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An Interactive Approach for CBIR Using a
Network of Radial Basis Functions
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Abstract—An important requirement for constructing effective
content-based image retrieval (CBIR) systems is accurate charac-
terization of visual information. Conventional nonadaptive models,
which are usually adopted for this task in simple CBIR systems,
do not adequately capture all aspects of the characteristics of the
human visual system. An effective way of addressing this problem
is to adopt a “human–computer” interactive approach, where the
users directly teach the system about what they regard as being sig-
nificant image features and their own notions of image similarity.
We propose a machine learning approach for this task, which al-
lows users to directly modify query characteristics by specifying
their attributes in the form of training examples. Specifically, we
apply a radial-basis function (RBF) network for implementing an
adaptive metric which progressively models the notion of image
similarity through continual relevance feedback from users. Ex-
perimental results show that the proposed methods not only out-
perform conventional CBIR systems in terms of both accuracy and
robustness, but also previously proposed interactive systems.

Index Terms—Content-based image retrieval, digital library,
relevance feedback, machine learning, radial basis function net-
work, nonlinear human perception.

I. INTRODUCTION

THERE IS an urgent need for new techniques to access vi-
sual data, following the explosion of digital media. This

need has occurred in such diverse areas of application such as
the entertainment industry, distance education, telemedicine and
geographic information systems. Content-based image retrieval
(CBIR) is regarded as one of the most effective ways of ac-
cessing visual data. It deals with the retrieval of images based on
the visual content itself such as color, shape and image structure
instead of annotated text. Typical examples of retrieval systems
attempting to perform these operations include QBIC [1], Vi-
rage [2], Photobook [3], VisualSEEk [4], and Netra [5].

The central problems regarding the retrieval task are con-
cerned with “interpreting” the contents of the images in a col-
lection and ranking them according to the degree of relevance to
the user query. This ‘interpretation’ of image content involves
extracting content information from the image and using this in-
formation to match the user’s need. Knowing how to extract this
information is not the only difficulty; another is knowing how
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to use it to decide relevance. The decision of relevance charac-
terizing user information need is a complex problem.

Traditional CBIR systems usually adopt “index features” in
index and retrieval. In its general form, an index feature is a
numerical value which characterizes the color, texture or shape
information of individual images. Retrieval based on index fea-
tures is a simple idea but raises key questions. For instance, it
adopts the fundamental principle that the high-level concepts of
the images, and the user information need, can be naturally ex-
pressed through sets of index features. This assumption is an
oversimplification of the problem in hand; most of the seman-
tics in an image or a user request are lost when we replace its
content with a set of features. Furthermore, matching between
each image and the user request is highly problematic in this
very imprecise space of index features.

These difficulties have attracted broad interests in the re-
search and development of retrieval systems and techniques.
To be effective in satisfying user information need, a retrieval
system must view the retrieval problem as “human-centered”
rather than “computer-centered”. In a number of recent papers
[6]–[9], an alternative to the “computer-centered” predicate was
proposed. This new approach is based on a “human–computer”
interface, which enhances the system to perform retrieval tasks
in line with human capabilities. The activities in this approach
consist mainly of analyzing a user’s goals from his/her feedback
information on the desired images, and adjusting the search
strategy accordingly. Under this paradigm, the user manages
the retrieval system via the interface through selections of
information gathered during each interactive session, to address
information needs which are not satisfied by a single retrieved
set of images.

The human–computer interface has been less understood than
other aspects of image retrieval, partly because humans are more
complex than computer systems and their motivations and be-
haviors are more difficult to measure and characterize. Recent
studies have been conducted to simulate human perception of
visual contents via the use of the supervised analysis method.
Themes are derived from similarity functions through the as-
signment of numerical weights to the pre-extracted features. The
weighted Euclidean is typically adopted to characterize the dif-
ferences between images, so that distinct weights have varying
relevance when used in the simulations (see [9]–[11] for ex-
amples). This idea can be further generalized by incorporating
limited adaptivity in the form of a relevance feedback scheme
[6]–[8], [12]–[14]. Here weighting is modified according to the
users’ preference. As seen from the users’ viewpoint, the lim-
ited number of adjustable parameters, and the restriction of the
distance measure to a quadratic form, may not be adequate for
modeling perceptual difference.
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In this paper, we attempt to address some of the aforemen-
tioned problems by proposing a nonlinear approach to simulate
human perception. This allows for effectively bridging the
gap between the low-level features used in retrieval and the
high-level semantics in human perception. We replace the
traditional relevance feedback with a specialized radial-basis
function (RBF) network [15], [16] for learning the users’ no-
tion of similarity between images. In each interactive retrieval
session, the user is asked to separate, from the set of retrieved
images, those which are more similar to the query image from
those which are less similar. The feature vectors extracted from
these classified images are then used as training examples to
determine the centers and widths of the different RBF’s in the
network. This concept is adaptively redefined in accordance
with different users’ preferences and different types of images,
instead of relying on any preconceived notion of similarity
through the enforcement of a fixed metric. Compared to the
conventional quadratic measure and the limited adaptivity
allowed by its weighted form, the current approach offers an
expanded set of adjustable parameters, in the form of the RBF
centers and widths. This allows a more accurate modeling of
the notion of similarity from the users’ viewpoint.

We then describe two applications of the RBF method and
the experimental results. The first domain application is tex-
ture retrieval. In this domain, content-based image retrieval is
very useful for queries involving texture patterns that represent
a region of interest in a large collection of satellite air photos,
as demonstrated in [27], [33], [34]. In the second domain, we
propose an interactive search engine, iARM: Interactive-based
Analysis and Retrieval of Multimedia system to support image
searching tools in large image collections over the Internet. This
is the ultimate goal in this context since multimedia over the in-
ternet is in very high demand. In order to implement a real-time
learning application, we require a user-friendly system in the
following senses: high accuracy, sufficiently fast (a few user
feedbacks), and the capability of learning from a small training
size (typically less than 20 per round of interaction). A new ar-
chitecture of iARM takes into account all of these important
features, using the proposed nonlinear analysis, with both pos-
itive and negative learning. As reported in Section VI, our pro-
posed system compared favorably with those of other recently
proposed interactive systems.

