
ARTIFICIAL INTELLIGENCE 185

Connectionist Learning Procedures

Geoffrey E. Hinton
C o m p u t e r Sc ience D e p a r t m e n t , Univers i ty o f T o r o n t o ,

10 K i n g ' s Col lege R o a d , T o r o n t o , Ontar io , Canada M 5 S 1 A 4

ABSTRACT

A major goal of research on networks of neuron-like processing units is to discover efficient learning
procedures that allow these networks to construct complex internal representations of their environ-
ment. The learning procedures must be capable of modifying the connection strengths in such a way
that internal units which are not part of the input or output come to represent important features of
the task domain. Several interesting gradient-descent procedures have recently been discovered. Each
connection computes the derivative, with respect to the connection strength, of a global measure of
the error in the performance of the network. The strength is then adjusted in the direction that
decreases the error. These relatively simple, gradient-descent learning procedures work well for small
tasks and the new challenge is to find ways of improving their convergence rate and their
generalization abilities so that they can be applied to larger, more realistic tasks.

1. Introduction

Recent technological advances in VLSI and computer aided design mean that it
is now much easier to build massively parallel machines. This has contributed
to a new wave of interest in models of computation that are inspired by neural
nets rather than the formal manipulation of symbolic expressions. To under-
stand human abilities like perceptual interpretation, content-addressable me-
mory, commonsense reasoning, and learning it may be necessary to understand
how computation is organized in systems like the brain which consist of
massive numbers of richly interconnected but rather slow processing elements.

This paper focuses on the question of how internal representations can be
learned in "connectionist" networks. These are a recent subclass of neural net
models that emphasize computational power rather than biological fidelity.
They grew out of work on early visual processing and associative memories
[28, 40, 79]. The paper starts by reviewing the main research issues for connec-
tionist models and then describes some of the earlier work on learning
procedures for associative memories and simple pattern recognition devices.
These learning procedures cannot generate internal representations: They are

Artificial Intelligence 40 (1989) 185-234
0004-3702/89/$3.50 ~) 1989, Elsevier Science Publishers B.V. (North-Holland)

186 G . E . H I N T O N

limited to forming simple associations between representations that are
specified externally. Recent research has led to a variety of more powerful
connectionist learning procedures that can discover good internal representa-
tions and most of the paper is devoted to a survey of these procedures.

2. Connectionist Models

Connectionist models typically consist of many simple, neuron-like processing
elements called "units" that interact using weighted connections. Each unit has
a "state" or "activity level" that is determined by the input received from other
units in the network. There are many possible variations within this general
framework. One common, simplifying assumption is that the combined effects
of the rest of the network on the jth unit are mediated by a single scalar
quantity, xj. The quantity, which is called the "total input" of unit j, is usually
taken to be a linear function of the activity levels of the units that provide input
to j:

xj = -Oj + ~ yiwji, (1)
i

where Yi is the state of the ith unit, wji is the weight on the connection from the
ith to the jth unit and 0j is the threshold of the jth unit. The threshold term can
be eliminated by giving every unit an extra input connection whose activity
level is fixed at 1. The weight on this special connection is the negative of the
threshold. It is called the "bias" and it can be learned in just the same way as
the other weights. This method of implementing thresholds will generally be
assumed in the rest of this paper. An external input vector can be supplied to
the network by clamping the states of some units or by adding an input term,
lj, that contributes to the total input of some of the units. The state of a unit is
typically defined to be a nonlinear function of its total input. For units with
discrete states, this function typically has value 1 if the total input is positive
and value 0 (or -1) otherwise. For units with continuous states one typical
nonlinear input-output function is the logistic function (shown in Fig. 1):

1
YJ - 1 + e-Xj " (2)

All the long-term knowledge in a connectionist network is encoded by where
the connections are or by their weights, so learning consists of changing the
weights or adding or removing connections. The short-term knowledge of the
network is normally encoded by the states of the units, but some models also
have fast-changing temporary weights or thresholds that can be used to encode
temporary contexts or bindings [44, 96].

CONNECTIONIST LEARNING PROCEDURES 187

1.0

~--->

Fig. 1. The logistic input-output function defined by equation (2). It is a smoothed version of a
step function.

There are two main reasons for investigating connectionist networks. First,
these networks resemble the brain much more closely than conventional
computers. Even though there are many detailed differences between connec-
tionist units and real neurons, a deeper understanding of the computational
properties of connectionist networks may reveal principles that apply to a
whole class of devices of this kind, including the brain. Second, connectionist
networks are massively parallel, so any computations that can be performed
efficiently with these networks can make good use of parallel hardware.

3. Connectionist Research Issues

There are three main areas of research on connectionist networks: Search,
representation, and learning. This paper focuses on learning, but a very brief
introduction to search and representation is necessary in order to understand
what learning is intended to produce.

3.1. Search

The task of interpreting the perceptual input, or constructing a plan, or
accessing an item in memory from a partial description can be viewed as a
constraint satisfaction search in which information about the current case (i.e.
the perceptual input or the partial description) must be combined with
knowledge of the domain to produce a solution that fits both these sources of
constraint as well as possible [12]. If each unit represents a piece of a possible
solution, the weights on the connections between units can encode the degree
of consistency between various pieces. In interpreting an image, for example, a
unit might stand for a piece of surface at a particular depth and surface
orientation. Knowledge that surfaces usually vary smoothly in depth and
orientation can be encoded by using positive weights between units that
represent nearby pieces of surface at similar depths and similar surface

188 G.E. HINTON

orientations, and negative weights between nearby pieces of surface at very
different depths or orientations. The network can perform a search for the
most plausible interpretation of the input by iteratively updating the states of
the units until they reach a stable state in which the pieces of the solution fit
well with each other and with the input. Any one constraint can typically be
overridden by combinations of other constraints and this makes the search
procedure robust in the presence of noisy data, noisy hardware, or minor
inconsistencies in the knowledge.

There are, of course, many complexities: Under what conditions will the
network settle to a stable solution? Will this solution be the optimal one? How
long will it take to settle? What is the precise relationship between weights and
probabilities? These issues are examined in detail by Hummel and Zucker [52],
Hinton and Sejnowski [45], Geman and Geman [31], Hopfield and Tank [51]
and Marroquin [65].

3.2. Representation

For tasks like low-level vision, it is usually fairly simple to decide how to use
the units to represent the important features of the task domain. Even so,
there are some important choices about whether to represent a physical
quantity (like the depth at a point in the image) by the state of a single
continuous unit, or by the activities in a set of units each of which indicates its
confidence that the depth lies within a certain interval [10].

The issues become much more complicated when we consider how a
complex, articulated structure like a plan or the meaning of a sentence might
be represented in a network of simple units. Some preliminary work has been
done by Minsky [67] and Hinton [37] on the representation of inheritance
hierarchies and the representation of frame-like structures in which a whole
object is composed of a number of parts each of which plays a different role
within the whole. A recurring issue is the distinction between local and
distributed representations. In a local representation, each concept is repre-
sented by a single unit [13, 27]. In a distributed representation, the kinds of
concepts that we have words for are represented by patterns of activity
distributed over many units, and each unit takes part in many such patterns
[42]. Distributed representations are usually more efficient than local ones in
addition to being more damage-resistant. Also, if the distributed representa-
tion allows the weights to capture important underlying regularities in the task
domain, it can lead to much better generalization than a local representation
[78, 80]. However, distributed representations can make it difficult to represent
several different things at the same time and so to use them effectively for
representing structures that have many parts playing different roles it may be
necessary to have a separate group of units for each role so that the assignment
of a filler to a role is represented by a distributed pattern of activity over a
group of "role-specific" units.

CONNECTIONIST LEARNING PROCEDURES 189

Much confusion has been caused by the failure to realize that the words
"local" and "distributed" refer to the relationship between the terms of some
descriptive language and a connectionist implementation. If an entity that is
described by a single term in the language is represented by a pattern of
activity over many units in the connectionist system, and if each of these units
is involved in representing other entities, then the representation is distributed.
But it is always possible to invent a new descriptive language such that, relative
to this language, the very same connectionist system is using local representa-
tions.

3.3. Learning

In a network that uses local representations it may be feasible to set all the
weights by hand because each weight typically corresponds to a meaningful
relationship between entities in the domain. If, however, the network uses
distributed representations it may be very hard to program by hand and so a
learning procedure may be essential. Some learning procedures, like the
perceptron convergence procedure [77], are only applicable if the desired states
of all the units in the network are already specified. This makes the learning
task relatively easy. Other, more recent, learning procedures operate in
networks that contain "hidden" units [46] whose desired states are not
specified (either directly or indirectly) by the input or the desired output of the
network. This makes learning much harder because the learning procedure
must (implicitly) decide what the hidden units should represent. The learning
procedure is therefore constructing new representations and the results of
learning can be viewed as a numerical solution to the problem of whether to
use local or distributed representations.

Connectionist learning procedures can be divided into three broad classes:
Supervised procedures which require a teacher to specify the desired output
vector, reinforcement procedures which only require a single scalar evaluation
of the output, and unsupervised procedures which construct internal models
that capture regularities in their input vectors without receiving any additional
information. As we shall see, there are often ways of converting one kind of
learning procedure into another.

4. Associative Memories without Hidden Units

Several simple kinds of connectionist learning have been used extensively for
storing knowledge in simple associative networks which consist of a set of input
units that are directly connected to a set of output units. Since these networks
do not contain any hidden units, the difficult problem of deciding what the
hidden units should represent does not arise. The aim is simply to store a set of
associations between input vectors and output vectors by modifying the weights
on the connections. The representation of each association is typically distrib-

190 G.E. HINTON

uted over many connections and each connection is involved in storing many
associations. This makes the network robust against minor physical damage
and it also means that weights tend to capture regularities in the set of
input-output pairings, so the network tends to generalize these regularities to
new input vectors that it has not been trained on [6].

4.1. Linear associators

In a linear associator, the state of an output unit is a linear function of the total
input that it receives from the input units (see (1)). A simple, Hebbian
procedure for storing a new association (or "case") is to increment each
weight, wji , between the ith input unit and the j th output unit by the product of
the states of the units

Awji = YiYi , (3)

where Yi and yj are the activities of an input and an output unit. After a set of
associations have been stored, the weights encode the cross-correlation matrix
between the input and output vectors. If the input vectors are orthogonal and
have length 1, the associative memory will exhibit perfect recall. Even though
each weight is involved in storing many different associations, each input
vector will produce exactly the correct output vector [56].

If the input vectors are not orthogonal, the simple Hebbian storage proce-
dure is not optimal. For a given network and a given set of associations, it may
be impossible to store all the associations perfectly, but we would still like the
storage procedure to produce a set of weights that minimizes some sensible
measure of the differences between the desired output vectors and the vectors
actually produced by the network. This "error measure" can be defined as

E = ½ ~ (y j , c - dj,c) 2 ,
j,c

where Yj,c is the actual state of output unit j in input-output case c, and dj, c is its
desired state. Kohonen [56] shows that the weight matrix that minimizes this
error measure can be computed by an iterative storage procedure that re-
peatedly sweeps through the whole set of associations and modifies each weight
by a small amount in the direction that reduces the error measure. This is a
version of the least squares learning procedure described in Section 5. The cost
of finding an optimal set of weights (in the least squares sense of optimal) is
that storage ceases to be a simple "one-shot" process. To store one new
association it is necessary to sweep through the whole set of associations many
times.

CONNECTIONIST L E A R N I N G P R O C E D U R E S 191

4.2. Nonlinear associative nets

If we wish to store a small set of associations which have nonorthogonal input
vectors, there is no simple, one-shot storage procedure for linear associative
nets that guarantees perfect recall. In these circumstances, a nonlinear associa-
tive net can perform better. Willshaw [102] describes an associative net in
which both the units and the weights have just two states: 1 and 0. The weights
all start at 0, and associations are stored by setting a weight to 1 if ever its input
and output units are both on in any association (see Fig. 2). To recall an
association, each output unit must have its threshold dynamically set to be just
less than m, the number of active input units. If the output unit should be on,
the m weights coming from the active input units will have been set to 1 during
storage, so the output unit is guaranteed to come on. If the output unit should
be off, the probability of erroneously coming on is given by the probability that
all m of the relevant weights will have been set to 1 when storing other
associations. Willshaw showed that associative nets can make efficient use of
the information capacity of the weights. If the number of active input units is
the log of the total number of input units, the probability of incorrectly
activating an output unit can be made very low even when the network is
storing close to 0.69 of its information-theoretic capacity.

An associative net in which the input units are identical with the output units
can be used to associate vectors with themselves. This allows the network to
complete a partially specified input vector. If the input vector is a very
degraded version of one of the stored vectors, it may be necessary to use an
iterative retrieval process. The initial states of the units represent the partially
specified vector, and the states of the units are then updated many times until
they settle on one of the stored vectors. Theoretically, the network could
oscillate, but Hinton [37] and Anderson and Mozer [7] showed that iterative
retrieval normally works well. Hopfield [49] showed that if the weights are
symmetrical and the units are updated one at a time the iterative retrieval
process can be viewed as a form of gradient descent in an "energy function".

---4 - - a
i

- - 4

r \

Fig. 2. An associative net (Willshaw [102]). The input vector comes in at the left and the output
vector comes out at the bot tom (after thresholding). The solid weights have value 1 and the open
weights have value 0. The network is shown after it has stored the associations 01001----~ 10001,

10100---~ 01100, 00010--*00110.

