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Nonlinear principal component analysis is a novel technique for multivariate data 
analysis, similar to the well-known method of principal component analysis. NLPCA, 
like PCA, is used to identify and remove correlations among problem variables as 
an aid to dimensionality reduction, visualization, and exploratory data analysis. 
While PCA identifies only linear correlations between variables, NLPCA uncovers 
both linear and nonlinear correlations, without restriction on the character of the 
nonlinearities present in the data. NLPCA operates by training a feedforward neural 
network to perform the identity mapping, where the network inputs are reproduced 
at the output layer. The network contains an internal “bottleneck” layer (containing 
fewer nodes than input or output layers), which forces the network to develop a 
compact representation of the input data, and two additional hidden layers. The 
NLPCA method is demonstrated using time-dependent, simulated batch reaction 
data. Results show that NLPCA successfully reduces dimensionality and produces 
a feature space map resembling the actual distribution of the underlying system 
parameters. 

introduction 
Engineers are often confronted with the problem of extract- 

ing information about poorly-known processes from data. Dis- 
cerning the significant patterns in data, as a first step to process 
understanding, can be greatly facilitated by reducing dimen- 
sionality. The superficial dimensionality of data, or the number 
of individual observations constituting one measurement vec- 
tor, is often much greater than the intrinsic dimensionality, 
the number of independent variables underlying the significant 
nonrandom variations in the observations. The reduction of 
a data set from its superficial to intrinsic dimensions is the 
focus of this article. 

The problem of dimensionality reduction is closely related 
to feature extraction. Feature extraction refers to identifying 
the salient aspects or properties of data to facilitate its use in 
a subsequent task, such as regression or classification (Duda 
and Hart, 1973). Its features are a set of derived variables, 
functions of the original problem variables, which efficiently 
capture the information contained in the original data. For 
example, a useful feature for recognizing a leak in a processing 
unit is the difference between the influent and effluent flow 
rates. Using the net flow rate to identify the leak simplifies 

the identification task (since a leak is only possible when the 
net flow is nonzero) and reduces the dimensionality of the 
recognition problem by substituting a single indicator for two 
or more individual measurements. In general, selection of fea- 
tures such as the net flow rate depends on the ultimate appli- 
cation. However, in cases where the ultimate application of 
the data is not known in advance, a suitable objective for 
feature extraction is to reduce dimensionality with minimal 
loss of information (Foldiak, 1989). The nonlinear principal 
component analysis (NLPCA) introduced here is a general- 
purpose feature extraction algorithm producing features that 
retain the maximum possible amount of information from the 
original data set, for a given degree of data compression. 
Information preservation assures that the selected features will 
be useful in most situations, independent of the ultimate ap- 
plication. 

Within the class of linear methods, the optimal information- 
preserving transformation is given by principal component 
analysis (PCA) (Fukunaga and Koontz, 1970). Reduction of 
dimensionality by PCA has been shown to facilitate many types 
of multivariate analysis, including data validation and fault 
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detection (Wise and Ricker, 1989), quality control (Mac- 
Gregor, 1989), correlation and prediction (Joback, 1984), and 
data visualization (Stephanopoulos and Guterman, 1989). The 
feature variables in PCA, also called fuctors, are linear com- 
binations of the original problem variables. The coefficients 
of the linear transformation are such that if the feature trans- 
formation is applied to the data set and then reversed, there 
will be a minimum sum of squares difference between the 
original and reconstructed data. The same criterion of opti- 
mality is adopted in NLPCA. The main difference between 
PCA and NLPCA is that the latter involves nonlinear mappings 
between the original and reduced dimension spaces. If non- 
linear correlations between variables exist, NLPCA will de- 
scribe the data with greater accuracy and/or by fewer factors 
than PCA, provided that there are sufficient data to support 
the formulation of more complex mapping functions. 

The NLPCA method uses artificial neural network (ANN) 
training procedures to generate nonlinear features. The net- 
works are of a conventional type, featuring feedforward con- 
nections and linear or sigmoidal nodal transfer functions, 
trained by backpropagation. The particular network architec- 
ture used employs three hidden layers, including an internal 
“bottleneck” layer of smaller dimension than either input or 
output. The network is trained to perform the identity map- 
ping, where the input is approximated at the output layer. 
Since there are fewer units in the bottleneck layer than the 
output, the bottleneck nodes must represent or encode the 
information in the inputs for the subsequent layers to recon- 
struct the input (Sanger, 1989). If  network training finds an 
acceptable solution, a good representation of the input must 
exist in the bottleneck layer. This implies that data compression 
caused by the network bottleneck may force hidden units to 
represent significant features in data. The concept of using a 
neural network with a bottleneck to concentrate information 
has been previously discussed in the context of “encoder/ 
decoder” problems (Ackley et al., 1985; Rumelhart et al., 1986; 
Sanger, 1989). However, it will be shown that the previous 
network architectures used for encoder/decoder problems do 
not provide optimal nonlinear feature extraction because of 
limitations in the representational capacity of the networks. 
The current work provides a new network architecture that 
overcomes the previous limitations. 

In the following section, PCA is reviewed as background 
for the current developments. The NLPCA technique is then 
developed. Artificial neural networks are not reviewed here; 
the reader is referred to Rumelhart et al. (1986), Hoskins and 
Himmelblau (1988), or Venkatasubramanian and Chan (1989) 
for background information. Finally, NLPCA is applied to 
test problems, and results comparing PCA and NLPCA are 
presented. 