This paper is organized as follows. In Section II, we introduce
a nonlinear model to simulate human perception, in comparison
with the previous linear approaches. In Section III, we describe
the proposed RBF network, and its discriminant function. In
Section IV, the corresponding supervised learning strategies are
proposed to enable the effectiveness in similarity modeling of
the network. A detailed comparison with the performance of the
nonadaptive method and other interactive systems is presented
in Sections V and Section VI. Conclusions are drawn in Sec-
tion VII.

II. GENERAL FRAMEWORK

In this section, we discuss general concepts of the proposed
method, pointing out the differences between the assumptions
behind the current work and the relevant models proposed in

the literature. We also describe the motivations in designing the
proposed system architecture.

A. Human Perceptual Simulation

The most important part in the interactive process is to an-
alyze the role of the users in perceiving image similarity ac-
cording to their preferred image selections. To perform the anal-
ysis, we propose a nonlinear model to establish the link between
human perception and distance calculation. In other words, our
objective is to perform a nonlinear transformation of the dis-
tance.

Many attempts to perform similarity-analyzing have focused
on linear models. Thus, a brief introduction to linear-based ap-
proaches and their limitations is in order. The approaches can be
organized into two categories: 1) an approach based on a query
reformulation model ( [7], [12], [14]); and 2) an approach based
on an adaptive metric model ([10], [11], [17], [19]). In the first
category, the models implement relevance feedback for learning
query representation with the goal of conducting term weighting
to modify the query. In the second category, the models imple-
ment relevance feedback for the learning similarity function.

In general, the learning user perception methods implements
a mapping which is given by

(1)

where is the input vector corre-
sponding to an image in the database. The main procedure is
to obtain the mapping function from a small set of training
images, , where the two-class
label can be in binary or nonbinary form.

Among the early attempts in the interactive CBIR sys-
tems, Multimedia Analysis and Retrieval System, Version 1
(MARS-1) [8], [12] implemented the mapping in the form of
the query reformulation model

(2)

where

(3)

The query model is obtained by adjusting the positive
and negative weight terms of the original query . Although
simple, this model has been widely used for adaptive informa-
tion retrieval (IR) [28], [30] and many image retrieval systems
[7], [14]. A chief disadvantage of this integration model is the
requirement of an indexing structure to follow term-weighting
model used in text retrievals (for effectiveness). More specifi-
cally, the model works on the assumption that the query index
terms are sparse and are usually binary vector representation.
However, in content-based image retrieval, vectors are mostly
real vectors.

In the later state, weight distance is a common strategy for ob-
taining the mapping function. This is the case in [9], [10], [13],
[19], and in the MARS-2 (Multimedia Analysis and Retrieval
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System, Version 2) system [11]. In its general form, the simi-
larity function may be described as

(4)

(5)

where denotes a one-dimensional (1-D) transfer function
of distance , and is a block-diagonal matrix
with the following structure:

(6)

The weight parameters are called relevance
weights applied to the distance with the restriction

. These can be estimated by the standard deviation
criterion as in [11] or a probability method [9].

Based on (4), Rui et al. [17] has derived an optimum solution
for the similarity function and the query model. This method is
referred to as an optimal learning relevance feedback (OPT-RF).
Using Lagrange multipliers, an optimum solution for a query
model is the weighted average of the training samples:

(7)

where are the similarity scores specified
by user, and denotes an matrix .
The optimum solution for the weight matrix is obtained by

(8)

where denotes the weighted covariance matrix

(9)

OPT-RF intelligently switches between a full matrix and
a diagonal matrix, to overcome the possible singularity issue
when the number of training samples is smaller than the
dimensionality of the feature space However, this situation
does not usually happen in image retrieval—particularly when
images are modeled by multiple descriptors and only a small set
of training samples (from user input) is preferred.

OPT-RF requires the user to specify relative weight param-
eters on each training image for its effectiveness. This is not
an easy task for the user, and practically, we cannot afford per-
formance degradation by human errors. In addition, the query
model (7) only takes into account the positive samples (i.e.,

is set for a negative sample). This yields only a local
optimum for the small set of samples available at each feedback
cycle.

In this paper, we refer to the methods outlined above as
a linear-based learning that restricts the mapping function
in quadratic form and cannot cope with a complex decision
boundary. Although this learning method provides mathe-
matical framework for evaluating image similarity, it is not

competent for the nonlinear nature of human perception. For
instance, the 1-D distance mapping in (4) takes the
following form:

(10)

It has no nonlinear capability such as

(11)

where is fixed to a numerical constant. That is, the linear
mapping shows that the degree of similarity between two images
is linearly proportional to the magnitude of their distances. In
comparison, the assumption for our nonlinear approach is that
the same portions of the distances do no always give the same
degrees of similarity when judged by humans [20].

The visual section of the human brain uses a nonlinear pro-
cessing system for tasks such as pattern recognition and classi-
fication [15]. We therefore propose using a nonlinear criterion
in performing simulation task. The current work is mainly dif-
ferent from MARS-2, and OPT-RF in two aspects. First, we pro-
pose a nonlinear kernel for the evaluation of image similarity.
Second, we take both positive and negative feedbacks for ef-
fectiveness of learning capability. Compared to MARS-1 [cf.
(3)], our query model can be generally applied to the feature
space without term-weighting transformation. By embedding
these two properties, the proposed retrieval system shows a high
performance in learning with small user feedback samples, and
convergence occurs quickly (results shown in Section V).

B. Basic Model

To simulate human perception, we propose a radial basis
function (RBF) network [15], [16] as a nonlinear model for
proximity evaluation between images. The nonlinear model is
constructed by an input–output mapping function, , that
uses feature values of input image to evaluate the degree of
similarity (according to a given query) by a combination of
activation functions associated as a nonlinear transformation.