192 G.E. H I N T O N

Hopfield nets store vectors whose components are all +1 or - 1 using the
simple storage procedure described in equation (3). To retrieve a stored vector
from a partial description (which is a vector containing some 0 components) ,
we start the network at the state specified by the partial description and then
repeatedly update the states of units one at a time. The units can be chosen in
random order or in any other order provided no unit is ever ignored for more
than a finite time. Hopfield [49] observed that the behavior of the network is
governed by the global energy function t

E "= - - E SiSjWij q- E sjOj, (4)
i<j j

where s i and sj are the states of two units. Each time a unit updates its state, it
adopts the state that minimizes this energy function because the decision rule
used to update a unit is simply the derivative of the energy function. The unit
adopts the state + 1 if its "energy gap" is positive and the state - 1 otherwise,
where the energy gap of the j th unit, AEj, is the increase in the global energy
caused by changing the unit from state + 1 to state - 1 .

a G = E(% = - 1) - E(sj = + 1) = -2O,. + 2 ~ s,w,. (5)
i

So the energy must decrease until the network settles into a local minimum
of the energy function. We can therefore view the retrieval process in the
following way: The weights define an "energy landscape" over global states of
the network and the stored vectors are local minima in this landscape. The
retrieval process consists of moving downhill from a starting point to a nearby
local minimum.

If too many vectors are stored, there may be spurious local minima caused
by interactions between the stored vectors. Also, the basins of attraction
around the correct minima may be long and narrow instead of round, so a
downhill path from a random starting point may not lead to the nearest local
minimum. These problems can be alleviated by using a process called "un-
learning" [20, 50].

A Hopfield net with N totally interconnected units can store about 0.15N
random vectors. 2 This means that it is storing about 0.15 bits per weight, even
though the weights are integers with m + 1 different values, where m is the
number of vectors stored. The capacity can be increased considerably by

' The energy function should not be confused with the error function described earlier. Gradient
descent in the energy funct ion is per formed by changing the states of the units, not the weights.

2 There is some confusion in the literature due to different ways of measur ing storage capacity. If
we insist on a fixed probability of getting each componen t of each vector correct, the number of
vectors that can be stored is O(N) . If we insist on a fixed probability of getting all components of
a / /vec tors correct, the n u m b e r of vectors that can be stored is O(N/ log N).

CONNECTIONIST LEARNING PROCEDURES 193

abandoning the one-shot storage procedure and explicitly training the network
on typical noisy retrieval tasks using the threshold least squares or perceptron
convergence procedures described below.

4.3. The deficiencies of associators without hidden units

If the input vectors are orthogonal, or if they are made to be close to
orthogonal by using high-dimensional random vectors (as is typically done in a
Hopfield net), associators with no hidden units perform well using a simple
Hebbian storage procedure. If the set of input vectors satisfy the much weaker
condition of being linearly independent, associators with no hidden units can
learn to give the correct outputs provided an iterative learning procedure is
used. Unfortunately, linear independence does not hold for most tasks that can
be characterized as mapping input vectors to output vectors because the
number of relevant input vectors is typically much larger than the number of
components in each input vector. The required mapping typically has a
complicated structure that can only be expressed using multiple layers of
hidden units. 3 Consider, for example, the task of identifying an object when
the input vector is an intensity array and the output vector has a separate
component for each possible name. If a given type of object can be either black
or white, the intensity of an individual pixel (which is what an input unit
encodes) cannot provide any direct evidence for the presence or absence of an
object of that type. So the object cannot be identified by using weights on
direct connections from input to output units. Obviously, it is necessary to
explictly extract relationships among intensity values (such as edges) before
trying to identify the object. Actually, extracting edges is just a small part of
the problem. If recognition is to have the generative capacity to handle novel
images of familiar objects the network must somehow encode the systematic
effects of variations in lighting and viewpoint, partial occlusion by other
objects, and deformations of the object itself. There is a tremendous gap
between these complex regularities and the regularities that can be captured by
an associative net that lacks hidden units.

5. Simple Supervised Learning Procedures

Consider a network that has input units which are directly connected to output
units whose states (i.e. activity levels) are a continuous smooth function of
their total input. Suppose that we want to train the network to produce
particular "desired" states of the output units for each member of a set of input
vectors. A measure of how poorly the network is performing with its current

3 It is always possible to redefine the units and the connectivity so that multiple layers of simple
units become a single layer of much more complicated units. But this redefinition does not make
the problem go away.

194 G.E. HINTON

set of weights is:

E = ½ ~ (Y~,c - dj,c) 2 , (6)
j ,c

where Yj,c is the actual state of output unit j in input-output case c, and dj, c is its
desired state.

We can minimize the error measure given in (6) by starting with any set of
weights and repeatedly changing each weight by an amount proportional to
OE/Ow.

OE
a w j , = - e awj----~ " (7)

In the limit, as e tends to 0 and the number of updates tends to infinity, this
learning procedure is guaranteed to find the set of weights that gives the least
squared error. The value of aE/Ow is obtained by differentiating (6) and (1).

OE = ~, OE dY i Oxj _ ~ (y j - d j) dy~
OWji c a s e s Oyj dxj Ow~i s ~ Yi" (8)

If the output units are linear, the term dy/dx j is a constant.
The least squares learning procedure has a simple geometric interpretation.

We construct a multi-dimensional "weight space" that has an axis for each
weight and one extra axis (called "height") that corresponds to the error
measure. For each combination of weights, the network will have a certain
error which can be represented by the height of a point in weight space. These
points form a surface called the "error surface". For networks with linear
output units and no hidden units, the error surface always forms a bowl whose
horizontal cross-sections are ellipses and whose vertical cross-sections are
parabolas. Since the bowl only has one minimum, 4 gradient descent on the
error surface is guaranteed to find it.

The error surface is actually the sum of a number of parabolic troughs, one
for each training case. If the output units have a nonlinear but monotonic
input-output function, each trough is deformed but no new minima are created
in any one trough because the monotonic nonlinearity cannot reverse the sign
of the gradient of the trough in any direction. When many troughs are added
together, however, it is possible to create local minima because it is possible to
change the sign of the total gradient without changing the signs of any of the
conflicting case-wise gradients of which it is composed. But local minima
cannot be created in this way if there is a set of weights that gives zero error for
all training cases. If we consider moving away from this perfect point, the error
must increase (or remain constant) for each individual case and so it must

4 This minimum may be a whole subspace.

CONNECTIONIST LEARNING PROCEDURES 195

increase (or remain constant) for the sum of all these cases. So gradient
descent is still guaranteed to work for monotonic nonlinear input-output
functions provided a perfect solution exists. However , it will be very slow at
points in weight space where the gradient of the input-output function ap-
proaches zero for the output units that are in error.

The "batch" version of the least squares procedure sweeps through all the
cases accumulating OE/Ow before changing the weights, and so it is guaranteed
to move in the direction of steepest descent. The "onl ine" version, which
requires less memory, updates the weights after each input-output case [99]. 5
This may sometimes increase the total error, E, but by making the weight
changes sufficiently small the total change in the weights after a complete
sweep through all the cases can be made to approximate steepest descent
arbitrarily closely.

5.1. A least squares procedure for binary threshold units

Binary threshold units use a step function, so the term dy / /dx / i s infinite at the
threshold and zero elsewhere and the least squares procedure must be modified
to be applicable to these units. In the following discussion we assume that the
threshold is implemented by a "bias" weight on a permanently active input
line, so the unit turns on if its total input exceeds zero. The basic idea is to
define an error function that is large if the total input is far from zero and the
unit is in the wrong state and is 0 when the unit is in the right state. The
simplest version of this idea is to define the error of an output unit, j for a
given input case to be

r 0 , if output unit has the fight s ta te ,

Ej,~* -- ~ 1x2 if output unit has the wrong state l ~ j , c ,

Unfortunately, this measure can be minimized by setting all weights and
biases to zero so that units are always exactly at their threshold (Yann Le Cun,
personal communication). To avoid this problem we can introduce a margin,
m, and insist that for units which should be on the total input is at least m and
for units that should be of f the total input is at most - m . The new error
measure is then

E j,c I 0 ,
= l (m - xj,c) 2 ,

1½(m + X j , c) 2 ,

if output unit has the fight state by at least m ,

if output unit should be on but has x j, c < m ,

if output unit should be off but has xj. c > - m .

s The online version is usually called the "least mean squares" or "LMS" procedure.

196 G.E. HINTON

The derivative of this error measure with respect to xj, c is

0,
O E j*,c

- x j, c - m ,
OXj'c x/, c + m ;

if output unit has the right state by at least m ,

if output unit should be on but has xj,~ < rn,

if output unit should be off but has xj,~ > - m .

So the "threshold least squares procedure" becomes:

3 E j* c
A w j i = - e ~c ~Xy,c Yi,c "

5.2. The perceptron convergence procedure

One version of the perceptron convergence procedure is related to the online
version of the threshold least squares procedure in the following way: The
magnitude of O E ~ c / O x j , ~ is ignored and only its sign is taken into consideration.
So the weight changes are:

m w j i , c {! : e y i , c ,

e Y i , c ,

if output unit behaves correctly by at least m ,

if output unit should be on but has xj, c < m ,

if output unit should be off but has xj,c > - m .

Because it ignores the magnitude of the error, this procedure changes
weights by at least e even when the error is very small. The finite size of the
weight steps eliminates the need for a margin so the standard version of the
perceptron convergence procedure does not use one.

Because it ignores the magnitude of the error this procedure does not even
stochastically approximate steepest descent in E, the sum squared error. Even
with very small e, it is quite possible for E to rise after a complete sweep
through all the cases. However, each time the weights are updated, the
perceptron convergence procedure is guaranteed to reduce the value of a
different cost measure that is defined solely in terms of weights.

To picture the least squares procedure we introduced a space with one
dimension for each weight and one extra dimension for the sum squared error
in the output vectors. To picture the perceptron convergence procedure, we do
not need the extra dimension for the error. For simplicity we shall consider a
network with only one output unit. Each case corresponds to a constraint
hyperplane in weight space. If the weights are on one side of this hyperplane,
the output unit will behave correctly and if they are on the other side it will
behave incorrectly (see Fig. 3). To behave correctly for all cases, the weights

CONNECTIONIST LEARNING PROCEDURES 197

V

Fig. 3. Some hyperplanes in weight space. Each plane represents the constraint on the weights
caused by a particular input-output case. If the weights lie on the correct (unshaded) side of the
plane, the output unit will have the correct state for that case. Provided the weight changes are
proportional to the activities of the input lines, the perceptron convergence procedure moves the

weights perpendicularly towards a violated constraint plane.

must lie on the correct side of all the hyperplanes, so the combinations of
weights that give perfect performance form a convex set. Any set of weights in
this set will be called "ideal."

The perceptron convergence procedure considers the constraint planes one
at a time, and whenever the current combination of weights is on the wrong
side, it moves it perpendicularly towards the plane. This reduces the distance
between the current combination of weights and any of the ideal combinations.
So provided the weights move by less than twice the distance to the violated
constraint plane, a weight update is guaranteed to reduce the measure

'~ (Wi,actual W .
2

-- /,ideal)
i

The perceptron convergence procedure has many nice properties, but it also
has some serious problems. Unlike the threshold least squares procedure, it
does not necessarily settle down to a reasonable compromise when there is no
set of weights that will do the job perfectly. Also, there are obvious problems
in trying to generalize to more complex, multi-layered nets in which the ideal
combinations of weights do not form a single convex set, because the idea of
moving towards the ideal region of weight space breaks down. It is therefore
not surprising that the more sophisticated procedures required for multi-layer
nets are generalizations of the least squares procedure rather than the percep-
tron convergence procedure: They learn by decreasing a squared performance
error, not a distance in weight space.

198 G.E. HINTON

5.3. The deficiencies of simple learning procedures

The major deficiency of both the least squares and perceptron convergence
procedures is that most "interesting" mappings between input and output
vectors cannot be captured by any combination of weights in such simple
networks, so the guarantee that the learning procedure will find the best
possible combination of weights is of little value. Consider, for example, a
network composed of two input units and one output unit. There is no way of
setting the two weights and one threshold to solve the very simple task of
producing an output of 1 when the input vector is (1, 1) or (0, 0) and an output
of 0 when the input vector is (1, 0) or (0, 1). Minsky and Papert [68] give a
clear analysis of the limitations on what mappings can be computed by
three-layered nets. They focus on the question of what preprocessing must be
done by the units in the intermediate layer to allow a task to be solved. They
generally assume that the preprocessing is fixed, and so they avoid the problem
of how to make the units in the intermediate layer learn useful predicates. So,
from the learning perspective, their intermediate units are not true hidden
units.

Another deficiency of the least squares and perceptron learning procedures
is that gradient descent may be very slow if the elliptical cross-section of the
error surface is very elongated so that the surface forms a long ravine with
steep sides and a very low gradient along the ravine. In this case, the gradient
at most points in the space is almost perpendicular to the direction towards the
minimum. If the coefficient e in (7) is large, there are divergent oscillations
across the ravine, and if it is small the progress along the ravine is very slow. A
standard method for speeding the convergence in such cases is recursive least
squares [100]. Various other methods have also been suggested [5, 71, 75].

We now consider learning in more complex networks that contain hidden
units. The next five sections describe a variety of supervised, unsupervised, and
reinforcement learning procedures for these nets.