Principal Component Analysis 
PCA is a technique for mapping multidimensional data into 

lower dimensions with minimal loss of information. Since PCA 
has been described frequently by other authors (e.g., Mardia 
et al., 1980), only a brief summary is given here. Let Irepresent 
a n x rn table of data ( n  = number of observations, g= number 
of variables). PCA is an optimal factorization of 1 into two 
matrices, _T called the scores matrix ( n  x f, and Pca l l ed  the 
loadings matrix (rn x f l ,  plus a matrix of residua% E - (n x rn): 
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where f is the number of factors Cf<m). The Zondition of 
optimality on the factorization is that the Euc1id:an norm of 
the residual matrix, IIEll, must be minimized for the given 
number of factors. Tosatisfy this criterion, it i. known that 
the columns of _P are the eigenvectors Corresponding to the f 
largest eigenvalues of the covariance matrix of .r. 

It is useful to view PCA as a linear mapping-of data from 
(Rm to a’. Taking _ _  pTc=_I - without loss of generaiity, the map- 
ping has the form: 

where _Y represents a row of I, a single data :’ector, and _T 
represents the corresponding row of z, or the i. oordinates of 
- Y in the feature space. The loadings y a r e  the coefficients for 
the linear transformation. The information lost i I this mapping 
can be assessed by reconstruction of the measurement vector 
by reversing the projection back to 03”’: 

- Y‘ = _ r p T  - (3) 

where x’ = 1- Eis the reconstructed measureni mt vector. The 
smaller the dimension of the feature space, i he greater the 
resulting error, measured by IEI for individuai measurement 
vectors, or IlEll - for the overall data set. 

Nonlinear Principal Component Analysis 
In NLPCA, the mapping into feature space is generalized 

to allow arbitrary nonlinear functionalities. Bl analogy to Eq. 
2 ,  we seek a mapping in the form: 

where G is a nonlinear vector function, composed o f f  indi- 
vidual nonlinear functions; G = ( GI, G2,. . . . G ] , analogous to 
the columns of E, such that if T, represents the ith element of 
- T,  

By analogy to the linear case, GI is referred to as the primary 
nonlinear factor, and GI is the ith nonlinear factor of I. 

The inverse transformation, restoring the original dimen- 
sionality of the data, analogous to Eq. 3,  is implemented by 
a second nonlinear vector function _H= ( HlrH2, ... H m ) :  

The loss of information is again measured b> E = 1- 1‘ , and 
analogous to PCA, the functions C; and !< are selected to 
minimize ll_Ell. 

To generate G and H, a basis function approach is used. 
Cybenko (1989) has shown that functions of the following 
form are capable of fitting any nonlinear function g =  f (g)  to 
an arbitrary degree of precision: 

(7) 
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where u(x) is any continuous and monotonically increasing 
function with u(x)- 1 as x- + 03 and u(x)-O as x- - 03. A 
suitable function is the sigmoid: 

1 
u(x) =- 

1 +e-’ 

Equations 7-8 are the describing equations for a feedforward 
artificial neural network (ANN) with N I  inputs, a hidden layer 
comprised of N2 nodes with sigmoidal transfer functions, and 
a linear output node (implementing a summation of its inputs) 
for each k. In Eq. 7, Wl,k represents the weight on the con- 
nection from node i in layer k t o  node j in layer k + 1. Nodes 
in successive layers are exhaustively interconnected, and there 
are no intralayer links. The 0 are nodal biases, treated as 
adjustable parameters like the weights. More details on neural 
networks of this type are given in Rumelhart et al. (1986). 
Note that to  achieve the universal fitting property, exactly one 
layer of sigmoidal nodes and two layers of weighted connec- 
tions are required. In practice, sigmoidal nonlinearities are 
often included in the nodes of the output layer so that the 
network produces outputs in a fixed, finite range. Also, the 
sigmoid function can be scaled multiplicatively or translated 
without affecting the generality of the network. Since we fre- 
quently deal with mean-centered data sets, a sigmoid function 
scaled into the range ( -  1, l )  was used in this work. 

The ability of the neural network to fit arbitrary nonlinear 
functions depends on the presence of a hidden layer with non- 
linear nodes. Without the hidden layer (or with linear nodes 
in the hidden layer), the network is only capable of producing 
linear combinations of the inputs, given linear nodes in the 
output layer. A network lacking a hidden layer but including 
sigmoidal nonlinearities in the output layer is only capable of 
generating multivariable sigmoidal functions, i.e., linear func- 
tions compressed into the range ( -  1, l )  by the sigmoid. Neither 
network without a hidden layer is compatible with the goal of 
representing arbitrary nonlinear functions. Therefore, the ar- 
chitecture for the networks representing G and H are as fol- 
lows. The network for G operates on the rows of 1 and has 
m inputs. The hidden layer of G, which we call themapping 
layer, contains M I  nodes with sigmoidal transfer functions, 
where M ,  > f. The output of the network is the projection of 
the input vector into feature space, and therefore contains f 
nodes. The output nodes can have linear or sigmoidal transfer 
functions, without affecting the generality of G. The function 
GI, the ith nonlinear factor, is defined by the weights and biases 
on the connections from the input to  the ith output. The net- 
work representing the inverse mapping function takes the 
rows of z as inputs and accordingly has f inputs. The hidden 
layer, which we refer to as the demapping layer, contains M2 
nodes with sigmoidal transfer functions, where M2> f. The 
output layer yields the reconstructed data, 1’ , and thus con- 
tains m nodes. The nodes of the output layer can be linear or 
sigmoidal. The weights and biases connecting the inputs to the 
ith output node define the function H I .  These network archi- 
tectures for modeling G and H are shown in Figure 1. 