The estimation of the input–output mapping function, ,
is performed on the basis of a method called regularization [22].
In the context of a mapping problem, the idea of regularization
is based on the a priori assumption about the form of the solu-
tion (i.e., the input–output mapping function ). In its most
common form, the input–output mapping function is smooth, in
the sense that similar inputs correspond to similar outputs. In
particular, the solution function that satisfies this regularization
problem is given by the expansion of the radial basis function
[23]. Based on the regularization method, we have utilized a 1-D
Gaussian shaped radial basis function to form a basic model:

(12)

where denotes the center of the function and denotes its
width. The activity of function is to perform a Gaussian
transformation of the distance , which describes
the degree of similarity between the input and center of the
function.
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To estimate the input–output mapping function the
Gaussian RBF is expanded through both its center and width,
yielding different RBF’s which then form as an RBF network.
Its expansion is implemented via interactive learning where
the expanded RBF’s can optimize weighting to capture human
perception similarity as discussed in the following section.

III. RBF METHOD

RBF networks possess an excellent nonlinear approximation
capability [15], [16]. We utilize this property to design a system
of locally tuned processing units to approximate the target non-
linear function . In the general solution, an approxima-
tion function obtained by the RBF networks takes the following
form:

(13)

(14)

where denotes the center of the function
and denotes its width. There are Gaussian unites in this
network. Their sums in the form of a linear superposition de-
fine the approximating function . With the regularization
structure, the RBF network takes a one-to-one correspondence
between the training input data and the func-
tion .

A direct application of this network structure to (online
learning) image retrieval is, however, considered prohibitively
expensive to implement in computational terms for large

. It is also sufficient to reduce the network structure into
a single unit, since image relevance identification requires
only a two-class separation (for a given query). In the current
work, with radial-basis function in mind, we associate a 1-D
Gaussian-shaped RBF with each component of the feature
vector as follows:

(15)

(16)

where is the adjustable query posi-
tion or the center of the RBF function, are
the tuning parameters in the form of RBF widths, and

is the feature vector associated with an
image in the database. Each RBF unit implements a Gaussian
transformation which constructs a local approximation to a non-
linear input–output mapping. The magnitude of represents
the similarity between the input vector and the query , where
the highest similarity is attained when . Based on our sim-
ulation study, the new single unit RBF network is effective in
learning and quickly converges for one-class-relevance classifi-
cation using small volume of training sets.

In this network structure, each RBF function is characterized
by two adjustable parameters: the tuning parameters and the ad-
justable centers:

(17)

to form a set of basis functions:

(18)

These parameters are estimated and updated via learning al-
gorithms. The first assumption behind our learning algorithms
is that the user’s judgment of image similarity can be captured
by a small number of pictorial features. This is an unequal bias
toward the evaluation of image similarity. That is, given a se-
mantic context, some pictorial features exhibit greater impor-
tance or “relevance” than others in the proximity evaluation.
This is the same assumption which underlies image matching
algorithms in [9], [24]. However, in this case, the weighting
process is controlled by an expanded set of tuning parameters,

, which reflects the relevance of individual fea-
tures. If a feature is highly relevant, the value of should be
small to allow higher sensitivity to any change of the distance

. In contrast, a large value of is assigned to
the nonrelevant features so that the corresponding vector com-
ponent can be disregarded when determining its similarity, since
the magnitude of is approximately equal to unity regard-
less of the distance . The choice of according to this criterion
will be discussed in Section IV-E.

Our second assumption is about the relationship between the
clustering of desired images in the -dimensional feature space
and the initial location of the query. For a given query image, its
associated feature vector may not be in a position close enough
to those stored vectors associated with the relevant images. This
initial query may form as a decision region that contains only a
local cluster of the desired images in the database. Our goal here
is to associate this local cluster as prior information in order
to describe a larger cluster of relevant images in the database.
The description of this larger cluster of relevant images is built
interactively with assistance from the user. This process is im-
plemented by the RBF network through the adjustment of RBF
centers, , as will be described in the following
section.

IV. LEARNING STRATEGIES

We propose learning algorithms which enable the RBF
network to progressively model the notion of image similarity
for effective searching. The image matching process is initiated
when the user supplies a query image and the system retrieves
the images in the databases which are closest to the query
image. From these images the user selects those as relevant
which are most similar to the current query image, while the
rest are regarded as nonrelevant. The feature vectors extracted
from these images are incorporated as training data for the RBF
network to modify the centers and widths. The re-estimated
RBF model is then used to evaluate the perceptual similarity in
a new search, and the above process is repeated until the user is
satisfied with the retrieval results.
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Fig. 1. Query modification. (a) Relevance judgment based on human vision. (b) Relevance clustering in the feature space. In (a), given a set of image collection,
the human user may easily distinguish the relevant images from the high-level semantics according to his/her own understanding and expression of information
need. In contrast, the low-level feature vector of the query in (b) is likely to be located in a different position in the feature space and may not be a representative
sample of the relevant class.

A. Centers Selection

Given a set of images, the human user may easily distin-
guish the relevant and nonrelevant images according to their
own information needs [Fig. 1(a)]. In contrast, a computer inter-
prets relevance as the distance between low-level image features
[Fig. 1(b)] which could be very different from that shown in
Fig. 1(a). The low-level vector of the query is likely to be located
in a different position in the feature space and may not be a rep-
resentative sample of the relevant class. To improve computer
retrieval performance we modify the low-level query vector via
the proposed learning algorithm. This aims at optimizing the
current search. The expected effect is that the new query will
move toward the relevant items (corresponding to the desired
images) and away from the nonrelevant ones, whereas the user’s
information need remains the same throughout the query mod-
ifying process. In the following discussion, we first describe
the basic optimization procedure, learning vector quantization
(LVQ) [15], and then we propose a modified LVQ to obtain a
proper choice for the RBF center associated with the new query
vector.