6. Backpropagation: A Multi-layer Least Squares
Procedure

The "backpropagation" learning procedure [80, 81] is a generalization of the
least squares procedure that works for networks which have layers of hidden
units between the input and output units. These multi-layer networks can
compute much more complicated functions than networks that lack hidden
units, but the learning is generally much slower because it must explore the
space of possible ways of using the hidden units. There are now many examples
in which backpropagation constructs interesting internal representations in the
hidden units, and these representations allow the network to generalize in
sensible ways. Variants of the procedure were discovered independently by
Werbos [98], Le Cun [59] and Parker [70].

In a multi-layer network it is possible, using (8), to compute OE/Owji for all

CONNECTIONIST LEARNING PROCEDURES 199

the weights in the network provided we can compute OE/Oy/for all the units
that have modifiable incoming weights. In a system that has no hidden units,
this is easy because the only relevant units are the output units, and for them
OE/Oy~ is found by differentiating the error function in (6). But for hidden
units, OE/Oy/is harder to compute. The central idea of backpropagation is that
these derivatives can be computed efficiently by starting with the output layer
and working backwards through the layers. For each input-output case, c, we
first use a forward pass, starting at the input units, to compute the activity
levels of all the units in the network. Then we use a backward pass, starting at
the output units, to compute OE/Oyj for all the hidden units. For a hidden unit,
j, in layer J the only way it can affect the error is via its effects on the units, k,
in the next layer, K (assuming units in one layer only send their outputs to
units in the layer above). So we have

OE - ~_~k OE dYk dXk = ~k OE dyk
Oy/ Oy k dx k dy/ Oy k dx k Wkj , (9)

where the index c has been suppressed for clarity. So if OE/Oy k is already
known for all units in layer K, it is easy to compute the same quantity for units
in layer J. Notice that the computation performed during the backward pass is
very similar in form to the computation performed during the forward pass
(though it propagates error derivatives instead of activity levels, and it is
entirely linear in the error derivatives).

6.1. The shape of the error surface

In networks without hidden units, the error surface only has one minimum
(provided a perfect solution exists and the units use smooth monotonic
input-output functions). With hidden units, the error surface may contain many
local minima, so it is possible that steepest descent in weight space will get
stuck at poor local minima. In practice, this does not seem to be a serious
problem. Backpropagation has been tried for a wide variety of tasks and poor
local minima are rarely encountered, provided the network contains a few
more units and connections than are required for the task. One reason for this
is that there are typically a very large number of qualitatively different perfect
solutions, so we avoid the typical combinatorial optimization task in which one
minimum is slightly better than a large number of other, widely separated
minima.

In practice, the most serious problem is the speed of convergence, not the
presence of nonglobal minima. This is discussed further in Section 12.

6.2. Backpropagation for discovering semantic features

To demonstrate the ability of backpropagation to discover important underly-
ing features of a domain, Hinton [38] used a multi-layer network to learn the

200 G.E. HINTON

Christopher = Penelope Andrew = Christine
I I

I t 1 I
Margaret = Arthur Victode = James Jennifer = Charles

i
I I

Colin Charlotte

Roberto = Maria Pierro = Francesca
t 1

I I I I
Gina = Emilio Lucia = Marco Angela = Tomaso

1
I 1

Alfonso Sophie

Fig. 4. Two isomorphic family trees.

family relationships between 24 different people (see Fig. 4). The information
in a family tree can be represented as a set of triples of the form ((personl) ,
(relationship), (person2)), and a network can be said to "know" these triples
if it can produce the third term of any triple when given the first two terms as
input. Figure 5 shows the architecture of the network that was used to learn the
triples. The input vector is divided into two parts, one of which specifies a
person and the other a relationship (e.g. has-father). The network is trained to
produce the related person as output. The input and output encoding use a
different unit to represent each person and relationship, so all pairs of people
are equally similar in the input and output encoding: The encodings do not give
any clues about what the important features are. The architecture is designed
so that all the information about an input person must be squeezed through a
narrow bottleneck of 6 units in the first hidden layer. This forces the network

Fig. 5. The activity levels in a five-layer network after it has learned. The bottom layer has 24
input units on the left for representing person1 and 12 units on the right for representing the
relationship. The white squares inside these two groups show the activity levels of the units. There
is one active unit in the first group (representing Colin) and one in the second group (representing
has-aunt). Each of the two groups of input units is totally connected to its own group of 6 units in
the second layer. These two groups of 6 must learn to encode the input terms as distributed
patterns of activity. The second layer is totally connected to the central layer of 12 units, and this
layer is connected to the penultimate layer of 6 units. The activity in the penultimate layer must
activate the correct output units, each of which stands for a particular person2. In this case, there
are two correct answers (marked by black dots) because Colin has two aunts. Both the input and
output units are laid out spatially with the English people in one row and the isomorphic Italians

immediately below.

CONNECTIONIST LEARNING PROCEDURES 201

to represent people using distributed patterns of activity in this layer. The aim
of the simulation is to see if the components of these distributed patterns
correspond to the important underlying features of the domain.

After prolonged training on 100 of the 104 possible relationships, the
network was tested on the remaining 4. It generalized correctly because during
the training it learned to represent each of the people in terms of important
features such as age, nationality, and the branch of the family tree that they
belonged to (see Fig. 6), even though these "semantic" features were not at all
explicit in the input or output vectors. Using these underlying features, much
of the information about family relationships can be captured by a fairly small
number of "micro-inferences" between features. For example, the father of a
middle-aged person is an old person, and the father of an Italian person is an
Italian person. So the features of the output person can be derived from the
features of the input person and of the relationship. The learning procedure
can only discover these features by searching for a set of features that make it
easy to express the associations. Once these features have been discovered, the
internal representation of each person (in the first hidden layer) is a distributed
pattern of activity and similar people are represented by similar patterns. Thus
the network constructs its own internal similarity metric. This is a significant
advance over simulations in which good generalization is achieved because the
experimenter chooses representations that already have an appropriate simi-
larity metric.

l ~ _ ~ l l W ̧ ~ ~ ~ - ~

Fig. 6. The weights from the 24 input units that represent people to the 6 units in the second layer
that learn distributed representations of people. White rectangles stand for excitatory weights,
black for inhibitory weights, and the area of the rectangle encodes the magnitude of the weight.
The weights from the 12 English people are in the top row of each unit. Beneath each of these
weights is the weight from the isomorphic Italian. Unit 1 learns to encode nationality, unit 2
encodes generation (using three values), and unit 4 encodes the branch of the family tree to which
a person belongs. During the learning, each weight was given a tendency to decay towards zero.
This tendency is balanced by the error gradient, so the final magnitude of a weight indicates how

useful it is in reducing the error.

2 0 2 G.E. H I N T O N

6.3. Backpropagation for mapping text to speech

Backpropagation is an effective learning technique when the mapping from
input vectors to output vectors contains both regularities and exceptions. For
example, in mapping from a string of English letters to a string of English
phonemes there are many regularities but there are also exceptions such as the
word "women." Sejnowski and Rosenberg [84] have shown that a network
with one hidden layer can be trained to pronounce letters surprisingly well.
The input layer encodes the identity of the letter to be pronounced using a
different unit for each possible letter. The input also encodes the local context
which consists of the three previous letters and three following letters in the
text (space and punctuation are treated as special kinds of letters). This
seven-letter window is moved over the text, so the mapping from text to speech
is performed sequentially, one letter at a time. The output layer encodes a
phoneme using 21 articulatory features and 5 features for stress and syllable
boundaries. There are 80 hidden units each of which receives connections from
all the input units and sends connections to all the output units (see Fig. 7).
After extensive training, the network generalizes well to new examples which
demonstrates that it captures the regularities of the mapping. Its performance
on new words is comparable to a conventional computer program which uses a
large number of hand-crafted rules.

TEACHER
'V"

/ k /
26 Output Units

/T",
80

Hidden
Units l \ \ ' , , ,

Input Units
~ OOOO C O £ ~ OOOO OOCO OOCO OCx30

_ a _ c a t _)

Fig. 7. The network has 309 units and 18,629 connections. A window seven letters wide is moved
over the text, and the network pronounces the middle letter. It assumes a preprocessor to identify

characters, and a postprocessor to turn phonemes into sounds.

CONNECTIONIST LEARNING PROCEDURES 203

6.4. Backpropagation for phoneme recognition

Speech recognition is a task that can be used to assess the usefulness of
backpropagation for real-world signal-processing applications. The best exist-
ing techniques, such as hidden Markov models [9], are significantly worse than
people, and an improvement in the quality of recognition would be of great
practical significance.

A subtask which is well-suited to backpropagation is the bottom-up recogni-
tion of highly confusable consonants. One obvious approach is to convert the
sound into a spectrogram which is then presented as the input vector to a
multi-layer network whose output units represent different consonants. Un-
fortunately, this approach has two serious drawbacks. First, the spectrogram
must have many "pixels" to give reasonable resolution in time and frequency,
so each hidden unit has many incoming weights. This means that a very large
number of training examples are needed to provide enough data to estimate
the weights. Second, it is hard to achieve precise time alignment of the input
data, so the spatial pattern that represents a given phoneme may occur at many
different positions in the spectrogram. To learn that these shifts in position do
not change the identity of the phoneme requires an immense amount of
training data. We already know that the task has a certain symmetry--the
same sounds occurring at different times mean the same phoneme. To speed
learning and improve generalization we should build this a priori knowledge
into the network and let it use the information in the training data to discover
structure that we do not already understand.

An interesting way to build in the time symmetry is to use a multi-layer,
feed-forward network that has connections with time delays [88]. The input
units represent a single time flame from the spectrogram and the whole
spectrogram is represented by stepping it through the input units. Each hidden
unit is connected to each unit in the layer below by several different connec-
tions with different time delays and different weights. So it has a limited
temporal window within which it can detect temporal patterns in the activities
of the units in the layer below. Since a hidden unit applies the same set of
weights at different times, it inevitably produces similar responses to similar
patterns that are shifted in time (see Fig. 8).

Kevin Lang [58] has shown that a time delay net that is trained using a
generalization of the backpropagation procedure compares favorably with
hidden Markov models at the task of distinguishing the words "bee", "dee",
"ee", and "vee" spoken by many different male speakers in a very noisy
environment. Waibel et al. [97] have shown that the same network can achieve
excellent speaker-dependent discrimination of the phonemes "b", "d", and
"g" in varying phonetic contexts.

An interesting technical problem arises in computing the error derivatives
for the output units of the time delay network. The adaptive part of the

204 G.E. HINTON

@

©

time slices
of spectrogram

4 output units,
each connected to
all hidden units.

Time delays of
1,2,3,4,5

8 hidden units,
each connected to
all input units.

Time delays of
1,2,3.

16 input units

Fig. 8. Part of the time delay network used to recognize phonemes with variable onset times. A
unit in one layer is connected to a unit in the layer below by several different connections which

have different time delays and learn to have different weights.

network contains one output unit for each possible phoneme and these units
respond to the input by producing a sequence of activations. If the training
data is labeled with the exact time of occurrence of each phoneme, it is
possible to specify the exact time at which an output unit should be active. But
in the absence of precisely time-aligned training data, it is necessary to
compute error derivatives for a sequence of activations without knowing when
the phoneme occurred. This can be done by using a fixed postprocessing layer
to integrate the activity of each output unit over time. We interpret the

CONNECTIONIST LEARNING PROCEDURES 205

instantaneous activity of an output unit as a representation of the probability
that the phoneme occurred at exactly that time. So, for the phoneme that
really occurred, we know that the time integral of its activity should be 1 and
for the other phonemes it should be 0. So at each time, the error derivative is
simply the difference between the desired and the actual integral. After
training, the network localizes phonemes in time, even though the training data
contains no information about time alignment.

6.5. Postprocessing the output of a backpropagation net

Many people have suggested transforming the raw input vector with a module
that uses unsupervised learning before presenting it to a module that uses
supervised learning. It is less obvious that a supervised module can also benefit
from a nonadaptive postprocessing module. A very simple example of this kind
of postprocessing occurs in the time delay phoneme recognition network
described in Section 6.4.

David Rumelhart has shown that the idea of a postprocessing module can be
applied even in cases where the postprocessing function is initially unknown. In
trying to imitate a sound, for example, a network might produce an output
vector which specifies how to move the speech articulators. This output vector
needs to be postprocessed to turn it into a sound, but the postprocessing is
normally done by physics. Suppose that the network does not receive any
direct information about what it should do with its articulators but it does
"know" the desired sound and the actual sound, which is the transformed
"image" of the output vector. If we had a postprocessing module which
transformed the activations of the speech articulators into sounds, we could
backpropagate through this module to compute error derivatives for the
articulator activations.

Rumelhart uses an additional network (which he calls a mental model) that
first learns to perform the postprocessing (i.e. it learns to map from output
vectors to their transformed images). Once this mapping has been learned,
backpropagation through the mental model can convert error derivatives for
the "images" into error derivatives for the output vectors of the basic network.

6.6. A reinforcement version of backpropagation

Munro [69] has shown that the idea of using a mental model can be applied
even when the image of an output vector is simply a single scalar value--the
reinforcement. First, the mental model learns to predict expected reinforce-
ment from the combination of the input vector and the output vector. Then the
derivative of the expected reinforcement can be backpropagated through the
mental model to get the reinforcement derivatives for each component of the
output vector of the basic network.

206 G.E. HINTON

6.7. Iterative backpropagation

Rumelhart, Hinton, and Williams [80] show how the backpropagation proce-
dure can be applied to iterative networks in which there are no limitations on
the connectivity. A network in which the states of the units at time t determine
the states of the units at time t + 1 is equivalent to a net which has one layer for
each time slice. Each weight in the iterative network is implemented by a
whole set of identical weights in the corresponding layered net, one for each
time slice (see Fig. 9). In the iterative net, the error is typically the difference
between the actual and desired final states of the network, and to compute the
error derivatives it is necessary to backpropagate through time, so the history
of states of each unit must be stored. Each weight will have many different
error derivatives, one for each time step, and the sum of all these derivatives is
used to determine the weight change.