ANNs of the type used here require “supervised” training, 
where a desired output is specified for each training example. 
However, in training the network representing G, the desired 
output _T is unknown. For the network representing H, the 
desired outputs are known (the target output is m, but the 
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Figure 1. Networks implementing mapping and demap- 
ping functions. 
Top, network for G; bottom, network for g 
u indicates sigmoidal nodes; *indicates linear or sigmoidal nodes. 

corresponding inputs _T are not. Therefore, direct supervised 
training of these networks is not feasible. To circumvent this 
problem, it is observed that _Tis both the output of G and the 
input of H. Combining the two networks in series so that G 
feeds directly into H, a network is obtained whose inputs and 
desired outputs are known (Figure 2). Specifically, 1 is both 
the input to  G and the desired output from H; thus, the com- 
bined network must be trained to  produce the identity map- 
ping, 1-1. Supervised training can thus be applied to the 
combined network. Training to learn the identity mapping has 
been called self-supervised backpropagation or autoassociation 
(Ballard, 1987; Cottrell et al., 1987), and has been used to 
solve so-called “encoder/decoder” problems, discussed in the 
subsection on Relationship to Other Work. 

The combined network shown in Figure 2 contains three 
hidden layers, the mapping layer involved in modeling in G, 
the middle layer whose outputs represent the features r, and 
the demapping layer involved in modeling g. We refer to the 
second hidden layer of the combined network as the bottleneck 
layer because it is the smallest in dimensionality. The input 
and output layers of the combined network represent 1 and 
- Y ’ ,  respectively. Note that the nodes of the mapping and 
demapping layers must have nonlinear transfer functions to  
provide the capability for modeling arbitrary G and H. How- 
ever, nonlinear nodes are not required in the bottleneck layer, 
since the bottleneck represents the output layer of subnet G. 
Nonetheless, if a bounded response in the feature space is 
desired, sigmoids can be used in all hidden layers. If desired, 
the network can also include linear “bypass” connections from 
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INPUT MAPPING BOTTLE- DE- OUTPUT 
LAYER LAYER NECK MAPPING LAYER 

LAYER LAYER 

Figure 2. Network architecture for simultaneous deter- 
mination of f nonlinear factors using an 
autoassociative network. 
u indicates sigmoidal nodes, * indicates sigrnoidal or linear nodes. 

the input directly to the bottleneck layer and from the bottle- 
neck layer to the output, but not across the bottleneck. Linear 
bypasses can increase the ease with which the network learns 
linear functionalities (Haesloop and Holt, 1990). The networks 
presented here do not include linear bypasses. 

The reader may note that if the bottleneck layer consists of 
linear nodes, then the weights of the pre- and post-bottleneck 
layers can be combined to create a network containing only 
two hidden layers. Specifically, if _W2 and _W3 represent mat- 
rices of weights in the layers directly before and after the 
bottleneck, then _W23 = K2_W3 _ _  represents equivalent weights 
for direct connection of the mapping and demapping layers. 
It is tempting to conclude that NLPCA could be implemented 
by training a network consisting of only two hidden layers, 
omitting the bottleneck. However, this would not be the same 
as training the three hidden layer network. Since _W2 is di- 
mension MI by f, and _W3 is dimension f by M2, therank of 
- W23 is f, even though its  superficial dimension is MI by M2. 
If a two-hidden layer network were trained in the manner 
discussed above, the required deficiency in rank would not 
develop. Thus, there is a subtle but crucial difference between 
a network with two hidden layers, and a network containing 
three hidden layers where the second hidden layer is a bottle- 
neck with linear nodes. 

To further appreciate the requirement for three hidden lay- 
ers, consider the implication of eliminating the mapping and 
demapping layers. This would leave a combined network with 
only one hidden layer, the bottleneck layer between inputs and 
outputs. If the nodes of the bottleneck layer were linear, this 
would correspond exactly to (linear) PCA, as shown by Sanger 
(1989). If the bottleneck nodes were sigmoidal, the functional 
forms of G and H would still be severely constrained; only 
linear combinations of the inputs compressed by the sigmoid 
into the range ( -  1,l) could be represented. Therefore, the 
performance of an autoassociative network with only one in- 
ternal layer of sigmoidal nodes is often no better than linear 
PCA. This is demonstrated in the example problems. 

- 
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These considerations lead to the conclusion t ‘:at to achieve 
optimal nonlinear feature extraction in the gene a1 case, three 
hidden layers are essential. This architecture con es from com- 
bining the networks for the two nonlinear functLon\ G and H 
in series. Each individual function is nonlinear md therefore 
requires a hidden layer of nonlinear nodes. A ong with the 
shared internal input-output layer that seIves as the bottleneck, 
a network with three hidden layers results. The result of Cy- 
benko that one hidden layer is sufficient to model any nonlinear 
function (with enough hidden nodes) applies to the functions 
- G and Hindividually, not to the combined netwc.rk as a whole. 

To train the combined network, the weights appearing in 
the networks representing G and H are optimizi:d so that the 
reconstructed outputs 1’ match the inputs _Y as closely as 
possible. Training is complete when E, the Gin of $quared 
errors given in Eq. 9, is minimized: 

n m  

E= (Y j -  Y;’) ,;  
p = l i = l  

(9) 

E is the square of IlEll, the optimality criterion s e d  in PCA. 
Therefore, minimizing E during netwoi k training results in 
minimum information loss in the same sense i s  PCA. The 
actual training can be approached by any appiopriate algo- 
rithm such as backpropagation (Werbos, 1974; Rumelhart et 
al., 1986). In this work, a conjugate gradient vet sion of back- 
propagation with better speed and convergence properties was 
used (Leonard and Kramer, 1990). 

After training, the combined network no longer has any 
utility, and it is disaggregated into the two single-hidden layer 
networks representing G and H. In most applications, C i s  the 
function of interest since it carries out the feature space map- 
ping. The data are propagated through to project the data 
into low-dimensional feature space. 