B. Learning Vector Quantization

LVQ [15] is a supervised learning technique used to optimize
vector structures in a code book for the purpose of data com-
pression [26]. The initial vectors (in a codebook) referred to as
Voronoi vectors are modified in such a way that all points par-
titioned in the same Voronoi cells have the minimum (overall)
encoding distortion. The technique uses the class information
provided in a training set to move the Voronoi vectors slightly,
so as to improve the accuracy of classification. Let the input
vector be one of the samples in the training set. If the class
labels of the input vector and a Voronoi vector agree, the
Voronoi vector is moved in the direction of the input vector .
On the other hand, if the class labels of the input vector and
the Voronoi vector disagree, the Voronoi vector is moved
away from the input vector .

The modification of the Voroinoi vectors is usually carried
out by an iterative process, where is
the step index. Let denote the set of Voronoi vectors.
Also, let denote the set of training samples. First, for
each input vector , the index of the best-matching
Voroinoi vector is identified by the condition:

(19)

Let denote the class associated with the Voronoi vector
, and denote the class label of the input vector . The

Voroinoi vector is adjusted as follows:

If , then (reinforced learning)

(20)

If, on the other hand, , then (anti-reinforced
learning)

(21)

Note that, for all , those Voronoi
vectors remain unchanged. Here, the learning constant de-
creases monotonically with the number of iterations and

. After several passes through the training data, the
Voronoi vectors typically converge, and the training process
completes.

Based on the reinforced learning rule, it is clearly shown that
the above process tries to move the Voronoi vector to some
points in the input space that are close to those samples which
have the same class labels. At the same time the anti-reinforced
learning rule moves away from those samples which are in
different classes. This process results in a new set of the Voronoi
vectors that minimizes (overall) encoding distortion.

C. A Modified LVQ

In an interactive retrieval session, it is desirable to reduce the
processing time to a minimum without affecting the overall per-
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formance. So, we can integrate the LVQ method for query mod-
ification, in which we can avoid the implementation of the it-
erative procedure. This minimizes the time complexity of the
process , where is the total number of iterations.

In image retrieval, we can cluster the database feature space
into a number of distinct Voronoi cells with associated Voronoi
vectors. Furthermore, the Voronoi vectors may be individually
initialized by query vectors. Each Voronoi cell contains a set of
feature vectors associated with those retrieved images that are
the closest to the corresponding query, according to the nearest-
neighbor rule based on the Euclidean metric. Our goal, here, is
to optimize these cells by employing the LVQ algorithm. Since
only one query is submitted at a particular time, only two parti-
tions are necessary in the space, with one representing the rel-
evant image set. The LVQ algorithm is then adopted to modify
this cell from its corresponding training data.

Let the Voronoi vector denote the submitted query at
a retrieval session . Recall that the information input from the
user at the interactive cycle is formed as the training set that
contains training vectors belonging to two separate classes:

(22)

(23)

where is a feature vector and is a class
label. The set of vectors in (22) represents the set of points
closest to the submitted query according to the distance
calculation in the previous search operation. Consequently, each
data point can be regarded as the vector that is “closest” to the
Voronoi vector . Therefore, following the LVQ algorithm,
we see that all points in this training set are used to modify only
the best-matching Voronoi vector, that is, .

Model 1: According to our previous discussion, after the
training process is converted the modified Voronoi vector will
lie close to the data points that are in the same class and away
from those points that are in a different class. Combing these
ideas, we now obtain a modified LVQ algorithm, to adjust the
query vector , by approximating the modified Voronoi
vector upon convergence:

(24)

(25)

(26)

where is the previous query,
is the th feature vector of

relevant images, is the th
feature vector of nonrelevant images; and are suitable
positive constants; and are, respectively, the number
of relevant and nonrelevant images in the training set. The
application of the query modification in (24) is to allow the
new query, , to move toward the new region populated

Fig. 2. Illustration of query modification.

by the relevant images as well as to move away from those
regions populated by the nonrelevant images.

Equation (24) can be illustrated in Fig. 2. Let the centers of
the relevant image set and nonrelevant image set in the training
data, be and , respectively. Also, let . As shown
in Fig. 2, the effect of the second term on the right hand side
of (24) is to allow the new query to move toward . If in

, the third term is negative; so, the current query
will move to the right, i.e., the position of will shift away
from to . On the other hand, when , the
third term is positive, hence will move to the left or ;
i.e., away from .

In practice, one finds that the relevant image set is more im-
portant in determining the modified query than the nonrelevant
images. This is because the set of relevant images is usually
tightly clustered due to the similarities between its member im-
ages, and thus satisfies the modified query with little ambiguity.
On the other hand, the set of nonrelevant images is much more
heterogeneous, therefore, the centroid of this nonrelevant image
set may be located almost anywhere in the feature space. As a
result, we have chosen in (24) to allow a more definite
movement toward the set of relevant images, while permitting
slight movement away from the nonrelevant regions.

Model 2: In order to provide a simpler procedure and a di-
rect movement of the new query toward the relevant set, (24) is
reduced to

(27)

The first and the second terms in the right hand side of (24) are
replaced by (centroid of the relevant vectors). Since the rel-
evant image group indicates the user’s preference, the presen-
tation of for the new query will give a reasonable represen-
tation of the desired image. In particular, the mean value

is a statistical measure providing a good rep-
resentation of the th feature component since this is the value
which minimizes the average distance

. Further, the exclusion of the parameter from (24) per-
mits greater flexibility, since only one procedural parameter is
necessary for the final fine tuning of a new query.

D. Effects of Query Adaptation Process (by Positive and
Negative Learning)

Different users may provide different sets of fed-back images.
Thus, a modified query can be characterized by two types of
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topic. One is specified by a common interest among users (i.e.,
a mean value of the relevant samples), and another by a specific
topic that depends on the subjectivity of individual perception.