Backpropagation in iterative nets can be used to train a network to generate
sequences or to recognize sequences or to complete sequences. Examples are
given by Rumelhart, Hinton and Williams [81]. Alternatively, it can be used to
store a set of patterns by constructing a point attractor for each pattern. Unlike
the simple storage procedure used in a Hopfield net, or the more sophisticated
storage procedure used in a Boltzmann machine (see Section 7), backpropaga-
tion takes into account the path used to reach a point attractor. So it will not
construct attractors that cannot be reached from the normal range of starting
points on which it is trained. 6

Fig. 9. On the left is a simple iterative network that is run synchronously for three iterations. On
the right is the equivalent layered network.

6A backpropagation net that uses asymmetric connections (and synchronous updating) is not
guaranteed to settle to a single stable state. To encourage it to construct a point attractor, rather
than a limit cycle, the point attractor can be made the desired state for the last few iterations.

CONNECTIONIST LEARNING PROCEDURES 207

6.8. Backpropagation as a maximum likelihood procedure

If we interpret each output vector as a specification of a conditional probability
distribution over a set of output vectors given an input vector, we can interpret
the backpropagation learning procedure as a method of finding weights that
maximize the likelihood of generating the desired conditional probability
distributions. Two examples of this kind of interpretation will be described.

Suppose we only attach meaning to binary output vectors and we treat a
real-valued output vector as a way of specifying a probability distribution over
binary vectors. We imagine that a real-valued output vector is stochastically
converted into a binary vector by treating the real values as the probabilities
that individual components have value 1, and assuming independence between
components. For simplicity, we can assume that the desired vectors used
during training are binary vectors, though this is not necessary. Given a set of
training cases, it can be shown that the likelihood of producing exactly the
desired vectors is maximized when we minimize the cross-entropy, C, between
the desired and actual conditional probability distributions:

C = - ~ dj, c log2(Yj,c) + (1 - djx) log2(1 - Yj,c),
j,c

where dj,~ is the desired probability of output unit j in case c and Yjx is its
actual probability.

So, under this interpretation of the output vectors, we should use the
cross-entropy function rather than the squared difference as our cost measure.
In practice, this helps to avoid a problem caused by output units which are
firmly off when they should be on (or vice versa). These units have a very small
value of Oy/Ox so they need a large value of OE/Oy in order to change their
incoming weights by a reasonable amount. When an output unit that should
have an activity level of 1 changes from a level of 0.0001 to level of 0.001, the
squared difference from 1 only changes slightly, but the cross-entropy de-
creases a lot. In fact, when the derivative of the cross-entropy is multiplied by
the derivative of the logistic activation function, the product is simply the
difference between the desired and the actual outputs, so OCj,c/Oxj, c is just the
same as for a linear output unit (Steven Nowlan, personal communication).

This way of interpreting backpropagation raises the issue of whether, under
some other interpretation of the output vectors, the squared error might not be
the correct measure for performing maximum likelihood estimation. In fact,
Richard Golden [32] has shown that minimizing the squared error is equivalent
to maximum likelihood estimation if both the actual and the desired output
vectors are treated as the centers of Gaussian probability density functions over
the space of all real vectors. So the "correct" choice of cost function depends
on the way the output vectors are most naturally interpreted.

Both the examples of baekpropagation described above fit this interpretation.

208 G.E. HINTON

6.9. Self-supervised backpropagation

One drawback of the standard form of backpropagation is that it requires an
external supervisor to specify the desired states of the output units (or a
transformed "image" of the desired states). It can be converted into an
unsupervised procedure by using the input itself to do the supervision, using a
multi-layer "encoder" network [2] in which the desired output vector is
identical with the input vector. The network must learn to compute an
approximation to the identity mapping for all the input vectors in its training
set, and if the middle layer of the network contains fewer units than the input
layer, the learning procedure must construct a compact, invertible code for
each input vector. This code can then be used as the input to later stages of
processing.

The use of self-supervised backpropagation to construct compact codes
resembles the use of principal components analysis to perform dimensionality
reduction, but it has the advantage that it allows the code to be a nonlinear
transform of the input vector. This form of backpropagation has been used
successfully to compress images [19] and to compress speech waves [25]. A
variation of it has been used to extract the underlying degrees of freedom of
simple shapes [83].

It is also possible to use backpropagation to predict one part of the
perceptual input from other parts. For example, in predicting one patch of an
image from neighboring patches it is probably helpful to use hidden units that
explicitly extract edges, so this might be an unsupervised way of discovering
edge detectors. In domains with sequential structure, one portion of a se-
quence can be used as input and the next term in the sequence can be the
desired output. This forces the network to extract features that are good
predictors. If this is applied to the speech wave, the states of the hidden units
will form a nonlinear predictive code. It is not yet known whether such codes
are more helpful for speech recognition than linear predictive coefficients.

A different variation of self-supervised backpropagation is to insist that all or
part of the code in the middle layer change as slowly as possible with time. This
can be done by making the desired state of each of the middle units be the
state it actually adopted for the previous input vector. This forces the network
to use similar codes for input vectors that occur at neighboring times, which is
a sensible principle if the input vectors are generated by a process whose
underlying parameters change more slowly than the input vectors themselves.

6.10. The deficiencies of backpropagation

Despite its impressive performance on relatively small problems, and its
promise as a widely applicable mechanism for extracting the underlying
structure of a domain, backpropagation is inadequate, in its current form, for
larger tasks because the learning time scales poorly. Empirically, the learning

C O N N E C T I O N I S T L E A R N I N G P R O C E D U R E S 209

time on a serial machine is very approximately O(N 3) where N is the number
of weights in the network. The time for one forward and one backward pass is
O(N). The number of training examples is typically O(N), assuming the
amount of information per output vector is held constant and enough training
cases are used to strain the storage capacity of the network (which is about 2
bits per weight). The number of times the weights must be updated is also
approximately O(N). This is an empirical observation and depends on the
nature of the task. 8 On a parallel machine that used a separate processor for

• • • 2 each connecUon, the Ume would be reduced to approximately O(N). Back-
propagation can probably be improved by using the gradient information in
more sophisticated ways, but much bigger improvements are likely to result
from making better use of modularity (see Section 12.4).

As a biological model, backpropagation is implausible. There is no evidence
that synapses can be used in the reverse direction, or that neurons can
propagate error derivatives backwards (using a linear input-output function) as
well as propagating activity levels forwards using a nonlinear input-output
function. One approach is to try to backpropagate the derivatives using
separate circuitry that learns to have the same weights as the forward circuitry
[70]. A second approach, which seems to be feasible for self-supervised
backpropagation, is to use a method called "recirculation" that approximates
gradient descent and is more biologically plausible [41]. At present, backpropa-
gation should be treated as a mechanism for demonstrating the kind of learning
that can be done using gradient descent, without implying that the brain does
gradient descent in the same way.

7. Boltzmann Machines

A Boltzmann machine [2, 46] is a generalization of a Hopfield net (see Section
4.2) in which the units update their states according to a stochastic decision
rule. The units have states of 1 or 0, 9 and the probability that unit j adopts the
state 1 is given by

1
PJ - 1 + e -aE/r ' (10)

where AE~=x) is the total input received by the jth unit and T is the
"temperature." It can be shown that if this rule is applied repeatedly to the
units, the network will reach "thermal equilibrium." At thermal equilibrium
the units still change state, but the probability of finding the network in any

8 Tesauro [90] reports a case in which the n u m b e r of weight updates is roughly proport ional to
the n u m b e r of training cases (it is actually a 4/3 power law). Judd shows that in the worst case it is
exponent ial [53].

9 A network that uses states of 1 and 0 can always be converted into an equivalent network that
uses states of +1 and - 1 provided the thresholds are altered appropriately.

210 G.E. HINTON

global state remains constant and obeys a Boltzmann distribution in which the
probability ratio of any two global states depends solely on their energy
difference:

PA - - = e - - (E A - - E B) / T .

PB

At high temperature, the network approaches equilibrium rapidly but low
energy states are not much more probable than high energy states. At low
temperature the network approaches equilibrium more slowly, but low energy
states are much more probable than high energy states. The fastest way to
approach low temperature equilibrium is generally to start at a high tempera-
ture and to gradually reduce the temperature. This is called "simulated
annealing" [55]. Simulated annealing allows Boltzmann machines to find low
energy states with high probability. If some units are clamped to represent an
input vector, and if the weights in the network represent the constraints of the
task domain, the network can settle on a very plausible output vector given the
current weights and the current input vector.

For complex tasks there is generally no way of expressing the constraints by
using weights on pairwise connections between the input and output units. It is
necessary to use hidden units that represent higher-order features of the
domain. This creates a problem: Given a limited number of hidden units, what
higher-order features should they represent in order to approximate the
required input-output mapping as closely as possible? The beauty of
Boltzmann machines is that the simplicity of the Boltzmann distribution leads
to a very simple learning procedure which adjusts the weights so as to use the
hidden units in an optimal way.

The network is "shown" the mapping that it is required to perform by
clamping an input vector on the input units and clamping the required output
vector on the output units. If there are several possible output vectors for a
given input vector, each of the possibilities is clamped on the output units with
the appropriate frequency. The network is then annealed until it approaches
thermal equilibrium at a temperature of 1. It then runs for a fixed time at
equilibrium and each connection measures the fraction of the time during
which both the units it connects are active. This is repeated for all the various
input-output pairs so that each connection can measure (sis/)÷, the expected
probability, averaged over all cases, that unit i and unit j are simultaneously
active at thermal equilibrium when the input and output vectors are both
clamped.

The network must also be run in just the same way but without clamping the
output units. Again, it reaches thermal equilibrium with each input vector
clamped and then runs for a fixed additional time to m e a s u r e ~sisj~-, the
expected probability that both units are active at thermal equilibrium when the

CONNECTIONIST LEARNING PROCEDURES 211

output vector is determined by the network. Each weight is then updated by an
amount proportional to the difference between these two quantities

a w l s = + -

It has been shown [2] that if e is sufficiently small this performs gradient
descent in an information-theoretic measure, G, of the difference between the
behavior of the output units when they are clamped and their behavior when
they are not clamped.

V+(O~ I t ,)
a = ~ P+(I,,, Oa) log (11)

e-(o lIo) '

w h e r e / , is a state vector over the input units, Oa is a state vector over the
output units, P+ is a probability measured when both the input and output
units are clamped, and P - is a probability measured at thermal equilibrium
when only the input units are clamped.

G is called the "asymmetric divergence" or "Kullback information," and its
gradient has the same form for connections between input and hidden units,
connections between pairs of hidden units, connections between hidden and
output units, and connections between pairs of output units. G can be viewed
as the difference of two terms. One term is the cross-entropy between the
"desired" conditional probability distribution that is clamped on the output
units and the "actual" conditional distribution exhibited by the output units
when they are not clamped. The other term is the entropy of the "desired"
conditional distribution. This entropy cannot be changed by altering the
weights, so minimizing G is equivalent to minimizing the cross-entropy term,
which means that Boltzmann machines use the same cost function as one form
of backpropagation (see Section 6.8).

A special case of the learning procedure is when there are no input units. It
can then be viewed as an unsupervised learning procedure which learns to
model a probability distribution that is specified by damping vectors on the
output units with the appropriate probabilities. The advantage of modeling a
distribution in this way is that the network can then perform completion. When
a partial vector is clamped over a subset of the output units, the network
produces completions on the remaining output units. If the network has
learned the training distribution perfectly, its probability of producing each
completion is guaranteed to match the environmental conditional probability of
this completion given the clamped partial vector.

The learning procedure can easily be generalized to networks where each
term in the energy function is the product of a weight, w~,j, k and an arbitrary
function, f (i , j, k), of the states of a subset of the units. The network must
be run so that it achieves a Boltzmann distribution in the energy function, so
each unit must be able to compute how the global energy would change if it

212 G.E. HINTON

were to change state. The generalized learning procedure is simply to change
the weight by an amount proportional to the difference between
(f(i , j, k , . . .)~÷ and (f(i , j, k , . . .)) - .

The learning procedure using simple pairwise connections has been shown to
produce appropriate representations in the hidden units [2] and it has also been
used for speech recognition [76]. However, it is considerably slower than
backpropagation because of the time required to reach equilibrium in large
networks. Also, the process of estimating the gradient introduces several
practical problems. If the network does not reach equilibrium the estimated
gradient has a systematic error, and if too few samples are taken to estimate
(sisj) ÷ and (sisj)- accurately the estimated gradient will be extremely noisy
because it is the difference of two noisy estimates. Even when the noise in the
estimate of the difference has zero mean, its variance is a function of (s~sj) ÷
and (sisj)-. When these quantities are near zero or one, their estimates will
have much lower variance than when they are near 0.5. This nonuniformity in
the variance gives the hidden units a surprisingly strong tendency to develop
weights that cause them to be on all the time or off all the time. A familiar
version of the same effect can be seen if sand is sprinkled on a vibrating sheet
of tin. Nearly all the sand clusters at the points that vibrate the least, even
though there is no bias in the direction of motion of an individual grain of
sand.