Selection of mapping nodes 
In the combined network, there are m node<\ in the input 

and output layers and f nodes in the bottleneck la! er. However, 
there is no definitive method for deciding a priori the dimen- 
sions of the mapping and demapping la-)ers (henceforth, col- 
lectively referred to as the mapping layers). The number of 
mapping nodes is related to the complexity of rhe nonlinear 
functions that can be generated by the network. If too few 
mapping nodes are provided, accuracy might bt low because 
the representational capacity of the network is limited. How- 
ever, if there are too many mapping nodes, the network will 
be prone to “overfitting,” that is, learning the stochastic var- 
iations in the data rather than the underlying functions. The 
simplest approach to this problem is to restrict the number of 
weights in the network to a fraction of the number of con- 
straints imposed by the data set. For each data vector, a sep- 
arate constraint is imposed by each output node, so that the 
total number of adjustable parameters must be less than n . m .  
For the combined architecture, assuming all nodes have biases, 
the number of adjustable parameters in thc network is 
(m + f + l)(Mi +M2)  + m + f, where MI and M2 are the number 
of nodes in the mapping and demapping layers, respectively, 
implying the inequality: 
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For a relatively small number of factors (f<< rn, n), Eq. 10 is 
approximated by: 

autoassociative 
network 1 

y1 

+ 

If the number of mapping and demapping nodes allowed by 
these inequalities is less than or equal to f ,  then there is not 
enough data to support extraction off nonlinear factors, since 
the bottleneck by design occurs in the second hidden layer of 
the combined network. 

Two other approaches for selecting the number of mapping 
nodes are worth mentioning. The first method involves ran- 
domly splitting the data set into two subsets, using one of the 
sets for training, and the other for testing the generality of the 
result. If the average error on the training subset is significantly 
less than on the testing subset (say by a factor of 2 or more), 
overfitting is indicated, and the dimension of the mapping 
layers should be reduced. The second method involves the use 
of functions that express the trade-off between fitting accuracy 
and number of adjustable parameters in explicit terms. Two 
such functions are Akaike’s criteria, the final prediction error 
(FPE), and information theoretic criterion (AIC) (Ljung, 1987): 

FPE = e ( 1 + N,/N) / ( 1 - N,/N) (12) 

AIC = In(e) + 2N,/N (13) 

Here, N ,  = ( rn  + f + l)(M1 + M2) + rn + f is the number of 
weights, N= nrn is the number of entries in the data matrix, 
and e = E / ( 2 N )  is an average sum of squares error. Minimi- 
zation of these functions identifies models that are neither over- 
nor underparameterized. For N,<<N, AIC and FPE are ap- 
proximately the same, but for larger N,, FPE will tend to 
increase faster, indicating a preference for models with fewer 
adjustable parameters. To apply Eqs. 12-13, several training 
runs with different mapping layer dimensions are needed to 
determine the location of the minima in FPE and AIC. Because 
these criteria can be used to compare models of different struc- 
ture, they can also be used to compare PCA and NLPCA, as 
explained in the Example section. 

Sequential NLPCA 
Two different approaches have been used to carry out 

NLPCA. The first approach solves the problem as depicted in 
Figure 2, that is, the bottleneck layer of the network is provided 
with as many nodes as the total number of nonlinear factors 
desired, and the network is trained to produce the identity 
mapping using the objective function of Eq. 9. For f > 1 ,  an 
alternate serial training procedure can be used. This procedure 
is similar in spirit to the recursive procedure of factor calcu- 
lation often used in PCA. This method is based on the fact 
that the primary factor of the residual matrix E is the second 
factor of the original data matrix. Applied recursively, this 
implies that if pi (El)  is the ith column of - (the ith factor) 
for a given data matrix xl, then: 

- -  
- 
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Figure 3. Sequential determination of nonlinear factors 
by training F networks with one bottleneck 
node each. 

where Ei = xi+ is the residual matrix generated after extraction 
of the primary factor from matrix xi. Various algorithms, for 
example, NIPALS (Geladi and Kowalski, 1986), can calculate 
the primary factor p l  of a given matrix efficiently. Used re- 
cursively according 70 Eq. 14, multiple factors of the original 
data matrix can be found. 

The serial NLPCA algorithm is similar in spirit. A series of 
F separate networks, each containing a single node in the 
bottleneck layer, are trained. Only the primary nonlinear factor 
of the input matrix is extracted at each stage. The residual 
from the previous network becomes the input (and target out- 
put) for the succeeding network, and the training proceeds 
serially. The recursion relations for this process are: 

- -  

where li is the ith column of 1. The network architecture for 
the sequential calculation is shown in Figure 3. 

The serial version of NLPCA has several potential advan- 
tages over the simultaneous method of factor determination. 
First, the serial training procedure allows rescaling of the re- 
sidual matrix between steps, which may hasten convergence. 
Since the residuals get progressively smaller, it may be difficult 
for the network to model the higher factors without rescaling. 
Second, the serial training forces each bottleneck node to model 
a separate factor in the data. With simultaneous training of 
two or more bottleneck nodes, we have observed a tendency 
for two or more of the bottleneck nodes to align with the 
primary factor early in the training, when all the weight changes 
respond to the largest output errors. If the weights into the 
bottleneck layer come into alignment, there is an effective 
reduction in the number of bottleneck nodes. The primary 
factor may thus appropriate the representational resources in- 
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tended for secondary and later factors, leaving the network 
unable to move further toward the global optimum. This was 
noted in one example, not reported in this article. We have 
not yet undertaken a comprehensive comparison to recommend 
either serial or simultaneous versions of NLPCA. The examples 
were done with simultaneous extraction of factors, and no 
problems were encountered. 

