vec-
tors are matched (think, for instance of a radial
Gaussian with small ¢, centered on its center, which
is a point in the n-dimensional space of inputs).

3. We may do even better by allowing arbitrary c val-
ues between the radial units (as many as examples)
and the output. The ¢ can then be found by the
pseudoinverse techniques (or gradient descent)
and are guaranteed to be optimal in the L, sense.

4. We now allow a number of (movable) centers,
which is less than the number of examples. Moving
acenter is equivalent to modifying the correspond-
ing template. Thus equation (23) attempts to
develop better templates by modifying during
training the existing ones. In our case, this means
changingthe pixel values inthearrays representing
the digits.

5. We allow an arbitrary weighted norm, with the
weights to be found during the learning stage. This
corresponds to finding which new features, syn-
thesized as linear combinations of the inputs com-
ponents, optimally capture the information in the
input set, necessary for the task. Irrelevant fea-
tures, in our example irrelevant pixels, will be
assigned negligible weights.

6. Finally the most general network, in addition to the
above features, also contains radial units, for
instance of the Gaussian type, of different scale (i.e.
0), together with non-radial units associated to
appropriate stabilizers and units that may receive
only subsets of the inputs. This is the HyperBF
scheme.

This list shows that the HyperBF scheme is an extension of
some of the simplest and most efficient approximation and
learning algorithms which can be regarded as special cases
of it. In addition, it illuminates a few interesting aspects of
the HyperBF algorithm, such as its massive parallelism and
its use of prototypes. The network is massively parallel in
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the sense that it may in general require a large number of
basis units. While this property could have been regarded
quite negatively a few years ago, this is not so anymore. The
advent of parallel machines such as the Connection
Machine with about 65 000 processors and of special pur-
pose parallel hardware has changed the perspective
towards massive parallelism. The use of prototypes by
HyperBF suggest that, in a sense, HyperBF networks are an
extension of massive template matchers or look-up tables.
We believe that this property makes them intriguingly
attractive: after all, if memory is cheap, look-up tables are
a good starting point. The HyperBF scheme says how to
extend look-up tables into a powerful approximation
scheme equivalent to generalized splines, which are prob-
ably the most powerful approximation method known.
From another perspective, Gaussian HyperBF can be
regarded as disjunction of conjunctions and seem there-
fore a natural and satisfying way to connect the represen-
tation of Boolean functions with the approximation of con-
tinuous, smooth multivariate functions.

B. Relations with Other Methods

Many existing schemes for networks that learn are
encompassed by the framework of regularization net-
works. In this section, we will mention briefly some of the
most obvious connections with existing methods. Because
of space limitations, we refer the reader to the appropriate
references and to [11] for a detailed discussion of the meth-
ods we consider.

Regularization networks are the feedforward network
versions of regularization, and are therefore equivalent to
generalized splines. They are similar to the architecture
used for backpropagation, being multilayer networks with
one hidden layer and two or even three sets of adjustable
parameters. Their Boolean limit version carves the input
space into hyperspheres, each corresponding to a center:
a radial unit is active if the input vector is within a certain
radius of its center and is otherwise silent. The Boolean limit
of backpropagation carves the space with hyperplanes.
With an arbitrary number of units each network can approx-
imate the other, since each network can approximate arbi-
trarily well continuous functions on a limited interval [13,
50]. Multilayer networks with sigmoid units do not have,
however, the best approximation property that regular-
ization networks have [50]. The Boolean limit of regular-
ization networks is almost identical to Kanerva’s associative
memory algorithm [66], which is itself closely related to vec-
tor quantization. Parzen windows, potential techniques in
pattern recognition and, morein general, kernel estimation
methods can be regarded as special cases of our method.
Close analogies between Kanerva's model and Marr’s [67]
and Albus’ [68] models of the cerebellum also exist [69, 111.
The update equation that controls the evolution of the cen-
terst, is also similar to Kohonen’s topology preserving algo-
rithm [70, 11] (which is also similar to the k-means algorithm
[71]) and can be interpreted as a learning scheme in which
the centers of the radial functions move to find centers of
clusters of input vectors. Coarse coding techniques can be
interpreted within the HyperBF framework (for the special
case of Gaussian Radial Basis functions) [11]. Regularization
networks have also similarities with the class of Memory-
Based Reasoning methods, recently used by D. Waltz and
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coworkers [72] on massively parallel machines, since in their
simplest version (as many centers as examples) they are
essentially look-up tables that find those pastinstances that
are sufficiently close to the new input. Infact, regularization
networks can be regarded as a powerful and simple exten-
sion of Memory-Based Reasoning that makes it equivalent
to generalized splines.