One interesting feature of the Boltzmann machine is that it is relatively easy
to put it directly onto a chip which has dedicated hardware for each connection
and performs the annealing extremely rapidly using analog circuitry that
computes the energy gap of a unit by simply allowing the incoming charge to
add itself up, and makes stochastic decisions by using physical noise. Alspector
and Allen [3] are fabricating a chip which will run about 1 million times as fast
as a simulation on a VAX. Such chips may make it possible to apply
connectionist learning procedures to practical problems, especially if they are
used in conjunction with modular approaches that allow the learning time to
scale better with the size of the task.

There is another promising method that reduces the time required to
compute the equilibrium distribution and eliminates the noise caused by the
sampling errors in (s~sj) ÷ and ~SiSj~-. Instead of directly simulating the
stochastic network it is possible to estimate its mean behavior using "mean
field theory" which replaces each stochastic binary variable by a deterministic
real value that represents the expected value of the stochastic variable.
Simulated annealing can then be replaced by a deterministic relaxation proce-
dure that operates on the real-valued parameters [51] and settles to a single
state that gives a crude representation of the whole equilibrium distribution.
The product of the "activity levels" of two units in this settled state can be used
as an approximation of (sis j) so a version of the Boltzmann machine learning
procedure can be applied. Peterson and Anderson [74] have shown that this
works quite well.

CONNECTIONIST LEARNING PROCEDURES 213

7.1. Maximizing reinforcement and entropy in a Boltzmann machine

The Boltzmann machine learning procedure is based on the simplicity of the
expression for the derivative of the asymmetric divergence between the
conditional probability distribution exhibited by the output units of a
Boltzmann machine and a desired conditional probability distribution. The
derivatives of certain other important measures are also very simple if the
network is allowed to reach thermal equilibrium. For example, the entropy of
the states of the machine is given by

H = - ~ P~ log e P~,

where P,, is the probability of a global configuration, and H is measured in
units of log 2 e bits. Its derivative is

OH 1
Ow,~ = T ((Es i s j) - (E) (s i s j)) . (12)

So if each weight has access to the global energy, E, it is easy to manipulate
the entropy.

It is also easy to perform gradient ascent in expected reinforcement if the
network is given a global reinforcement signal, R, that depends on its state.
The derivative of the expected reinforcement with respect to each weight is

OR _ 1 ((R s i s i) _ (R) (s i s i)) (13)
b w o T

A recurrent issue in reinforcement learning procedures is how to trade off
short-term optimization of expected reinforcement against the diversity re-
quired to discover actions that have a higher reinforcement than the network's
current estimate. If we use entropy as a measure of diversity, and we assume
that the system tries to optimize some linear combination of the expected
reinforcement and the entropy of its actions, it can be shown that its optimal
strategy is to pick actions according to a Boltzmann distribution, where the
expected reinforcement of a state is the analog of negative energy and the
parameter that determines the relative importance of expected reinforcement
and diversity is the analog of temperature. This result follows from the fact that
the Boltzmann distribution is the one which maximizes entropy (i.e. diversity)
for a given expected energy (i.e. reinforcement).

This suggests a learning procedure in which the system represents the
expected value of an action by its negative energy, and picks actions by
allowing a Boltzmann machine to reach thermal equilibrium. If the weights are
updated using equations (12) and (13) the negative energies of states will tend
to become proportional to their expected reinforcements, since this is the way
to make the derivative of H balance the derivative of R. Once the system has

214 G.E. HINTON

learned to represent the reinforcements correctly, variations in the temperature
can be used to make it more or less conservative in its choice of actions whilst
always making the optimal tradeoff between diversity and expected reinforce-
ment. Unfortunately, this learning procedure does not make use of the most
important property of Boltzmann machines which is their ability to compute
the quantity (sisj) given some specified state of the output units. Also, it is
much harder to compute the derivative of the entropy if we are only interested
in the entropy of the state vectors over the output units.

8. Maximizing Mutual Information: A Semisupervised
Learning Procedure

One "semisupervised" method of training a unit is to provide it with informa-
tion about what category the input vector came from, but to refrain from
specifying the state that the unit ought to adopt. Instead, its incoming weights
are modified so as to maximize the information that the state of the unit
provides about the category of the input vector. The derivative of the mutual
information is relatively easy to compute and so it can be maximized by
gradient ascent [73]. For difficult discriminations that cannot be performed in a
single step this is a good way of producing encodings of the input vector that
allow the discrimination to be made more easily. Figure 10 shows an example
of a difficult two-way discrimination and illustrates the kinds of discriminant
function that maximize the information provided by the state of the unit.

If each unit within a layer independently maximizes the mutual information
between its state and the category of the input vector, many units are likely to
discover similar, highly correlated features. One way to force the units to
diversify is to make each unit receive its inputs from a different subset of the
units in the layer below. A second method is to ignore cases in which the input
vector is correctly classified by the final output units and to maximize the

+

+ +

- +

4-

- + + -- ~ +
+ -

- + + + +
_ + - +

-4- - - +
_ _ +

+ +
+

S + _ _4- + +

- ~ + + ~+ +

_ - + +

Fig. 10. (a) There is high mutual information between the state of a binary threshold unit that uses
the hyperplane shown and the distribution (+ or -) that the input vector came from. (b) The
probability, given that the unit is on, that the input came from the " + " distribution is not as high
using the diagonal hyperplane. However, the unit is on more often. Other things being equal, a

unit conveys most mutual information if it is on half the time.

CONNECTIONIST LEARNING PROCEDURES 215

mutual information between the state of each intermediate unit and the
category of the input given that the input is incorrectly classified) °

If the two input distributions that must be discriminated consist of examples
taken from some structured domain and examples generated at random (but
with the same first-order statistics as the structured domain), this semisuper-
vised procedure will discover higher-order features that characterize the struc-
tured domain and so it can be made to act like the type of unsupervised
learning procedure described in Section 9.

9. Unsupervised Hebbian Learning

A unit can develop selectivity to certain kinds of features in its ensemble of
input vectors by using a simple weight modification procedure that depends on
the correlation between the activity of the unit and the activity on each of it
input lines. This is called a "Hebbian" learning rule because the weight
modification depends on both presynaptic and postsynaptic activity [36].
Typical examples of this kind of learning are described by Cooper, Liberman
and Oja [18] and by Bienenstock, Cooper, and Munro [16]. A criticism of early
versions of this approach, from a computational point of view, was that the
researchers often postulated a simple synaptic modification rule and then
explored its consequences rather than rigorously specifying the computational
goal and then deriving the appropriate synaptic modification rule. However, an
important recent development unifies these two approaches by showing that a
relatively simple Hebbian rule can be viewed as the gradient of an interesting
function. The function can therefore be viewed as a specification of what the
learning is trying to achieve.

9.1. A recent development of unsupervised Hebbian learning

In a recent series of papers Linsker has shown that with proper normalization
of the weight changes, an unsupervised Hebbian learning procedure in which
the weight change depends on the correlation of presynaptic and postsynaptic
activity can produce a surprising number of the known properties of the
receptive fields of neurons in visual cortex, including center-surround fields
[61], orientation-tuned fields [62] and orientation columns [63]. The procedure
operates in a multi-layer network in which there is innate spatial structure so
that the inputs to a unit in one layer tend to come from nearby locations in the
layer below. Linsker demonstrates that the emergence of biologically sugges-
tive receptive fields depends on the relative values of a few generic parameters.
He also shows that for each unit, the learning procedure is performing gradient
ascent in a measure whose main term is the ensemble average (across all the

10 This method of weighting the statistics by some measure of the overall error or importance of
a case can often be used to allow global measures of the performance of the whole network to
influence local, unsupervised learning procedures.

216 G.E. HINTON

various patterns of activity in the layer below) of

E WiSiWjS j ,
i,j

where w i and w/are the weights on the ith and jth input lines of a unit and si
and s/are the activities on those input lines.

It is not initially obvious why maximizing the pairwise covariances of the
weighted activities produces receptive fields that are useful for visual informa-
tion processing. Linsker does not discuss this question in his original three
papers. However, he has now shown [64] that the learning procedure maxim-
izes the variance in the activity of the postsynaptic unit subject to a "resource"
constraint on overall synaptic strength. This is almost equivalent to maximizing
the ratio of the postsynaptic variance to the sum of the squares of the weights,
which is guaranteed to extract the first principal component (provided the units
are linear). This component is the one that would minimize the sum-squared
reconstruction error if we tried to reconstruct the activity vector of the
presynaptic units from the activity level of the postsynaptic unit. Thus we can
view Linsker's learning procedure as a way of ensuring that the activity of a
unit conveys as much information as possible about its presynaptic input
vector. A similar analysis can be applied to competitive learning (see Section
10).

I0. Competitive Learning

Competitive learning is an unsupervised procedure that divides a set of input
vectors into a number of disjoint clusters in such a way that the input vectors
within each duster are all similar to one another. It is called competitive
learning because there is a set of hidden units which compete with one another
to become active. There are many variations of the same basic idea, and only
the simplest version is described here. When an input vector is presented to the
network, the hidden unit which receives the greatest total input wins the
competition and turns on with an activity level of I. All the other hidden units
turn off. The winning unit then adds a small fraction of the current input vector
to its weight vector. So, in future, it will receive even more total input from
this input vector. To prevent the same hidden unit from being the most active
in all cases, it is necessary to impose a constraint on each weight vector that
keeps the sum of the weights (or the sum of their squares) constant. So when a
hidden unit becomes more sensitive to one input vector it becomes less
sensitive to other input vectors.

Rumelhart and Zipser [82] present a simple geometrical model of competi-
tive learning. If each input vector has three components and is of unit length it
can be represented by a point on the surface of the unit sphere. If the weight
vectors of the hidden units are also constrained to be of unit length, they too
can be represented by points on the unit sphere as shown in Fig. 11. The

CONNECTIONIST LEARNING PROCEDURES 217

Fig. 11. The input vectors are represented by points marked " x " on the surface of a sphere, The
weight vectors of the hidden units are represented by points marked "©." After competitive
learning, each weight vector will be close to the center of gravity of a cluster of input vectors.

learning procedure is equivalent to finding the weight vector that is closest to
the current input vector, and moving it closer still by an amount that is
proportional to the distance. If the weight changes are sufficiently small, this
process will stabilize when each weight vector is at the center of gravity of a
cluster of input vectors.

We can think of the network as performing the following task: Represent the
current input vector, Yc, as accurately as possible by using a single active
hidden unit. The representation is simply the weight vector, we, of the hidden
unit which is active in case c. If the weight changes are sufficiently small, this
version of competitive learning performs steepest descent in a measure of the
sum-squared inaccuracy of the representation. The solutions it finds are
minima of the function

E =
C

Although they use the geometrical analogy described above, Rumelhart and
Zipser actually use a slightly different learning rule which cannot be inter-
preted as performing steepest descent in such a simple error function.

There are many variations of competitive learning in the literature
[4, 29, 33, 95] and there is not space here to review them all. A model with
similarities to competitive learning has been used by Willshaw and v o n d e r
Malsburg [103] to explain the formation of topographic maps between the
retina and the tectum. Recently, it has been shown that a variation of this
model can be interpreted as performing steepest descent in an error function
and can be applied to a range of optimization problems that involve to-
pographic mappings between geometrical structures [23].

218 G.E. HINTON

One major theme has been to show that competitive learning can produce
topographic maps [57]. The hidden units are laid out in a spatial structure
(usually two-dimensional) and instead of just updating the weight vector of the
hidden unit that receives the greatest total input, the procedure also updates
the weight vectors of adjacent hidden units. This encourages adjacent units to
respond to similar input vectors, and it can be viewed as a way of performing
gradient descent in a cost function that has two terms. The first term measures
how inaccurately the weight vector of the most active hidden unit represents
the input vector. The second term measures the dissimilarity between the input
vectors that are represented by adjacent hidden units. Kohonen has shown that
this version of competitive learning performs dimensionality reduction, so that
surplus degrees of freedom are removed from the input vector and it is
represented accurately by a point in a lower-dimensional space [57]. It is not
clear how this compares in efficiency with self-supervised backpropagation (see
Section 6.9) for dimensionality reduction.

Fukushima and Miyake [30] have demonstrated that a version of competitive
learning can be used to allow a multi-layer network to recognize simple
two-dimensional shapes in a number of different positions. After learning, the
network can recognize a familiar shape in a novel position. The ability to
generalize across position depends on using a network in which the layers of
units that learn are interleaved with layers of nonlearning units which are
prewired to generalize across position. Thus, the network does not truly learn
translation invariance. By contrast, it is possible to design a backpropagation
network that starts with no knowledge of the effects of translation and no
knowledge of which input units are adjacent in the image. After sufficient
experience, the network can correctly identify familiar, simple shapes in novel
positions [39].

10.1. The relationship between competitive learning and backpropagation

Because it is performing gradient descent in a measure of how accurately the
input vector could be reconstructed, competitive learning has a close relation-
ship to self-supervised backpropagation. Consider a three-layer encoder net-
work in which the desired states of the output units are the same as the actual
states of the input units. Suppose that each weight from an input unit to a
hidden unit is constrained to be identical to the weight from that hidden unit to
the corresponding output unit. Suppose, also, that the output units are linear
and the hidden units, instead of using the usual nonlinear input-output
function, use the same "winner-take-all" nonlinearity as is used in competitive
learning. So only one hidden unit will be active at a time, and the actual states
of the output units will equal the weights of the active hidden unit. This makes
it easy to compute the error derivatives of the weights from the hidden units to
the output units. For weights from the active hidden unit the derivatives are

CONNECTIONIST LEARNING PROCEDURES 219

simply proportional to the difference between the actual and desired outputs
(which equals the difference between the weight and the corresponding compo-
nent of the input vector). For weights from inactive hidden units the error
derivatives are all zero. So gradient descent can be performed by making the
weights of the active hidden unit regress towards the input vector, which is
precisely what the competitive learning rule does.