Relationship to other work 
One of the first papers linking PCA, feature extraction and 

neural networks was by Oja (1982). Oja showed that PCA can 
be carried out by a linear (summing) neuron whose input con- 
nection strengths vary in time according to a Hebbian-type 
learning law: 

where y is a positive learning rate, wi represents the connection 
weight of the ith input, Yi( t )  is a stochastic variable introduced 
on the ith connection, and ~ ( t )  = E( t)_Y( t )  is the neuron output. 
For small y, Oja shows the weights 121 converge to the primary 
factor of the inputs, and the node output ~ ( t )  to the score of 
the input vector _Y( t )  . This method was extended by Foldiak 
(1989) to networks that calculate more than one principal com- 
ponent. Sanger (1989) proposes a similar strategy for PCA in 
linear networks, based on self-supervised backpropagation 
learning. In a related work, Baldi and Hornik (1989) prove 
that self-supervised backpropagation in linear networks has a 
unique minimum at values of weights corresponding to the 
principal components of the inputs. Therefore, Hebbian and 
backpropagation learning both lead to the PCA solution in 
linear networks. These works focus on linear networks and 
linear features, unlike the current presentation on nonlinear 
feature extraction. 

Kohonen (1984) maps high-dimensional data to two dimen- 
sions using a network architecture called a self-organizing fea- 
ture map. The data are clustered by a sequential algorithm 
similar to k-means clustering (Duda and Hart, 1973). Each 
cluster center contains internal parameters representing a lo- 
cation in the input space and is given a location in a two- 
dimensional grid. Neighbors in the grid represent centers clos- 
est to one another in the original space. A new input excites 
the cluster center nearest to it in the original space, and the 
location of the excited center in the grid is indicative of the 
location of the input in the high-dimensional space. This and 
other methods of planar mapping (Siedlecki et al., 1988) have 
the disadvantage that all data sets, regardless of their intrinsic 
dimensionality, are represented in two dimensions. Thus, the 
user has no control over the loss of information incurred in 
the mapping process. 

The ability of nonlinear ANNs to develop abstract internal 
representations in their hidden layers was discussed by Hinton 
(1986). Use of this ability to derive compact representations 
using autoassociative mapping and a bottleneck layer appears 
to have been demonstrated first by Ackley et al. (1985) in the 
context of the “encoder/decoder” problem. In this problem, 
the network is presented with M distinct binary input patterns 
consisting of M bits each, each with one bit on (set to 1) and 
the remaining bits off (set to 0). The task is to concentrate the 
input information into log, M bits represented by the nodes 

of the hidden layer (encoding) and, based on t’ie state of the 
hidden layer, turn on the same bits in the o itput layer as 
presented at the input layer (decoding). This has 3een a popular 
test problem for network training methodologits (Rumelhart 
et al., 1986; Fahlman, 1989). For studying fedure develop- 
ment, however, the binary encoder is an unfortunate choice, 
because unlike other autoassociation problem\, one hidden 
layer is sufficient to solve it (in this case C; and fi are composed 
of “and” and “or” functions, implementable in a single layer 
each). Autoassociative networks with one hidden layer have 
been applied to the compression of grey-scale images by Cot- 
trell et al. (1987), and Chauvin (1989) applies cln architecture 
with two hidden layers. 

Ballard (1987) uses multiple single-hidden laycr networks to 
build complex encodings. The first autoassocial rve network is 
trained to encode the original data set. The output of the hidden 
layer from the first network is then used as training data for 
a second autoassociative network, which by enzoding the in- 
ternal representation of the first network builds a more abstract 
encoding. Although Ballard experiments only uith two levels 
of encoding, in theory the process can be repeated recursively 
to generate higher-order abstractions. For two levels of re- 
cursion, Ballard’s architecture is equivalent to a three-hidden- 
layer autoassociative network. However, the tr ining scheme 
imposes a constraint equivalent to requiring eq iality between 
the output of the mapping layer and the outrut of the de- 
mapping layer in NLPCA. Since this constrail t restricts the 
mapping and demapping functions, Ballard’s arc hitecture does 
not appear to have the capability of modeling arbitrary non- 
linear features. A similar criticism seems to apply to the net- 
work of Miikkulainen and Dyer (1989), which employs an 
adaptive external “lexicon” as the source of examples to a 
single-hidden layer autoassociative network. Due to the spec- 
ialized architectures of these networks, they do not appear to 
be capable of general nonlinear feature extract on. 

In some previous reports, techniques for dyiiamic modifi- 
cation of the network architecture during training to create 
“skeleton networks,” containing only essential connections, 
have been proposed. If there is redundancy i n  the inputs, 
skeletonization methods can discover the minimal set of inputs 
needed to make the desired output predictions thr ough selective 
removal of unnecessary connections and nodes. hrusche (1989) 
introduces a methodology for simultaneous training and net- 
work bottlenecking that gradually excises node\ whose input 
weight vectors are nearly parallel through interna! competition. 
Mozer and Srnolensky (1989) reduce ANN complexity by cal- 
culating an “attentional strength coefficient” tor each input 
and hidden layer node. They propose eliminating the node 
with the least attentional strength, retraining the reduced net 
and repeating the process until the desired network reduction 
is achieved. Karnin (1990) estimates the sensitivity of the error 
to the exclusion of each connection and eliminates the con- 
nections with lowest sensitivities. Niida et al. (1989) achieve a 
similar goal by modifying the usual training objective function 
with a term that penalizes nonzero weights. Weights that be- 
come smaller than a predetermined threshold value during 
training are eliminated. Input nodes that become isolated by 
zero weights during the training process are either redundant 
or exert a minimal influence on the outputs. 