In practice, particularly with a general image collection, re-
trieval results obtained after the first round usually contain few
relevant images, thus users with similar interests rate images
similarly. This means that a modified query (obtained from this
first round images, ), is built based on
the common interests, as most users would make the same dis-
tinction. However, after the next round of retrieval, it is most
likely that retrieval system will bring up images that are close to
the specific topic of the user interests. Formally, let
denotes the user judgment score for retrieved image

. In most situations, we see that a new retrieval image
set should be better than the old one, such that

in particular for negative samples:

In this round, new positive and negative samples are
tightly-clustered, and discrimination of these images can only
be made by user subjectivity. By application of the anti-rein-
forced learning in (24) and (27), we can decouple centroids of
these positive and negative samples. In other words, positive
feedback learning tells us about the means values of the user’s
topic of interest, while negative samples specify the user sub-
jectivity for that particular group of interest.

E. Selection of RBF Width

As we have previously discussed, the nonlinear transforma-
tion associated with the output unit(s) of the Gaussian-shaped
RBF are adjusted in accordance with different users’ preference
and different types of images. Through the proximity evalua-
tion, differential biases are assigned to each feature, while fea-
tures with higher relevance degrees are emphasized, and those
with lower degrees are de-emphasized.

Consider that for a particular query location
, the training samples can be described by

the set of feature vectors as in (22). To estimate the
relevance of individual features, only the vectors associated
with the set of relevant images in this training set are used to
form an feature matrix :

(28)

where corresponds to one
of the images marked as relevant; is the th component of
the feature vector is the total number of features; and

is the number of relevant images. According to our previous
discussion, the tuning parameters should reflect the relevance
of individual features. It was proposed, in [9], [24], that given
a particular numerical value for a component of the query
vector, the length of the interval which completely encloses

TABLE I
AVERAGE RETRIEVAL RATE (%) FOR THE 39 QUERY IMAGES IN MIT

DATABASE, USING GABOR TEXTURE FEATURE REPRESENTATION

and a pre-determined number of the set of values in the
relevant set which falls into its vicinity, is a good indication of
the relevancy of the feature. In other words, the relevancy of
the th feature is related to the density of around , which
is inversely proportional to the length of the interval. A large
density usually indicates high relevancy for a particular feature,
while a low density implies that the corresponding feature is not
critical to the similarity characterization. Setting , the set
of tuning parameters is thus estimated as follows:

(29)

The factor guarantees a reasonably large output for the
Gaussian RBF unit, which indicates the degree of similarity,
e.g., .

We also consider a second criterion for estimating the tuning
parameters. This is obtained by nonlinear weighting the sample
variance in the relevant set as follows:

(30)

(31)

where is the standard deviation of the members
, which is inversely proportional to

their density (Gaussian distribution). The parameter can
be chosen to maximize or minimize the influence of on

. For example, when is large, a change in will be
exponentially reflected in . The exponential relationship is
more sensitive to changes in relevancy and gives rise to better
performance improvement, as we shall see in the experiment.

As a result, (29)–(30) provide a small value of if the th
feature is highly relevant (i.e., the sample variance in the rele-
vant set , is small). This allows higher sensitivity to
any change of the distance . In contrast, a high
value of is assigned to the nonrelevant features so that the
corresponding vector component can be disregarded when de-
termining the similarity.

V. EXPERIMENTAL RESULTS PART 1—TEXTURE RETRIEVAL

In the experiments, we study the retrieval performance of the
nonlinear RBF approach to two image retrieval application do-
mains. This section describes the application on texture pattern
retrieval, and Section VI describes the application on a large
collection of photographs. When evaluating image-retrieval al-
gorithms, there are several factors that determine the choice of
a particular algorithm for an application. Central concerns are
retrieval accuracy and CPU time. The retrieval accuracy is eval-
uated by a specific ground truth on a given database. For the
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adaptive retrieval algorithms, however, there are additional fac-
tors, such as the size of the training set, and the convergence
speed. For each domain application, we will evaluate the pro-
posed RBF algorithm, and compare it to other interactive sys-
tems, using these factors.

The importance of texture analysis and retrieval has been well
demonstrated by the works of Manjunath [27], [33], [34], on the
large collection of satellite images and air photos. In this con-
text, content-based retrieval is very useful for such queries as,
“Retrieve all LANDSAT images of Santa Barbara which have
less than 20% cloud cover,” or “Find a vegetation patch that
looks like this region.” We regard this context as important, and
would like to demonstrate our proposed approach to this appli-
cation.

In the following we compare the RBF’s retrieval performance
with MARS-1, which was developed early in the texture re-
trieval domain [8], [12]. The retrieval strategy in MARS-1 has
also been extended and used in other works, such as [6], [14].
The comparison methods are summarized as follows:

1) The Radial basis function (RBF) methods: the RBF1
method uses model 1 determining the RBF center [(24)],
and (30) for the RBF width. The RBF2 method uses
model 2 for determining the RBF center [(27)] and (29)
for learning RBF width.

2) The relevance feedback method (RFM) is described in the
MARS-1 system [8], [12], is employed by the PicToSeek
system [6], and is also used in [7], [13], [14]. In each of
these systems, the RFM is implemented differently. We
briefly describe these systems in this section.

3) Method 3: simple CBIR using a noninteractive retrieval
method, which corresponds to the first iteration of in-
teractive search. This method employs different types of
similarity functions, including weighted distance [as in
(32)], cosine distance, and the histogram intersection, cor-
responding to the first iteration found in RBF, MARS, and
PicToSeek.

MARS-1 and PicToSeek systems implement relevance
feedback based on the query modification model [cf. (3)].
Thus, these systems require an indexing structure as in a
term-weighting model [28]. MARS-1 used an integrating ver-
sion of the well-known TF IDF factor for the conversion of
image features to a weighted vector model, which can be ap-
plied to different types of image feature structures. In contrast,
the weighting technique of PicToSeek is the direct application
of the TF IDF factor, which is only applied for image features
that have been treated in histogram form (i.e., sparse vector [6]).
In the following experiment, this weighting technique applies
only to one of the two feature types. The comparison results in
the following section are, therefore, made only with MARS-1,
while Section V-D reports a comparison with PicToSeek.