C. Networks and Learning: The Pervasive Problem of
Dimensionality

Our main result shows that for the learning problem
regularization theory yields naturally aclass of feedforward
multilayer networks. This is highly satisfactory from a the-
oretical point of view, but in practice another fundamental
question must also be addressed: how many samples are
needed to achieve a given degree of accuracy [22], [2]2 It is
well known that the answer depends on the dimensionality
d and on the degree of smoothness p of the class of func-
tions that has to be approximated [73], [22], [74]. This prob-
lem has been extensively studied and some fundamental
results have been obtained by Stone [22]. He considered a
class of nonparametric estimation problems, like surface
approximation, and computed the optimal rate of conver-
gence e, that is a measure of how accurately a function can
be approximated knowing n samples of its graph. He
showed that using a local polynomial regression the opti-
mal rate of convergence ¢, = n~P2P+d) can be achieved,
generalizing previous results based on local averages. This
means that the number of examples needed to approximate
a function reasonably well grows exponentially with the
ratio between the dimensionality d and its degree of
smoothness p.

Other interesting results have been obtained by Baum
and Haussler on the statistical reliability of networks for
binary classification [75], [76], whereas another approach to
dimensionality reduction has been pursued by J. Schwartz
[3] (similar to [77]). He solves the learning problem for many
data sets, obtained from the original one dropping some
dimensions, and then selects the one that gives the best
result. This method is more similar to Generalized Cross
Validation [78], [79] and even without a priori information
on the dimensionality of the problem, turned out to be
effective in computer simulations [3].

D. Summary

Approaching the problem of learning in networks from
the point of view of approximation theory provides several
useful insights. It illuminates what network architectures
are doing; it suggests more principled ways of obtaining the
same results and ways of extending further the approach;
and finally, it suggests fundamental limitations of all
approximation methods, including neural networks.

In this paper, we developed a theoretical framework
based on regularization techniques that leads to a class of
three-layer networks, useful for approximation, thatwe call
regularization networks. The most general form of them is
called Hyper Basis Functions, since they are related to the
well-known Radial Basis Functions, mainly used for strict
interpolation tasks. We have introduced several new exten-
sions of the method and its connections with splines, regu-
larization, Bayes formulation and clustering. Regulariza-
tion networks have a feedforward, multilayer network
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architecture with good theoretical foundations. They may
provide the best framework within which we can study gen-
eral issues for learning techniques of the neural network
type. ’

A RADIAL Basis FUNCTIONS: A REVIEW

The Radial Basis Function (RBF) method is one of the pos-
sible solutions to the real multivariate interpolation prob-
lem, that can be stated as follows:

Interpolation problem: Given N different points {x; € R"|i
=1, -+ N} andN real numbers { y;eR|i =1, - -« N} find
a function F from R" to R satisfying the interpolation con-
ditions:

Fx)=y, i=1-+-,N.

The RBF approach consists in choosing a function F of the
following form:

N m
F(x) = ;1 cih(lx = xl) + a dip{x) m=<n @27

where h is a continuous function from R* to R, usually called
the radial basis function, ||-|| is the Euclidean norm on R",
{pili =1, -+, m} is abasis of the linear space m;_4(R") of
algebraic polynomials of degree at most k— 1 from R" to R,
and k is given. The interpolation conditions give N linear
equations for the (N + m) coefficients ¢; and d; in equation
(27), so that the remaining degrees of freedom are fixed by
imposing the following constraints:

N
i§1 CiP,‘(Xi) = 0/ I = 1/ cet, M.

In order to discuss the solvability of the interpolation prob-
lem by means of this representation we need the following
definition [80, 41]:

Definition A.1 A continuous function f(t), defined on
[0, =), is said to be conditionally (strictly) positive definite
of order k on R" if for any distinct points x;, -+, Xy € R"
and scalars c;, -+ -, cysuch that L. c;p(x)) = 0 forallp €
Tk-1(R"), the quadratic form L}, T}L; cicif(llx; — x| is
(positive) nonnegative.

Notice that for k = 0 this class of functions, that we denote
by ®(R™), reduces to the class of the (strictly) positive def-
inite functions, that is the class of functions such that the
quadratic form /L I, c;;f(llx; — x;l)) is (positive) non-
negative [81].

Well known results of approximation theory assert that
a sufficient condition for the existence of a solution of the
form (27) to the interpolation problem is that h € @ (R"),
where we have defined ®(R") as the set of conditionally
positive definite functions of order k. It is then an important
problem to give a full characterization of this class. In par-
ticular it is important to characterize the set of functions
that are conditionally positive definite of order k over any
R", that we define as simply ®@,.