Normally, backpropagation is needed in order to compute the error deriva-
tives of the weights from the input units to the hidden units, but the
winner-take-all nonlinearity makes backpropagation unnecessary in this net-
work because all these derivatives are equal to zero. So long as the same
hidden unit wins the competition, its activity level is not changed by changing
its input weights. At the point where a small change in the weights would
change the winner from one hidden unit to another, both hidden units fit the
input vector equally well, so changing winners does not alter the total error in
the output (even though it may change the output vector a lot). Because the
error derivatives are so simple, we can still do the learning if we omit the
output units altogether. This removes the output weights, and so we no longer
need to constrain the input and output weights of a hidden unit to be identical.
Thus the simplified version of competitive learning is a degenerate case of
self-supervised backpropagation.

It would be interesting if a mechanism as simple as competitive learning
could be used to implement gradient descent in networks that allow the m most
activated hidden units to become fully active (where m > 1). This would allow
the network to create more complex, distributed representations of the input
vectors. Unfortunately the implementation is not nearly as simple because it is
no longer possible to omit the output layer. The output units are needed to
combine the effects of all the active hidden units and compare the combined
effect with the input vector in order to compute the error derivatives of the
output weights. Also, at the point at which one hidden unit ceases to be active
and another becomes active, there may be a large change in the total error, so
at this point there are infinite error derivatives for the weights from the input
to the hidden units. It thus appears that the simplicity of the mechanism
required for competitive learning is crucially dependent on the fact that only
one hidden unit within a group is active.

11. Reinforcement Learning Procedures

There is a large and complex literature on reinforcement learning procedures
which is beyond the scope of this paper. The main aim of this section is to give
an informal description of a few of the recent ideas in the field that reveals
their relationship to other types of connectionist learning.

A central idea in many reinforcement learning procedures is that we can
assign credit to a local decision by measuring how it correlates with the global

220 G.E. HINTON

reinforcement signal. Various different values are tried for each local variable
(such as a weight or a state), and these variations are correlated with variations
in the global reinforcement signal. Normally, the local variations are the result
of independent stochastic processes, so if enough samples are taken each local
variable can average away the noise caused by the variation in the other
variables to reveal its own effect on the global reinforcement signal (given the
current average behavior of the other variables). The network can then
perform gradient ascent in the expected reinforcement by altering the prob-
ability distribution of the value of each local variable in the direction that
increases the expected reinforcement. If the probability distributions are
altered after each trial, the network performs a stochastic version of gradient
ascent.

The main advantage of reinforcement learning is that it is easy to implement
because, unlike backpropagation which computes the effect of changing a local
variable, the "credit assignment" does not require any special apparatus for
computing derivatives. So reinforcement learning can be used in complex
systems in which it would be very hard to analytically compute reinforcement
derivatives. The main disadvantage of reinforcement learning is that it is very
inefficient when there are more than a few local variables. Even in the trivial
case when all the local variables contribute independently to the global
reinforcement signal, O(NM) trials are required to allow the measured effects
of each of the M possible values of a variable to achieve a reasonable
signal-to-noise ratio by averaging away the noise caused by the N other
variables. So reinforcement learning is very inefficient for large systems unless
they are divided into smaller modules. It is as if each person in the United
States tried to decide whether he or she had done a useful day's work by
observing the gross national product on a day-by-day basis.

A second disadvantage is that gradient ascent may get stuck in local optima.
As a network concentrates more and more of its trials on combinations of
values that give the highest expected reinforcement, it gets less and less
information about the reinforcements caused by other combinations of values.

11.1. Delayed reinforcement

In many real systems, there is a delay between an action and the resultant
reinforcement, so in addition to the normal problem of deciding how to assign
credit to decisions about hidden variables, there is a temporal credit assign-
ment problem [86]. If, for example, a person wants to know how their behavior
affects the gross national product, they need to know whether to correlate
today's GNP with what they did yesterday or with what they did five years ago.
In the iterative version of backpropagation (Section 6.7), temporal credit
assignment is performed by explicitly computing the effect of each activity level
on the eventual outcome. In reinforcement learning procedures, temporal

CONNECTIONIST LEARNING PROCEDURES 221

credit assignment is typically performed by learning to associate "secondary"
reinforcement values with the states that are intermediate in time between the
action and the external reinforcement. One important idea is to make the
reinforcement value of an intermediate state regress towards the weighted
average of the reinforcement values of its successors, where the weightings
reflect the conditional probabilities of the successors. In the limit, this causes
the reinforcement value of each state to be equal to the expected re-
inforcement of its successor, and hence equal to the expected final re-
inforcement. 1~ Sutton [87] explains why, in a stochastic system, it is typically
more efficient to regress towards the reinforcement value of the next state
rather than the reinforcement value of the final outcome. Barto, Sutton and
Anderson [15] have demonstrated the usefulness of this type of procedure for
learning with delayed reinforcement.

11.2. The As. v procedure

One obvious way of mapping results from learning automata theory onto
connectionist networks is to treat each unit as an automaton and to treat the
states it adopts as its actions. Barto and Anandan [14] describe a learning
procedure of this kind called "associative reward-penalty" or AR. t, which uses
stochastic units like those in a Boltzmann machine (see (10)). They prove that
if the input vectors are linearly independent and the network only contains one
unit, AR. P finds the optimal values of the weights. They also show empirically
that if the same procedure is applied in a network of such units, the hidden
units develop useful representations. Williams [101] has shown that a limiting
case of the AR_ P procedure performs stochastic gradient ascent in expected
reinforcement.

11.3. Achieving global optimality by reinforcement learning

Thatachar and Sastry [91] use a different mapping between automata and
connectionist networks. Each connection is treated as an automaton and the
weight values that it takes on are its actions. On each trial, each connection
chooses a weight (from a discrete set of alternatives) and then the network
maps an input vector into an output vector and receives positive reinforcement
if the output is correct. They present a learning procedure for updating the
probabilities of choosing particular weight values. If the probabilities are
changed slowly enough, the procedure is guaranteed to converge on the
globally optimal combination of weights, even if the network has hidden layers.
Unfortunately their procedure requires exponential space because it involves

H There may also be a "tax" imposed for failing to achieve the external reinforcement quickly.
This can be implemented by reducing the reinforcement value each time it is regressed to an earlier
state.

222 G.E. HINTON

storing and updating a table of estimated expected reinforcements that contains
one entry for every combination of weights.

11.4. The relative payoff procedure

If we are content to reach a local optimum, it is possible to use a very simple
learning procedure that uses yet another way of mapping automata onto
connectionist networks. Each connection is treated as a stochastic switch that
has a certain probability of being closed at any moment [66]. If the switch is
open, the "postsynaptic" unit receives an input of 0 along that connection, but
if the switch is closed it transmits the state of the "presynaptic" unit. A real
synapse can be modeled as a set of these stochastic switches arranged in
parallel. Each unit computes some fixed function of the vector of inputs that it
receives on its incoming connections. Learning involves altering the switch
probabilities to maximize the expected reinforcement signal.

A learning procedure called Laa can be applied in such networks. It is only
guaranteed to find a local optimum of the expected reinforcement, but it is
very simple to implement. A "trial" consists of four stages:

(1) Set the switch configuration. For each switch in the network, decide
whether it is open or closed on this trial using the current switch probability.
The decisions are made independently for all the switches.

(2) Run the network with this switch configuration. There are no constraints
on the connectivity so cycles are allowed, and the units can also receive
external inputs at any time. The constraint on the external inputs is that the
probability distribution over patterns of external input must be stationary.

(3) Compute the reinforcement signal. This can be any nonnegative, station-
ary function of the behavior of the network and of the external input it
received during the trial.

(4) Update the switch probabilities. For each switch that was closed during
the trial, we increment its probability by eR(1-p), where R is the re-
inforcement produced by the trial, p is the switch probability and e is a small
coefficient. For each switch that was open, we decrement its probability by
eRp.

If e is sufficiently small this procedure stochastically approximates hill
climbing in expected reinforcement. The "batch" version of the procedure
involves observing the reinforcement signal over a large number of trials before
updating the switch probabilities. If a sufficient number of trials are observed,
the following "relative payoff" update procedure always increases expected
reinforcement (or leaves it unchanged): Change the switch probability to be
equal to the fraction of the total reinforcement received when the switch was
closed. This can cause large changes in the probabilities, and I know of no
proof that it hill-climbs in expected reinforcement, but in practice it always
works. The direction of the jump in switch probability space caused by the

CONNECTIONIST LEARNING PROCEDURES 223

batch version of the procedure is the same as the expected direction of the
small change in switch probabilities caused by the "online" version.

A variation of the relative payoff procedure can be used if the goal is to
make the "responses" of a network match some desired probability distribu-
tion rather than maximize expected reinforcement. We simply define the
reinforcement signal to be the desired probability of a response divided by the
network's current probability of producing that response. If a sufficient number
of trials are made before updating the switch probabilities, it can be shown
(Larry Gillick and Jim Baker, personal communication) that this procedure is
guaranteed to decrease an information-theoretic measure of the difference
between the desired probability distribution over responses and the actual
probability distribution. The measure is actually the G measure described in
(11) and the proof is an adaptation of the proof of the EM procedure [22].

11.5. Genetic algorithms

Holland and his co-workers [21, 48] have investigated a class of learning
procedures which they call "genetic algorithms" because they are explicitly
inspired by an analogy with evolution. Genetic algorithms operate on a
population of individuals to produce a better adapted population. In the
simplest case, each individual member of the population is a binary vector, and
the two possible values of each component are analogous to two alternative
versions (alleles) of a gene. There is a fitness function which assigns a
real-valued fitness to each individual and the aim of the "learning" is to raise
the average fitness of the population. New individuals are produced by
choosing two existing individuals as parents (with a bias towards individuals of
higher than average fitness) and copying some component values from one
parent and some from the other. Holland [48] has shown that for a large class
of fitness functions, this is an effective way of discovering individuals that have
high fitness.

11.6. Genetic learning and the relative payoff rule

If an entire generation of individuals is simultaneously replaced by a generation
of their offspring, genetic learning has a close relationship to the batch form of
the LR. ~ procedure described in Section 11.4. This is most easily understood by
starting with a particularly simple version of genetic learning in which every
individual in generation t + 1 has many different parents in generation t.
Candidate individuals for generation t + 1 are generated from the existing
individuals in generation t in the following way: To decide the value of the ith
component of a candidate, we randomly choose one of the individuals in
generation t and copy the value of its ith component. So the probability that
the ith component of a candidate has a particular value is simply the relative
frequency of that value in generation t. A selection process then operates on

224 G.E. HINTON

the candidates: Some are kept to form generation t + 1 and others are
discarded. The fitness of a candidate is simply the probability that it is not
discarded by the selection process. Candidates that are kept can be considered
to have received a reinforcement of 1 and candidates that are discarded receive
a reinforcement of 0. After selection, the probability that the ith component
has a particular value is equal to the fraction of the successful candidates that
have that value. This is exactly the relative payoff rule described in Section
11.4. The probabilities it operates on are the relative frequencies of alleles in
the population instead of switch probabilities.

If the value of every component is determined by an independently chosen
parent, information about the correlations between the values of different
components is lost when generation t + 1 is produced from generation t. If,
however, we use just two parents we maximize the tendency for the pairwise
and higher-order correlations to be preserved. This tendency is further in-
creased if components whose correlations are important are near one another
and the values of nearby components are normally taken from the same
parent. So a population of individuals can effectively represent the prob-
abilities of small combinations of component values as well as the probabilities
of individual values. Genetic learning works well when the fitness of an
individual is determined by these small combinations, which Holland calls
critical schemas.

11.7. Iterated genetic hill climbing

It is possible to combine genetic learning with gradient descent (or hill
climbing) to get a hybrid learning procedure called "iterated genetic hill
climbing" or " IGH" that works better than either learning procedure alone
[1, 17]. IGH is as a form of multiple restart hill climbing in which the starting
points, instead of being chosen at random, are chosen by "mating" previously
discovered local optima. Alternatively, it can be viewed as genetic learning in
which each new individual is allowed to perform hill climbing in the fitness
function before being evaluated and added to the population. Ackley [1] shows
that a stochastic variation of IGH can be implemented in a connectionist
network that is trying to learn which output vector produces a high enough
payoff to satisfy some external criterion.

12. Discussion

This review has focused on a small number of recent connectionist learning
procedures. There are many other interesting procedures which have been
omitted [24, 26, 34, 35, 47, 54, 94]. In particular, there has been no discussion
of a large class of procedures which dynamically allocate new units instead of
simply adjusting the weights in a fixed architecture. Rather than attempting to
cover all of these I conclude by discussing two major problems that plague
most of the procedures I have described.

CONNECTIONIST LEARNING PROCEDURES 225

12.1. Generalization

A major goal of connectionist learning is to produce networks that generalize
correctly to new cases after training on a sufficiently large set of typical cases
from some domain. In much of the research, there is no formal definition of
what it means to generalize correctly. The network is trained on examples from
a domain that the experimenter understands (like the family relationships
domain described in Section 6) and it is judged to generalize correctly if its
generalizations agree with those of the experimenter. This is sufficient as an
informal demonstration that the network can indeed perform nontrivial
generalization, but it gives little insight into the reasons why the generalizations
of the network and the experimenter agree, and so it does not allow predic-
tions to be made about when networks will generalize correctly and when they
will fail.