A. Databases and Ground Truth Classes

Performance evaluations of retrieval in the experiments
were carried out using two standard texture databases: 1) the

MIT texture collections and 2) the Bordatz database [27].
In the first database, the original test images were obtained
from MIT Media Laboratories.1 There were 39 texture images
from different classes, each 512 512 pixels in size. Each of
these images was divided into 16 nonoverlapping subimages,
128 128 in size, creating a database of 624 texture images.
In the second database, texture images and a feature set were
created by Ma [27] at UCSB2. The Brodatz database contains
1856 patterns obtained from 116 different texture classes. Each
class contains 16 similar patterns.

One advantage of using these databases is the corresponding
ground truth data, which is known as the set of visually sim-
ilar images for a given query image. Although, in general, this
data is hard to obtain and is very subjective to a particular user,
the method of dividing an image into subimages to obtain this
ground truth data is a popular method used in other situations.
This includes the work found in [9], [12], [27], [33]. It is based
on the fact that subimages in the same classes were obtained
from one large image and classified according to visual simi-
larity as perceived by the user. This was established through a
process of visual inspection and cross-verification by different
groups of people apart from the original users.

B. Texture Feature Representations

Each texture image in the two databases is described by a
48-dimensional vector which characterizes the coefficients after
applying Gabor wavelet transformation to the image [27]. The
set of basis functions consists of Gabor wavelets spanning four
scales and six orientations . The mean and
standard deviation of the transform coefficients form the feature
vector where

and are the mean and the standard deviation of the
transform coefficients at the th scales and th orientations,
respectively.

Since the dynamic range of each feature component is dif-
ferent, a suitable similarity measure for this feature is computed
by the following distance measure [27]:

(32)

where

denotes the distance between the two patterns in the
feature space. In addition, and are the standard
deviations of the respective features, over all the images in the
database. We employ (32) as a base line for similarity measure
of the noninteractive approach, to perform a retrieval task based
on the Gabor wavelet feature representation.

1ftp://whilechapel.media.mit.edu/pub/VisTex/, 2000.
2University of Califomia at Santa Barbara, http://vi-

valdi.ece.ucsb.edu/users/weilcodes.html, 2000. We thank Dr. W. Y. Ma for
providing the Brodatz database and the software of the Gabor wavelet features.
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Fig. 3. Pattern retrieval results before and after learning similarity, using MIT database. Results show a comparison between RBF1 and MARS-1 using Gabor
wavelet features: (a), (b), (e), and (f) show retrieval results for the query ‘Bark.0003’; (c), (d), (g), and (h) show retrieval results for the query ‘Water.0000’. In each
case, the images are ordered according to decreasing similarity in the 16 best matches from left to right and top to bottom. (a) RBF1(t = 0). (b) RBF1(t = 2).
(c) RBF1(t = 0). (d) RBF1(t = 2). (e) MARS-1(t = 0). (f) MARS-1(t = 2). (g) MARS-1(t = 0). (h) MARS-1(t = 2).

C. Summary of Comparisons

In the simulation study, a total of 39 images, one from each
class, were selected as the query images from the MIT database.
For each query, the top 16 images were retrieved to provide
necessary relevance feedback. Using this method, in the ideal
case all the top 16 retrievals are from the same classes. The
performance was measured in terms of average retrieval rate
(AVR) of the 39 query images, which was defined by [27]:

%

Similarly, a total of 116 images, one from each class, were se-
lected as the query images from Brodatz database. The perfor-
mance was measured in terms of average retrieval rate of the
116 query images.

Table I summarizes average retrieval rate of the 39 query im-
ages, using the MIT database, where denotes the number of it-
erations. The following observations are made from the results.

First, for all methods, the performance with the interactive
learning method after three iterations was substan-
tially better than the noninteractive cases . The improve-
ments are quite striking. Second, after three rounds of interac-
tive learning, RBF1 method gave the best performance: on av-
erage 93.59% of the correct images are in the top 16 retrieved
images (i.e., more than 14 of the 16 correct images are present).
This is closely followed by RBF2 at 92.79% of correct retrieval.
These results show that the RBF methods perform substantially
better than MARS-1, which provides a retrieval performance
of 80.13%. It is also observed that the RBF methods provide
much better results after one iteration (88.62%) than MARS-1
after three iterations (80.13%). Third, for all the three interac-
tive methods, convergence is achieved within a few iterations.

Fig. 3 shows two examples of retrieval sessions performed
by RBF1 in comparison with MARS-1. They clearly illustrate
the superiority of the proposed method. We observed that RBF1
considerably enhanced retrieval performance, both visually and

TABLE II
AVERAGE RETRIEVAL RATE (%) OBTAINED BY RETRIEVING 116

QUERY IMAGES IN THE BRODATZ DATABASE, USING GABOR

WAVELET REPRESENTATION

Fig. 4. Top 16 retrievals obtained by retrieving texture “D625” from Brodatz
database, using RBF1; (a) results before learning and (b) results after learning.

statistically. In addition, given the small number of training sam-
ples (e.g., 16 retrieved images used in training), the RBF ap-
proach can effectively learn and capture user input on image
similarity.

Table II summarizes AVR (%) obtained by retrieving 116
query images, using Brodatz database. It can be seen that all
interactive methods demonstrate significant performance im-
provement across the tasks. In the final results after learning,
RBF1 gave the best performance at 90.5% of correct retrieval,
followed by RBF2 (87.6%), with MARS-1 (78.5%) a distant
third. We observed that characteristics of retrieval results ob-
tained from the Brodatz database are very similar to those ob-
tained from the MIT database. This implies that RBF1 consis-
tently displays superior performance over MARS-1.

Fig. 4 illustrates retrieval examples with and without learning
similarity. It shows some of the difficult patterns to analyze,
which clearly illustrate the superiority of the RBF method.
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TABLE III
AVERAGE RETRIEVAL RATE (%) OBTAINED BY RETRIEVING 39 QUERY IMAGES

IN THE MIT DATABASE, USING MHI FEATURES REPRESENTATION

Further, it was observed that retrieval performance of the in-
teractive method is sensitive to the choice of the associated pa-
rameters used in the learning algorithms. With proper selection
of parameters, interactive methods can achieve the best retrieval
performance. Those parameters that gave the optimum retrieval
results are listed in the last column of Tables I and II. The pro-
cedural parameters of MARS-1 system in (3) were de-
termined according to the standard formula studied by Ricchio
[30]. The constant is fixed to 1 and the constants are varied
to obtain the best retrieval results.