Removal of redundant inputs is remmscent of NLPCA. 
However, skeletonization methods require a sub$ et of the vari- 
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variables to be specified in advance as outputs, which are then 
calculated as functions of the remaining variables. If skele- 
tonization methods were applied to autoassociative networks, 
it is almost inevitable that “tautologous” networks would re- 
sult, where all cross-connections between input i and output j 
for i # j  are eliminated, and only “straight-through” connec- 
tions retained. This would reduce the number of weights, but 
would not concentrate the input information. In addition, most 
skeletonization methods allow the user only indirect control 
over the extent of network reduction through parameters that 
weight the trade-off between fitting error and network com- 
plexity. By specifying the bottleneck dimension in advance, 
NLPCA avoids producing tautologous networks and allows 
direct control over the number of factors calculated from the 
data. Skeletonization methods might enhance NLPCA if the 
initial network architecture already contains a bottleneck. In 
this case, the mapping and demapping layers would be the 
primary targets of skeletonization. 

Examples 
Examples of NLPCA with comparisons to PCA are pre- 

sented in this section. Networks for the NLPCA method were 
trained using the conjugate gradient version of backpropa- 
gation discussed by Leonard and Kramer (1990). Since the 
conjugate gradient method dynamically optimizes the learning 
rate and momentum factor in the backpropagation learning 
law, these did not enter as study parameters. In addition, the 
number of iterations are not reported since iterations depend 
on the training method and the initial conditions, although in 
most cases less than 1,000 iterations were needed to converge. 
In all cases, training was continued until there was no more 
progress in reducing E (fractional step-to-step change less than 

Training was repeated several times with different ran- 
dom initial conditions for each architecture to confirm that 
the global minimum had been found. The dimensions of the 
mapping layers are varied in these experiments, but for sim- 
plicity all networks tested had MI = M 2 ,  which is not a re- 
quirement of the method. Also, sigmoidal nodes were used in 
all hidden layers as well as the output layer so that the factors 
and outputs were bounded in the range ( - 1,l). 

Example 1 

A simple test of the NLPCA methodology is provided by a 
data set consisting of two observed variables y ,  and y,, driven 
by one underlying parameter, 0: 

y ,  =0.8sinO 

y2 = 0.8 cos 0 

e = u [ o , ~ ~ I  

where U[a,b] represents the uniform distribution in the range 
(a,b). The data set consisted of 100 data vectors of dimension 
two. Even though there is not a functional relationship between 
y ,  and y ,  (y, cannot be written as a unique function of y2, and 
visa versa), NLPCA should be able to model the data with 
one nonlinear factor. Three methods were applied to this data 
set to determine the best one-factor representations: PCA, an 
autoassociative ANN with one hidden layer of sigmoidal nodes 
(ANN-1HL) and NLPCA. 

Table 1. Results of One-Factor Representations for 
Example 1 

Adjust. Error 
Technique Param. E FPE AIC 

PCA 2 27.8 0.0708 - 2.65 
ANN, 

layers 
NLPCA, 

no. mapping 
nodes 

no mapping 7 26.4 0.0708 - 2.65 

2 19 10.5 0.0318 - 3.45 
3 27 1.35 0.00444 - 5.42 
4 35 0.348 0.00124 - 6.70 
6 51 0.336 0.00142 - 6.57 
8 67 0.307 0.00154 - 6.50 

10 83 0.302 0.00183 - 6.36 

Table 1 lists the number of parameters, the reconstruction 
error E,  and the model selection criteria FPE and AIC for 
each method. The reconstruction errors for PCA and ANN- 
1HL are much higher than for any of the NLPCA networks. 
Since the training methods, node transfer functions, inputs, 
and outputs are the same, the difference between ANN-1HL 
and NLPCA is due solely to the mapping layers. This clearly 
shows that three hidden layers were required to achieve the 
desired results. To select the number of mapping nodes, the 
criterion of Eq. 10 was used in conjunction with the FPE and 
AIC model selection criteria. With the parameters of this prob- 
lem, Eq. 10 gives MI +M,<<49.5. Table 1 shows that with 
more than four nodes in each mapping layer, the reconstruction 
error is approximately constant, and the FPE and AIC criteria 
indicate that four nodes in the mapping layers are optimal. 
The FPE and AIC also indicate that the NLPCA networks are 
preferred to the PCA and ANN-1HL representations. 

’I 

-1 0 1 

Yl 
Figure 4. Reconstructed data from one factor, example 

1. 
Original data (W), reconstruction using four mapping and de- 
mapping nodes (o), reconstruction with no mapping nodes (+), 
reconstruction using PCA ( A ). 
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Figure 5. Feature variable derived by NLPCA, example 
1, showing discovery of a feature analogous 
to underlying parameter 0. 

Figure 4 shows the original training data and the reconstruc- 
tions 1’ using the three approaches. Because it is a linear 
technique, PCA produces a straight-line fit of the data, which 
is obviously inappropriate for the data. The ANN-1HL ap- 
proach is only marginally better than PCA. Without mapping 
layers, this method can only produce features that are linear 
combinations of the inputs, compressed by the sigmoid func- 
tion. The reconstruction by ANN-1HL is essentially linear but 
with a slight sigmoidal curve, again a poor fit. On the other 
hand, NLPCA (shown for M I  = M2 = 4) reconstructs the data 
from one nonlinear factor with great accuracy. 

To successfully reconstruct the data from a single factor, 
NLPCA must have produced a feature analogous to the un- 
measured parameter 0, since it is not possible to reconstruct 
the data from either input alone. The feature discovered by 
NLPCA is indeed related to the polar angle of the data point, 
specifically the angle measured counterclockwise from the 
positive y2  axis. Figure 5 shows the relationship between the 
discovered feature variable (the output of the bottleneck layer 
of the trained network) and this angle. The relationship, al- 
though not linear, is monotonic, which suffices for recon- 
structing the input at the output layer. The network has in a 
sense “discovered” the concept of polar angle that is embedded 
in this data set. 