What is needed is a formal theory of what it means to generalize correctly.
One approach that has been used in studying the induction of grammars is to
define a hypothesis space of possible grammars, and to show that with enough
training cases the system will converge on the correct grammar with probability
1 [8]. Valiant [93] has recently introduced a rather more subtle criterion of
success in order to distinguish classes of boolean function that can be induced
from examples in polynomial time from classes that require exponential time.
He assumes that the hypothesis space is known in advance and he allows the
training cases to be selected according to any stationary distribution but insists
that the same distribution be used to generate the test cases. The induced
function is considered to be good enough if it differs from the true function on
less than a small fraction, 1/h, of the test cases. A class of boolean functions is
considered to be learnable in polynomial time if, for any choice of h, there is a
probability of at least (1 - I/h) that the induced function is good enough after
a number of training examples that is polynomial in both h and the number of
arguments of the boolean function. Using this definition, Valiant has succeeded
in showing that several interesting subclasses of boolean function are learnable
in polynomial time. Our understanding of other connectionist learning proce-
dures would be considerably improved if we could derive similar results that
were as robust against variations in the distribution of the training examples.

The work on inducing grammars or boolean functions may not provide an
appropriate framework for studying systems that learn inherently stochastic
functions, but the general idea of starting with a hypothesis space of possible
functions carries over. A widely used statistical approach involves maximizing
the a posteriori likelihood of the model (i.e. the function) given the data. If the
data really is generated by a function in the hypothesis space and if the amount
of information in the training data greatly exceeds the amount of information
required to specify a point in the hypothesis space, the maximum likelihood
function is very probably the correct one, so the network will then generalize
correctly. Some connectionist learning schemes (e.g. the Boltzmann machine

226 G.E. HINTON

learning procedure) can be made to fit this approach exactly. If a Boltzmann
machine is trained with much more data than there are weights in the machine,
and if it really does find the global minimum of G, and if the correct answer
lies in the hypothesis space (which is defined by the architecture of the
machine), 12 then there is every reason to suppose that it will generalize
correctly, even if it has only been trained on a small fraction of the possible
cases. Unfortunately, this kind of guarantee is of little use for practical
problems where we usually know in advance that the " t rue" model does not lie
in the hypothesis space of the network. What needs to be shown is that the best
available point within the hypothesis space (even though it is not a perfect
model) will also generalize well to test cases.

A simple thought experiment shows that the "correct" generalization from a
set of training cases, however it is defined, must depend on how the input and
output vectors are encoded. Consider a mapping, MI, from entire input vectors
onto entire input vectors and a mapping, Mo, from entire output vectors onto
entire output vectors. If we introduce a precoding stage that uses M~ and a
postcoding stage that uses M o we can convert a network that generalizes in one
way into a network that generalizes in any other way we choose simply by
choosing M~ and M o appropriately.

12.2. Practical methods of improving generalization

One very useful method of improving the generalization of many connectionist
learning procedures is to introduce an extra term into the error function. This
term penalizes large weights and it can be viewed as a way of building in an a
priori bias is favor of simple models (i.e. models in which there are not too
many strong interactions between the variables). If the extra term is the sum of
the squares of the weights, its derivative corresponds to "weight decay"- -each
weight continually decays towards zero by an amount proportional to its
magnitude. When the learning has equilibrated, the magnitude of a weight is
equal to its error derivative because this error derivative balances the weight
decay. This often makes it easier to interpret the weights. Weight decay tends
to prevent a network from using table lookup and forces it to discover
regularities in the training data. In a simple linear network without hidden
units, weight decay can be used to find the weight matrix that minimizes the
effect of adding zero-mean, uncorrelated noise to the input units [60].

Another useful method is to impose equality constraints between weights
that encode symmetries in the task. In solving any practical problem, it is

~2 One popular idea is that evolution implicitly chooses an appropriate hypothesis space by
constraining the architecture of the network and learning then identifies the most likely hypothesis
within this space. How evolution arrives at sensible hypothesis spaces in reasonable time is usually
unspecified. The evolutionary search for good architectures may actually be guided by learning
[43].

CONNECI'IONIST LEARNING PROCEDURES 227

wasteful to make the network learn information that is known in advance. If
possible, this information should be encoded by the architecture or the initial
weights so that the training data can be used to learn aspects of the task that
we do not already know how to model.

12.3. The speed of learning

Most existing connectionist learning procedures are slow, particularly proce-
dures that construct complicated internal representations. One way to speed
them up is to use optimization methods such as recursive least squares that
converge faster. If the second derivatives can be computed or estimated they
can be used to pick a direction for the weight change vector that yields faster
convergence than the direction of steepest descent [71]. It remains to be seen
how well such methods work for the error surfaces generated by multi-layer
networks learning complex tasks.

A second method of speeding up learning is to use dedicated hardware for
each connection and to map the inner-loop operations into analog instead of
digital hardware. As Alspector and Allen [3] have demonstrated, the speed of
one particular learning procedure can be increased by a factor of about a
million if we combine these techniques. This significantly increases our ability
to explore the behavior of relatively small systems, but it is not a panacea. By
using silicon in a different way we typically gain a large but constant factor
(optical techniques may eventually yield a huge constant factor), and by
dedicating a processor to each of the N connections we gain at most a factor of
N in time at the cost of at least a factor of N in space. For a learning procedure
with a time complexity of, say, O(N log N) a speed up of N makes a very big
difference. For a procedure with a complexity of, say , O(N 3) alternative
technologies and parallelism will help significantly for small systems, but not
for large ones.

12.4. Hardware modularity

One of the best and commonest ways of fighting complexity is to introduce a
modular, hierarchical structure in which different modules are only loosely
coupled [85]. Pearl [72] has shown that if the interactions between a set of
probabilistic variables are constrained to form a tree structure, there are
efficient parallel methods for estimating the interactions between "hidden"
variables. The leaves of the tree are the observables and the higher-level nodes
are hidden. The probability distribution for each variable is constrained by the
values of its immediate parents in the tree. Pearl shows that these conditional
probabilities can be recovered in time O(N log N) from the pairwise correla-
tions between the values of the leaves of the tree. Remarkably, it is also
possible to recover the tree structure itself in the same time.

~3 Tsotsos [92] makes similar arguments in a discussion of the space complexity of vision.

228 G.E. HINTON

O0

O0 O0

0000 0000

Fig. 12. The lowerqevel variables of a high-level module are the higher-level variables of several
low-level modules.

Self-supervised backpropagation (see Section 6.9) was originally designed to
allow efficient bottom-up learning in domains where there is hierarchical
modular structure. Consider, for example, an ensemble of input vectors that
are generated in the following modular way: Each module has a few high-level
variables whose values help to constrain the values of a larger number of
low-level variables. The low-level variables of each module are partitioned into
several sets, and each set is identified with the high-level variables of a lower
module as shown in Fig. 12.

Now suppose that we treat the values of all the low-level variables of the leaf
modules as a single input vector. Given a sufficiently large ensemble of input
vectors and an "innate" knowledge of the architecture of the generator, it
should be possible to recover the underlying structure by using self-supervised
backpropagation to learn compact codes for the low-level variables of each leaf
module. It is possible to learn codes for all the lowest-level modules in parallel.
Once this has been done, the network can learn codes at the next level up the
hierarchy. The time taken to learn the whole hierarchical structure (given
parallel hardware) is just proportional to the depth of the tree and hence it is
O(log N) where N is the size of the input vector. An improvement on this
strictly bottom-up scheme is described by Ballard [11]. He shows why it is
helpful to allow top-down influences from more abstract representations to less
abstract ones, and presents a working simulation.

12.5. Other types of modularity

There are several other helpful types of modularity that do not necessarily map
so directly onto modular hardware but are nevertheless important for fast
learning and good generalization. Consider a system which solves hard prob-
lems by creating its own subgoals. Once a subgoal has been created, the system
can learn how best to satisfy it and this learning can be useful (on other
occasions) even if it was a mistake to create that subgoal on this particular
occasion. So the assignment of credit to the decision to create a subgoal can be
decoupled from the assignment of credit to the actions taken to achieve the
subgoal. Since the ability to achieve the subgoals can be learned separately
from the knowledge about when they are appropriate, a system can use

CONNECTIONIST LEARNING PROCEDURES 229

achievable subgoals as building blocks for more complex procedures. This
avoids the problem of learning the complex procedures from scratch. It may
also constrain the way in which the complex procedures will be generalized to
new cases, because the knowledge about how to achieve each subgoal may
already include knowledge about how to cope with variations. By using
subgoals we can increase modularity and improve generalization even in
systems which use the very same hardware for solving the subgoal as was used
for solving the higher-level goal. Using subgoals, it may even be possible to
develop reasonably fast reinforcement learning procedures for large systems.

There is another type of relationship between easy and hard tasks that can
facilitate learning. Sometimes a hard task can be decomposed into a set of
easier constituents, but other times a hard task may just be a version of an
easier task that requires finer discrimination. For example, throwing a ball in
the general direction of another person is much easier than throwing it through
a hoop, and a good way to train a system to throw it through a hoop is to start
by training it to throw it in the right general direction. This relation between
easy and hard tasks is used extensively in "shaping" the behavior of animals
and should also be useful for connectionist networks (particularly those that
use reinforcement learning). It resembles the use of multi-resolution tech-
niques to speed up search in computer vision [89]. Having learned the coarse
task, the weights should be close to a point in weight space where minor
adjustments can tune them to perform the finer task.

One application where this technique should be helpful is in learning filters
that discriminate between very similar sounds. The approximate shapes of the
filters can be learned using spectrograms that have low resolution in time and
frequency, and then the resolution can be increased to allow the filters to
resolve fine details. By introducing a "regularization" term that penalizes filters
which have very different weights for adjacent cells in the high resolution
spectrogram, it may be possible to allow filters to "attend" to fine detail when
necessary without incurring the cost of estimating all the weights from scratch.
The regularization term encodes prior knowledge that good filters should
generally be smooth and so it reduces the amount of information that must be
extracted from the training data.

12.6. Conclusion

There are now many different connectionist learning procedures that can
construct appropriate internal representations in small domains, and it is likely
that many more variations will be discovered in the next few years. Major new
advances can be expected on a number of fronts: Techniques for making the
learning time scale better may be developed; attempts to apply connectionist
procedures to difficult tasks like speech recognition may actually succeed; new
technologies may make it possible to simulate much larger networks; and

230 G.E. HINTON

finally the compu ta t i ona l insights ga ined f rom s tudying connec t ion i s t systems
may prove useful in in t e rp re t ing the behav io r of real neu ra l ne tworks .

ACKNOWLEDGMENT

This research was funded by grant IS8520359 from the National Science Foundation and by
contract N00014-86-K-00167 from the Office of Naval Research. I thank Dana Ballard, Andrew
Barto, David Rumelhart, Terry Sejnowski, and the members of the Carnegie-Mellon Boltzmann
Group for many helpful discussions. Geoffrey Hinton is a fellow of the Canadian Institute for
Advanced Research.

REFERENCES

1. Ackley, D.H., Stochastic iterated genetic hill-climbing, Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, PA (1987).

2. Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., A learning algorithm for Boltzmann
machines, Cognitive Sci. 9 (1985) 147-169.

3. Alspector, J. and Allen, R.B., A neuromorphic VLSI learning system, in: E Loseleben
(Ed.), Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference (MIT Press,
Cambridge, MA, 1987).

4. Amari, S.-I., Field theory of self-organizing neural nets, IEEE Trans. Syst. Man Cybern. 13
(1983) 741-748.

5. Amari, S.-I., A theory of adaptive pattern classifiers, IEEE Trans. Electron. Comput. 16
(1967) 299-307.

6. Anderson, J.A. and Hinton, G.E., Models of information processing in the brain, in: G.E.
Hinton and J.A. Anderson (Eds.), Parallel Models of Associative Memory (Erlbaum,
Hillsdale, NJ, 1981).

7. Anderson, J.A. and Mozer, M.C., Categorization and selective neurons, in: G.E. Hinton and
J.A. Anderson (Eds.), Parallel Models of Associative Memory (Erlbaum, Hillsdale, NJ,
1981).

8. Angluin, D. and Smith, C.H., Inductive inference: Theory and methods, Comput. Surv. 15
(1983) 237-269.

9. Bahl, L.R., Jelinek, F. and Mercer, R.L., A maximum likelihood approach to continuous
speech recognition, IEEE Trans. Pattern Anal. Mach. Intell. 5 (1983) 179-190.

10. Ballard, D.H., Cortical connections and parallel processing: Structure and function, Behav.
Brain Sci. 9 (1986) 67-120.

11. Ballard, D.H., Modular learning in neural networks, in: Proceedings AAAI-87, Seattle, WA
(1987) 279-284.

12. Ballard, D.H., Hinton, G.E. and Sejnowski, T.J., Parallel visual computation, Nature 306
(1983) 21-26.

13. Barlow, H.B., Single units and sensation: A neuron doctrine for perceptual psychology?
Perception I (1972) 371-394.

14. Barto, A.G. and Anandan, P., Pattern recognizing stochastic learning automata, IEEE
Trans. Syst. Man Cybern. 15 (1985) 360-375.

15. Barto, A.G., Sutton, R.S. and Anderson, C.W., Neuronlike elements that solve difficult
learning control problems, IEEE Trans. Syst. Man Cybern. 13 (1983).

16. Bienenstock, E.L., Cooper, L.N. and Munro, P.W., Theory for the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex, J. NeuroscL 2
(1982) 32-48.