D. Using Compressed Domain Features for Retrieval

In this experiment, we apply “relevance feedback” learning
to a compressed domain image retrieval system, using images
compressed by wavelet transform (WT) and vector quantiza-
tion (VQ) coders [32]. Specifically, image indexing and retrieval
are directly performed on the compressed data. This is advan-
tageous in terms of computational efficiency. We use the mul-
tiresolution-histogram indexing (MHI) proposed in [18] to de-
scribe the texture images. A two-level wavelet decomposition
scheme with the 15-coefficient biorthogonal filter is adopted for
the analysis of the image. The five subbands containing detail
coefficients are then vector quantized by a multiresolution code-
book, at a total bit rate of 1 bit/pixel. The coding labels are used
to construct a feature vector by computing the labels histograms.
MHI features make use of the fact that the usage of codewords
in the subcodebook reflects the content of the input subimage
that has been encoded.

An important reason for including the MHI features in
the experiment is that this representation scheme is compa-
rable to the term-weighting model of the information retrieval
(IR) systems [28]. An image is decomposed into a set of
VQ codewords, and the MHI vectors reflect the frequencies
with which the codewords appear. Similarly, the basis for the
term-weighting model is the representation of a document as a
set of terms. This numeric vector is based on the commonsense
understanding that the more often a term (or codeword) is men-
tioned, the more likely it is to be central to the subject matter.
This term-weighting model is favored by the RFM method,
particularly the query refinement formula (3), in which it has
been effectively employed [14], [28], [29]. As a result, we can
study how well the RFM method works with the term vector
model compared to the proposed approach.

We now present experimental results with interactive ap-
proaches on MHI compressed domain features, using the MIT
database. The experiments compare retrieval accuracy between
RBF1, RBF2, MARS-1, and PicToSeek, for all 39 queries used
in the previous experiments reported in Section V-C.

Results are shown in Table III, which presents the average
retrieval rate as a function of the iteration. The following obser-
vations have been made:

1) With the application of interactive learning, each method
shows considerable improvement of retrieval, indicating
the effectiveness of learning strategies. This also implies
that MHI features provide a very good representation in
retrieving the compressed images. A combination of MHI
features and interactive learning can achieve an average
retrieval rate of more than 92% on this database.

2) RBF1 gave the best overall performance at 92.5% correct
retrieval, which is closely followed by RBF2 at 90%.
MARS-1 performed slightly better (85.4%) than Pic-
ToSeek (84.5%). The initial results of all methods were
quite similar: the cosine distance performed marginally
better (63.9%) than the normalized distance of (32)
(63.5%), and the histogram intersection (62.2%).

3) Comparison of retrieval accuracy of the two feature rep-
resentations, MHI and Gabor wavelet, as reported in the
previous session, indicates that the MARS-1 worked well
with MHI features (85.4%), and more efficiently than with
Gabor wavelet features (80.1%). This is because MHI fea-
ture structure is closer to the term-weighting model, con-
sequently, the query reformulation strategy (3) is more
effective.3 However, this also suggests that the learning
strategy implemented by MARS-1 is not very robust, due
to the requirements of this underlying feature structure.

VI. EXPERIMENTAL RESULTS PART 2—APPLICATION TO A

LARGE IMAGE COLLECTION

To address the challenging research issues involved in CBIR,
an Interactive based Analysis and Retrieval of Multimedia
(iARM) system has been conducted at Ryerson University
[18], [21]. The interactive retrieval architecture proposed in this
paper has been implemented on the Java 2 Enterprise Edition
(J2EE) platform, which is available from http://www.ee.ry-
erson.ca/~pmuneesa.

We have used images from Corel Gallery [25] in these eval-
uations. Corel Gallery has a database which contains 40 000
real-life photographs, in two groups, each of which has either
384 256 or 256 384 pixels in size. It is organized into 400
categories by Corel professionals. These categories were used as
a ground truth in our evaluation4. For indexing purposes, each
image is characterized by visual descriptors using multiple types
of features, , where the represen-
tations are color histograms and color moments for color de-
scriptors; GW transform for the texture descriptors [27]; and
Fourier descriptor for the shape descriptors [35]. The algorithms
for obtaining these descriptors are summarized in Table IV. Note
that the resulting feature database (which is a matrix of size;

3The application of query reformulation strategy to the term-weighting model
has been shown to have information theoretic motivation [14], [28], [29].

4The ground truth classes are subjected to the Corel professionals, and ob-
tained with a high degree of semantic concepts. In addition, one may find some
overlapping between the image classes.
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TABLE IV
CONTENT DESCRIPTIONS USED FOR IMAGE INDEXING OF THE COREL DATABASE

40 000 by 114) was scaled by feature means and standard devia-
tions to remove unequal dynamic range of each feature variable.

In the following simulation studies, we obtained the per-
formance comparisons between the nonlinear RBF method,
MARS-2 [11] and OPT-RF [17] systems (described in Sec-
tion II). MARS-2 is relatively newer than MARS-1, and has
been intensively tested on the large Corel image collection
in [11]. This has become a popular benchmark for image
retrieval. In [17], OPT-RF has been proven to be the most
optimized framework currently used in interactive CBIR sys-
tems. The major differences between these two systems are
that the learning algorithm in OPT-RF has both an optimum
query and a switching option of the weight matrix [cf. (8)]
between a full matrix and a diagonal matrix. Particularly in this
practical application, as we have very high feature dimensions

, we implement OPT-RF with in a diagonal
matrix form. In the RBF case, relevance feedback learning is
processed based on the Gaussian kernel, having a nonlinear de-
cision criterion. In addition, RBF obtains automatic weighting
to capture user perception, whereas OPT-RF requires users to
specify weighting in the form of a slider bar [cf. Figs. 6(d) and
7(d)]. Moreover, RBF method uses both positive and negative
samples to track the optimum query model. Neither OPT-RF
nor MARS-2 support these features.