Example 2 
This example deals with data from a simulated batch reactor 

kl k 3  A-R-S 

Figure 6. Reaction network for example 2. 

in which four simultaneous first-order reactior s occur. The 
reaction network is shown in Figure 6. A is the raw material, 
R is the desired product, and S, T ,  and U are iide products. 
Initially, only A is present. The reaction vessel is well-mixed 
and adiabatic. The reaction rate constants are: 

All reactions are thermally neutral except for the r1:actionA -R ,  
which is exothermic. The reaction parameters are such that 
complete reaction of A to R results in a 25” incrt ase in reactor 
temperature. Each batch reacts for 0.5 hours, which brings R 
close to its optimal mole fraction of 0.75 under the given 
conditions. All five species concentrations are measured at 20 
equally-distributed times during each batch. For the purposes 
of example, it is assumed that the initial temperature varies 
from batch to batch according to To = u[325,350]. In addition, 
the reactions A - T and R- U are catalyzed by an impurity 
whose concentration varies randomly from batch to batch, 
modeled by a= U[0.5,1.5]. All other factors in the operation 
remain fixed. 

A data set containing data from 25 batches was prepared 
using this model. The data were scaled so that in each column 
of 1, the mean was zero and the largest magnitude element 
was *0.9, the latter because the nodal transfer function re- 
quires infinitely large weights to reach f 1. This scaling makes 
accurate reconstruction of all variables approximately equally 
important, similar to columnwise division by standard devia- 
tions sometimes used to prepare data sets for F’CA. 

The task is assumed to be representations of the data from 
each complete batch in a compact form, and discovery of the 
number of underlying parameters in the data. Since a total of 
100 measurements are taken for each batch, the superficial 
dimension of the data is 100. The same variable measured at 
different times is represented as distinct inputs to the network 
so the features will represent the entire history of the batch. 
The features capture a temporal “window” of data and com- 
press multivariable trajectories into a few features. (The same 
data could have been aligned as 500 examples of dimension 
five, with each data vector representing a single point in time. 
Rather than each batch appearing as a point in the feature 
space, a batch would be represented as a trajectot y of 20 points 
in the feature space. This representation could be useful for 
dynamically “tracking” the progress of each batch.) 

Table 2 shows the results for one-factor representations of 
this data. The reconstruction errors for PCA and ANN-1HL 
are both an order of magnitude higher than the optimal NLPCA 
networks. As in example 1, the FPE and AIC criteria indicate 
a preference for the NLPCA models. The constraint on the 
number of mapping nodes from Eq. 11 is MI + M2 << 25. The 
FPE and AIC criteria indicate that six mapping nodes are 
optimal (approximately two data points for each adjustable 
parameter) among the architectures tested. 

Results for the two-factor representations are similar. Again, 
PCA and ANN-1HL are virtually identical, while the error for 
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Table 2. Results of One-Factor Representations for 
Example 2 

0.50 , t 

~ 

Adjust. Error 
Technique Param. E FPE AIC 

PCA 100 145.0 0.0314 - 3.46 
ANN, 

layers 

NLPCA, 
no. mapping 

nodes 

no mapping 301 144.9 0.0369 - 3.30 

2 509 120.6 0.0364 - 3.31 
4 917 52.1 0.0225 - 3.83 
6 1,325 15.9 0.0104 - 4.69 
8 1,733 15.8 0.0174 - 4.37 

NLPCA is an order of magnitude lower. These results are 
shown in Table 3. 

To check the effectiveness of the one- and two-factor models, 
one batch run from the 25 was randomly selected for detailed 
study. Batch No. 9 had TO = 334.6 and a! = 1.25; its temporal 
history is shown in Figure 7. The scaled concentrations in this 
figure represent a normalization of the deviation of the con- 
centration of species i from the concentration of i at time t in 
the average batch, 0.9( C,,(t)-ave,[C,,(t)])/max,IC,,(t)I, 
1 s j ~ 2 5 .  Figure 8 shows the errors as a function of time for 
four models: 1- and 2-factor PCA, and 1- and 2-factor NLPCA 
(using M ,  = M2 = 6). The errors for 1-factor PCA are the same 
order of magnitude as the scaled concentrations themselves. 
For 2-PCA, there are still large errors, particularly for the 
most nonlinear trajectories. The errors for 1- and 2-factor 
NLPCA are much smaller and show little or no systematic 
error, particularly in the latter case. This is evidence that the 
intrinsic dimensionality of the data is two. 

As in example 1, NLPCA must have discovered features 
analogous to the actual underlying parameters To and a to 
describe the data with two features. To demonstrate this, the 
underlying parameter values for the 25 batches were plotted 
using different symbols, depending on the quadrant of the 
diagram in which they fell (Figure 9A). The batch data were 
identified according to these four classes, and a feature map 
(a plot of the output of the bottleneck layer) for the batches 
was prepared using the function G learned during NLPCA 
training. The feature representation of the batches is plotted 

Table 3. Results for Two-Factor Representations for 
Example 2 

Adjust. Error FPE 
Technique Param. E ( x  100) AIC 

PCA 200 25.7 0.604 -5.11 

ANN, 

lavers 
no mapping 502 25.6 0.770 - 4.87 

NLPCA, 
no. mapping 

nodes 
4 926 2.26 0.0985 - 6.96 
5 1,132 1.82 0.0965 - 7.01 
6 1,338 1.32 0.0869 -7.17 
8 1.750 1.29 0.147 - 6.86 

0.25 - 

0.00 - 

-0.25 - 

-0.50 1 
0.00 0.25 0.50 

time 
Figure 7. Time-concentration history of randomly- 

selected batch run. 
To=334.6, a= 1.246, Species A (4-), T(--), R ( t ) ,  
U(+), S(---) 

in Figure 9B using the corresponding symbols from Figure 9A 
(the axes in Figure 9B are added for visual clarity and do not 
represent the feature space mapping of the axes in Figure 9A). 
It is evident from this diagram that the features discovered by 
NLPCA are related closely to the actual underlying parameters. 
The most significant difference is that each feature represents 
a combination of the actual parameters To and a, accounting 
for the rotation in Figure 9B. The basic topology of the un- 
derlying parameter space, however, is clearly present in the 
feature space, notably the four quadrants of the actual pa- 
rameter space map to four distinct quadrants of the feature 
space. On a more detailed level, there are certain groupings 
of points in Figure 9A that can be discerned clearly in the 

OM. 