An interesting characterization of ®, has been recently
obtained by C. A. Micchelli [41]. Before stating his result we
first give the following:

Definition A.2 A function f is said to be completely
monotonic on (0, ) provided that it is C*(0, ) and (=@’
ax(x) = 0, vx € (0, »), vl € N, where N is the set of natural
numbers.
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We define 911 the set of all the functions whose kth deriv-
ative is completely monotonic on (0, o). Micchelli showed
that there is a deep connection between 9, and ®@,. In fact
he proved the following theorem:

Theorem A.1 (Micchelli, 1986) For every natural number
k, h(r) e ®, whenever h(r) is continuous on [0, ) and
(=@*h(n/ar* is completely monotonic on (0, o).

To our extents the practical implication of this theorem
is the following: if the kth derivative of h(r) is completely
monotonic the expansion (27) can be used to solve the inter-
polation problem. It has been noticed [41, 30] that this theo-
rem encompasses the results obtained by Duchon [44] and
Meinguet [45] in their variational approach to splines. For
instance the functions h(r) = r*? and g(r) = }rlog vr belong
to 9M,, and by theorem A.1 the functions h(r®) = r* and g(r)
= r? log r (“thin plate splines”) belong to ®,: therefore it
is possible to interpolate any set of data points using h(r?
and g(r®) as radial basis functions in the expansion (27),
where the polynomial is of degree one. This corresponds
exactly to the result derived by Duchon and Meinguet, but
without some of their limitations (see Example 2 in section
V-A-2). Since this method has been shown to embody nat-
ural spline interpolation in one dimension [30], can then be
considered as an extension of natural splines to multivari-
able interpolation.

We notice thatwhen k = 0 the theorem of Micchelligives,
as a particular case, a well known theorem of Schoenberg
on the positive definite functions [81, 82]. In this case the
radial basis functions expansion (27) becomes

N
Fix) = ,§ cih(lix = xi|. (28)

The unknown coefficients c; can be recovered by impos-
ing the interpolation conditions Fx) = y;(j =1, - - - N), that

. substituted in equation (28) yields the linear system

Hc =y. (29)

where we have defined (y); = y;, (0); = ¢;, (H); = h(l|x; = x;l)).
The theorem of Micchelli ensures that the solution of sys-
tem (29) always exists, since the matrix H can be inverted,
being strictly positive definite.

From equation (29) it turns out that a necessary and suf-
ficient condition to solve the interpolation problem is the
invertibility of the matrix H. Theorem (A.1), however, gives
only a sufficient condition, so that many other functions
could be used as radial basis functions without being strictly
positive definite. Another sufficient condition has been
given by Micchelli, who proved the following theorem [41]:

Theorem A.2 (Micchelli, 1986) Let h be a continuous
function on [0, ) and positive on (0, »). Suppose its first
derivative is completely monotonic but not constant on (0,
). Then for any distinct vectors x4, - - - , Xy € R"

(=DN=" det h(llx; — x|» > 0.

The essence of this theorem is that if the first derivative of
a function is completely monotonic this function can be
used as radial basis function, since the matrix H associated
toitcan be inverted. A new class of functions is then allowed
to be used as radial basis functions. For instance the func-
tion (c* + n% with 0 < @ < 1 and c possibly zero, is not
completely monotonic, but satisfies the conditions of theo-
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rem (A.2), so that the choice (c? + r)* is possible for the
function h in (28).

A list of functions that can be used in practice for data
interpolation by means of the RBF expansion (28) is given
below, and their use is justified by the results of Micchelli:

h() = e  (Gaussian)
h@r) = m a>0
hn=@*+ 0<p<1
h(n =r (linear)

Notice that the linear case corresponds, in one dimension,
to piecewise linear interpolation, that is the simplest case
of spline interpolation. In the case 8 = 1 the radial basis
function corresponds to the “‘Hardy’s multiquadric” [31],
that has been extensively used in surface interpolation with
very good results [32], [33]. Some of the functions listed
above have been used in practice.

Almost all of these functions share the unpleasant prop-
ertyofdependingonaparameter,thatwillgenerallydepend
on the distribution of the data points. However it has been
noticed [32] that the results obtained with Hardy's multi-
quadrics (in 2 dimensions) seem not to depend strongly on
this parameter, and that the surfaces obtained are usually
very smooth. It is interesting to notice that, in spite of the
excellent results, no theoretical basis existed for Hardy’s
multiquadrics before Micchelli’s theorem [41]. On the con-
trary, in the case of several functions, including the Gauss-
ian, a mathematical justification can be given in the context
of regularization theory, as we have seen in section Ill.
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