The average precision rates5 (APR) and CPU time required
are summarized in Table V. These are obtained using RBF
model [(27) and (30)], MARS-2 system [(4)–(6)], and OPT-RF
system [(7)–(9)]. Notice that all methods employ norm-1 metric
distance to obtain initial retrieval results at . We have
selected 35 queries each from different categories, which are
shown in Fig. 5. The performances were measured from the top
16 retrievals, and averaged over all 35 queries.

Evidently, the nonlinear RBF method exhibits significant
retrieval effectiveness, while offering more flexibility than

5Precision is defined by number of relevant images over the top sixteen re-
trievals.

TABLE V
AVERAGE PRECISION RATE (%) OBTAINED BY RETRIEVING 35 QUERIES

SELECTED FROM DIFFERENT CATEGORIES, USING THE COREL DATABASE.
AVERAGE CPU TIME (SECOND) OBTAINED BY RETRIEVING A SINGLE QUERY,
NOT INCLUDING THE TIME FOR DISPLAY THE RETRIEVED IMAGES, USING A 1.8

GHz PENTIUM IV PROCESSOR AND A MATLAB IMPLEMENTATION

Fig. 5. The 35 test query images chosen from different categories from the
Corel database.

MARS-2 and OPT-RF. With this large, heterogeneous image
collection, an initial result obtained by the simple CBIR system
has less than 50% precision. With the application of the RBF
interactive learning, we can improve the performance to more
than 90% precision. Due to the limitation in the degrees of
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Fig. 6. Top 16 retrieved images obtained by retrieving the “Yacht” query, from the Corel Database, using (a) simple CBIR, (b) RBF, (c) MARS-2, and (d) OPT-RF.

adaptivity, MARS-2 provides the lowest performance gains and
converges at about 62% precision. We observe that the learning
capability of the RBF is more robust than that of OPT-RF, not
only with respect to retrieving accurately, but also learning
speed. As evidenced by Table V, results after one round of the
RBF is similar to results after three rounds of the OPT-RF. This
quick learning is highly desirable, since the user workload can
be minimized. This robustness follows from imposing nonlinear
discriminant capability in combination with the positive and
negative learning strategies. Notice that OPT-RF requires users
to specify weight parameters in the form of a slider bar for
learning, whereas RBF automatically evaluates these weight
parameters from the feedback images.

In regard to CPU time for the retrievals, the RBF approach
is longer, at 2.34 s per iteration for a single query. However,
the RBF method gains about 80% precision within only the
first iteration, i.e., in only 2.34 s. By contrast, though faster, the
OPT-RF needs three iterations to reach this underlined perfor-
mance, i.e., taking seconds. In other words, we
see that RBF can reach the best performance within a shorter
CPU time than the other methods discussed. This also means
that OPT-RF users are required to go through two more rounds
of feedback in order to achieve equivalent performance. Fur-
thermore, we can observe that, when subject to three iterations,
RBF reaches a 91% precision level that cannot be achieved by
any other method.

Typical retrieval sessions are shown in Figs. 6 and 7. Fig. 6
shows retrieval results of the “Yacht” query. Fig. 6(a) shows the
16 best-matched images before applying any feedback, with the

query image display in the top-left corner. It was observed that
some retrieved images are similar to the query in terms of color
composition. In this set, three retrieved images were marked as
relevant subject to the ground truth classes. Fig. 6(b) shows the
improvement of retrieval after three rounds of RBF interactive
learning. This is superior to the results obtained by MARS-2
[cf. 6(c)] and OPT-RF [cf. Fig. 6(d)]. The outstanding perfor-
mance of the RBF method can also be seen from Figs. 7(a)–(d),
showing the retrieval results in answering the “Tiger” query. As
evidenced by the results of Figs. 6(b) and 7(b), we observed
that nonlinear analysis obtained by RBF can effectively capture
high-level concepts in few retrieval sessions.

VII. CONCLUSION

In the past, a number of attempts have been made to de-
scribe visual contents with “index features” for operating con-
tent-based image retrieval. The evidence shows that semantics
and user request are more essential than the “index features”.
This has directed a number of researchers to suggest that such a
retrieval problem must be interpreted as human-centered, rather
than computer-centered [6], [7]. We have shown in this paper
that the user information needs in a visual-seeking environment
are well addressed by user-interface methodologies. User inter-
face allows the retrieval system to solve the problem of fuzzy
understanding of user’s goals and thus aid in the expression of
information needs. There are two main points that have been
demonstrated by our method: 1) learning-based systems can ad-
just their strategy in accordance with user input; and 2) user in-
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Fig. 7. Top sixteen retrieved images obtained by retrieving the “Tiger” query, from the Corel Database, using (a) simple CBIR, (b) RBF, (c) MARS-2, and
(d) OPT-RF.

formation needs are satisfied by a series of selections of infor-
mation.

The most difficult task in the interactive process is to analyze
the role of the users in perceiving image similarity. We have em-
phasized the importance of ‘mapping’ human perception onto
the image-matching process. Our RBF model incorporates and
emphasizes many new features not found in earlier interactive
retrieval systems. Many of these features are imparted by non-
linear discriminant analysis with a high degree of adaptivity
from learning through negative and positive samples. This re-
sults in a high performance learning machine that learns effec-
tively and quickly from a small set of feedback data. We have
suggested that through a learning-based approach it is possible
to relate the behavior of human perception to low-level feature
processing in visual retrieval systems. The learning-based ap-
proach takes into account the complexities of individual human
perception and in fact uses individual user choices to decide
relevance. This learning machine combines state-of-the-art re-
trieval performance, with a very rich set of features, which may
help to usher in a new generation of multimedia applications.
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