E 

0.50 

0.25 

L e 
ki 0.00 

4.25 

4.5c  

I 

NLPCA 
1 factor 

NLPCA 
2 factors 

time time 

Figure 8. Errors in reproducing data for batch run in 
Figure 7 from feature space representations. 
A. PCA method with one factor; B. PCA method, 2 factors; 
C. NLPCA, 1 factor; D. NLPCA, 2 factors. For symbols, see 
Figure 7. 
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Figure 9. Underlying factors by NLPCA in example 2. 
A. Original parameters; B. NLPCA feature space for correspond- 
ing batches. (.) High To, high a; ( A ) low To, high a; (.) low 
To, low a; (0) high To, low a 

feature space representation. For example, in Figure 9A there 
are three batches at similar conditions represented by the three 
triangles near the center of the diagram. In Figure 9B, these 
batches appear grouped together and near the center of the 
diagram, indicated by the cross. The progression of three points 
represented as filled circles in the lower left of Figure 9A is 
also distinctive and appears in the feature space mapping. The 
feature map is a good representation of the actual parameter 
space. It was derived by NLPCA without any information on 
the character, number, or values of the underlying parameters, 
and without any knowledge of the process governing equations. 

A feature map like Figure 9B can be valuable in developing 
process understanding. Given a measure of the success of the 
batches, the operator of the process can acquire a sense of 
where the “good” and the “bad” areas of the feature map 
are located. Each area of the map represents a different con- 
dition of operation. Learning to recognize “where the current 
batch is” relative to prior batches using the feature map may 
be easier than trying to make the same determination based 
on the raw data, because the trajectories display much more 
complicated features and the dimensionality is considerably 
higher. On the feature map, each batch is represented by a 
single point that is easily envisioned and related to prior batches. 

Another use of the feature space representation is in forming 

correlations with other variables. Suppose we desire to train 
a new network to predict some output that is nl>t immediately 
available in the form of an on-line measurement, for example, 
a quality variable. If the entire measurement vector is used as 
the network input, then the network will contain (rn + 2)h + 1 
weights, assuming the network contains one hidden layer with 
h nodes. Alternatively, a network trained to make the same 
prediction using the factors as inputs requires only (f+ 2)h + 1 
adjustable parameters. Since the factors contain the critical 
information from the inputs, the correlation model based on 
the features will be no more prone to error and will have higher 
significance than the model developed from a1 the inputs. In 
the current case, if the raw data are used to build the correlation 
model, 102h+ 1 parameters would be required. Data on 25 
batches are not sufficient to train the network. However, if 
the model is developed using the factors as inputs, then only 
4h + 1 adjustable parameters are involved, greatly reducing the 
data required for training, and improving the significance of 
the resulting model. 

Conclusion 
The NLPCA method finds and eliminates nonlinear cor- 

relations in the data. Analogous to principal component anal- 
ysis, this method can be used to reduce the dimensionality of 
data by removing redundant information. In theory, this 
method can remove any type of nonlinear correlation occurring 
in the data, since the basis functions utilized can model any 
bounded, continuous function to arbitrary accuracy. The re- 
sults are limited only by the practicalities of computing func- 
tional approximations from limited data. The NLPCA 
methodology works by training a neural net* ork containing 
a bottleneck layer to perform the identity mapping. The net- 
work architecture incorporates three hidden layers, which are 
necessary to achieve the general nonlinear fitting property. 

Experiments with this methodology have shown it to be more 
effective than PCA in describing and reducing typical data. 
In the analysis of simulated batch reaction data, NLPCA out- 
performed PCA by a significant margin. The method was able 
to synthesize a topographically accurate map of the unmea- 
sured parameters that determined the outcome of the batch, 
without any prior information of the existence or nature of 
the parameters. 

Nonlinear PCA can be applied to the same problems as 
conventional PCA: data reduction and visualization, sensor 
validation, fault detection, quality control, principal compo- 
nent regression, etc. Because of NLPCA’s ability to describe 
nonlinear data more efficiently than PCA, it should enhance 
the performance of these tasks. 
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Notation 
A = chemical species 
e = average error, E/2N 
E = sum of squared errors, Eq. 9 
g = matrix of residuals (n x m) 
3 = number of features or factors 
G = mapping function 

= demapping function 
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n = number of data vectors 
N = number of data points 

N ,  = number of weights and biases 
m = number of input/output variables 

M ,  = number of nodes in mapping layer 
MI = number of nodes in demapping layer 
p = matrix of loadings (m x F )  
P, = ith column of _P 
R = chemical species 

c R ~  = k-dimensional Euclidean space 
S = chemical species 
T = temperature (example 2) 
T = chemical species 
- T = matrix of scores (n  xF) 
- T = r o w o f _ T  
t ,  = ith column of _T 
fi = chemical species 
w = network weights 

- 

- 

1, 1% = original data matrix (n x m) _ _  
y, = residual matrix after ( i -  1) factors, i >  1 (n  x m) 
- Y’ = reconstructed data matrix (n  ’x m) 
- Y = single data vector 
- 

Greek letters 
u = sigmoid function 
9 = nodal biases 
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