17. Brady, R.M., Optimization strategies gleaned from biological evolution, Nature 317 (1985)
804 -806.

18. Cooper, L.N., Liberman, F. and Oja, E., A theory for the acquisition and loss of neuron
specificity in visual cortex, Biol. Cybern. 33 (1979) 9-28.

CONNECTIONIST LEARNING PROCEDURES 231

19. Cottrell, G.W., Munro, P. and Zipser, D., Learning internal representations from gray-scale
images: An example of extensional programming, in: Proceedings Ninth Annual Conference
of the Cognitive Science Society Seattle, WA (1987) 461-473.

20. Crick, F. and Mitchison, G., The function of dream sleep, Nature 304 (1983) 111-114.
21. Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing (Pitman, London, 1987).
22. Dempster, A.P., Laird, N.M. and Rubin, D.B., Maximum likelihood from incomplete data

via the EM algorithm, Proc. Roy. Stat. Soc. (1976) 1-38.
23. Durbin, R. and Willshaw, D., The elastic net method: An analogue approach to the

travelling salesman problem, Nature 326 (1987) 689-691.
24. Edelman, G.M. and Reeke, G.N., Selective networks capable of representative transforma-

tions, limited generalizations, and associative memory, Proc. Nat. Acad. Sci. USA 79 (1982)
2091-2095.

25. Elman, J.L. and Zipser, D., Discovering the hidden structure of speech, Tech. Rept. No.
8701, Institute for Cognitive Science, University of California, San Diego, CA (1987).

26. Feldman, J.A., Dynamic connections in neural networks, Biol. Cybern. 46 (1982) 27-39.
27. Feldman, J.A., Neural representation of conceptual knowledge, Tech. Rept. TR189, Depart-

ment of Computer Science, University of Rochester, Rochester, NY (1986).
28. Feldman, J.A. and Ballard, D.H., Connectionist models and their properties, Cognitive Sci. 6

(1982) 205-254.
29. Fukushima, K., Cognitron: A self-organizing multilayered neural network, Biol. Cybern. 20

(1975) 121-136.
30. Fukushima, K. and Miyake, S., Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position, Pattern Recogn. 15 (1982) 455-469.
31. Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984) 721-741.
32. Golden, R.M., A unified framework for connectionist systems, Manuscript, Learning Re-

search and Development Center, University of Pittsburgh, Pittsburgh, PA (1987).
33. Grossberg, S., Adaptive pattern classification and universal recoding, I: Parallel development

and coding of neural feature detectors, Biol. Cybern. 23 (1976) 121-134.
34. Grossberg, S., How does the brain build a cognitive code? Psychol. Rev. 87 (1980) 1-51.
35. Hampson, S.E. and Volper, D.J., Disjunctive models of boolean category learning, Biol.

Cybern. 55 (1987) 1-17.
36. Hebb, D.O., The Organization of Behavior (Wiley, New York, 1949).
37. Hinton, G.E., Implementing semantic networks in parallel hardware, in: G.E. Hinton and

J.A. Anderson (Eds.), Parallel Models of Associative Memory (Erlbaum, Hillsdale, NJ,
1981).

38. Hinton, G.E., Learning distributed representations of concepts, in: Proceedings Eighth
Annual Conference of the Cognitive Science Society, Amherst, MA (1986).

39. Hinton, G.E., Learning translation invariant recognition in a massively parallel network, in:
PARLE: Parallel Architectures and Languages Europe 1 (Springer, Berlin, 1987) 1-14.

40. Hinton, G.E. and Anderson J.A., (Eds.), Parallel Models of Associative Memory (Erlbaum,
Hillsdale, NJ, 1981).

41. Hinton, G.E. and McClelland, J.L., Learning representations by recirculation, in: D.Z.
Anderson (Ed.), Neural Information Processing Systems (American Institute of Physics, New
York, 1988).

42. Hinton, G.E., McClelland, J.L. and Rumelhart, D.E., Distributed representations, in: D.E.
Rumelhart, J.L. McClelland and the PDP Research Group (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, I: Foundations (MIT Press,
Cambridge, MA, 1986).

43. Hinton, G.E. and Nowlan, S.J., How learning can guide evolution, Complex Syst. 1 (1987)
495 -502.

44. Hinton, G.E. and Plaut, D.C., Using fast weights to deblur old memories, in: Proceedings
Ninth Annual Conference of the Cognitive Science Society, Seattle, WA (1987).

232 G.E. HINTON

45. Hinton, G.E. and Sejnowski, T.J., Optimal perceptual inference, in: Proceedings 1EEE
Conference on Computer Vision and Pattern Recognition, Washington, DC (1983) 448-453.

46. Hinton, G.E. and Sejnowski, T.J., Learning and relearning in Boltzmann machines, in: D.E.
Rumelhart, J.L. McClelland and the PDP Research Group (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, I: Foundations (MIT Press,
Cambridge, MA, 1986).

471 Hogg, T. and Huberman, B.A., Understanding biological computation: Reliable learning and
recognition, Proc. Nat. Acad. Sci. USA 81 (1984) 6871-6875.

48. Holland, J.H., Adaptation in Natural and Artificial Systems (University of Michigan Press,
Ann Arbor, MI, 1975).

49. Hopfield, J.J., Neural networks and physical systems with emergent collective computational
abilities, Proc. Nat. Acad. Sci. USA 79 (1982) 2554-2558.

50. Hopfield, J.J., Feinstein, D.I. and Palmer, R.G., "Unlearning" has a stabilizing effect in
collective memories, Nature 304 (1983).

51. Hopfield, J.J. and Tank, D.W., "Neural" computation of decisions in optimization problems,
Biol. Cybern. 52 (1985) 141-152.

52. Hummel, R.A. and Zucker, S.W., On the foundations of relaxation labeling processes, 1EEE
Trans. Pattern Anal. Mach. lntell. 5 (1983) 267-287.

53. Judd, J.S., Complexity of connectionist learning with various node functions, COINS Tech.
Rept. 87-60, University of Amherst, Amherst, MA (1987).

54. Kerszberg, M. and Bergman, A., The evolution of data processing abilities in competing
automata, in: Proceedings Conference on Computer Simulation in Brain Science,
Copenhagen, Denmark (1986).

55. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by simulated annealing, Science
220 (1983) 671-680.

56. Kohonen, T., Associative Memory: A System-Theoretical Approach (Springer, Berlin, 1977).
57. Kohonen, T., Clustering, taxonomy, and topological maps of patterns, in: Proceedings Sixth

International Conference on Pattern Recognition, Munich, F.R.G. (1982).
58. Lang, K.J., Connectionist speech recognition, Thesis proposal, Carnegie-Mellon University,

Pittsburgh, PA (1987).
59. Le Cun, Y., A learning scheme for asymmetric threshold networks, in: Proceedings Cognitiva

85, Paris, France (1985) 599-604.
60. Le Cun, Y., ModUles connexionnistes de l'apprentissage, Ph.D. Thesis, Universit6 Pierre et

Marie Curie, Paris, France (1987).
61. Linsker, R., From basic network principles to neural architecture: Emergence of spatial

opponent cells, Proc. Nat. Acad. Sci. USA 83 (1986) 7508-7512.
62. Linsker, R., From basic network principles to neural architecture: Emergence of orientation-

selective cells, Proc. Nat. Acad. Sci. USA 83 (1986) 8390-8394.
63. Linsker, R., From basic network principles to neural architecture: Emergence of orientation

columns, Proc. Nat. Acad. Sci. USA 83 (1986) 8779-8783.
64. Linsker, R., Development of feature-analyzing cells and their columnar organization in a

layered self-adaptive network, in: R. Cotterill (Ed.), Computer Simulation in Brain Science
(Cambridge University Press, Cambridge, 1987).

65. Marroquin, J.L., Probabilistic solution of inverse problems, Ph.D. Thesis, MIT, Cambridge,
MA (1985).

66. Minsky, M.L., Theory of neural-analog reinforcement systems and its application to the
brain-model problem, Ph.D. Dissertation, Princeton University, Princeton, NJ (1954).

67. Minsky, M.L., Plain talk about neurodevelopmental epistemology, in: Proceedings IJCAI-77,
Cambridge, MA (1977) 1083-1092.

68. Minsky, M.L. and Papert, S., Perceptrons (MIT Press, Cambridge, MA, 1969).
69. Munro, P.W., A dual back-propagation scheme for scalar reinforcement learning, in: Proceed-

ings Ninth Annual Conference of the Cognitive Science Society, Seattle, WA (1987).

CONNECTIONIST LEARNING PROCEDURES 233

70. Parker, D.B., Learning-logic, Tech. Rept. TR-47, Sloan School of Management, MIT,
Cambridge, MA (1985).

71. Parker, D.B., Second order back-propagation: An optimal adaptive algorithm for any
adaptive network, Unpublished manuscript (1987).

72. Pearl, J., Fusion, propagation, and structuring in belief networks, Artificial Intelligence 29
(1986) 241-288.

73. Pearlmutter, B.A. and Hinton, G.E., G-maximization: An unsupervised learning procedure
for discovering regularities, in: J.S. Denker (Ed.), Neural Networks for Computing: American
Institute of Physics Conference Proceedings 151 (American Institute of Physics, New York,
1986) 333-338.

74. Peterson, C. and Anderson, J.R., A mean field theory learning algorithm for neural
networks, MCC Tech. Rept. E1-259-87, Microelectronics and Computer Technology Corpo-
ration, Austin, TX (1987).

75. Plaut, D.C. and Hinton, G.E., Learning sets of filters using back-propagation, Comput.
Speech Lang. 2 (1987) 36-61.

76. Prager, R., Harrison, T.D. and Fallside, F . , Boltzmann machines for speech recognition,
Comput. Speech Lang, 1 (1986) 1-20.

77. Rosenblatt, F., Principles of Neurodynamics (Spartan Books, New York, 1962).
78. Rumelhart, D.E. and McClelland, J.L., On the acquisition of the past tense in English, in:

J.L. McClelland, D.E. Rumelhart and the PDP Research Group (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, II: Applications (MIT Press,
Cambridge, MA, 1986).

79. Rumelhart, D.E., McClelland, J.L. and the PDP Research Group (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, I: Foundations (MIT Press,
Cambridge, MA, 1986).

80. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by
back-propagating errors, Nature 323 (1986) 533-536.

81. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by
error propagation, in: D.E. Rumelhart, J.L. McClelland and the PDP Research Group
(Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, I:
Foundations (MIT Press, Cambridge, MA, 1986).

82. Rumelhart, D.E. and Zipser, D., Competitive learning, Cognitive Sci. 9 (1985) 75-
112.

83. Saund, E., Abstraction and representation of continuous variables in connectionist networks,
in: Proceedings AAA1-86, Philadelphia, PA (1986) 638-644.

84. Sejnowski, T.J. and Rosenberg, C.R., Parallel networks that learn to pronounce English text,
Complex Syst. 1 (1987) 145-168.

85. Simon, H.A,, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1969).
86. Sutton, R.S., Temporal credit assignment in reinforcement learning, Ph.D. Thesis, COINS

Tech. Rept. 84-02, University of Massachusetts, Amherst, MA (1984).
87. Sutton, R.S., Learning to predict by the method of temporal differences, Tech. Rept.

TR87-509.1, GTE Laboratories, Waltham, MA (1987).
88. Tank, D.W. and Hopfield, J.J., Neural computation by concentrating information in time,

Proc. Nat. Acad. Sci. USA 84 (1987) 1896-1900.
89. Terzopoulos, D., Multiresolution computation of visible surface representations., Ph.D.

Dissertation, Department of Electrical Engineering and Computer Science, MIT, Cambridge
MA (1984).

90. Tesauro, G., Scaling relationships in back-propagation learning: Dependence on training set
size, Complex Syst. 2 (1987) 367-372.

91. Thatachar, M.A.L. and Sastry, ES., Learning optimal discriminant functions through a
cooperative game of automata, Tech. Rept. EE/64/1985, Department of Electrical Engineer-
ing, Indian Institute of Science, Bangalore, India (1985).

234 G.E. HINTON

92. Tsotsos, J.K., A "complexity level" analysis of vision, in: Proceedings First International
Conference on Computer Vision, London (1987) 346-355.

93. Valiant, L.G., A theory of the learnable, Commun. ACM 27 (1984) 1134-1142.
94. Volper, D.J. and Hampson, S.E., Connectionist models of boolean category representation,

Biol. Cybern. .$4 (1986) 393-406.
95. von der Malsburg, C., Self-organization of orientation sensitive cells in striate cortex,

Kybernetik 14 (1973) 85-100.
96. yon der Malsburg, C., The correlation theory of brain function. Internal Rept. 81-2,

Department of Neurobiology, Max-Plank Institute for Biophysical Chemistry, G6ttingen,
F.R.G. (1981).

97. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang, K., Phoneme recognition
using time-delay neural networks, Tech. Rept. TR-1-0006, ATR Interpreting Telephony
Research Laboratories, Japan (1987).

98. Werbos, P.J., Beyond regression: New tools for prediction and analysis in the behavioral
sciences, Ph.D. Thesis, Harvard University, Cambridge, MA (1974).

99. Widrow, B. and Hoff, M.E., Adaptive switching circuits, in: IRE WESCON Conv. Record 4
(1960) 96-104.

100. Widrow, B. and Stearns, S.D., Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs,
NJ, 1985).

101. Williams, R.J., Reinforcement learning in connectionist networks: A mathematical analysis,
Tech. Rept., Institute for Cognitive Science, University of California San Diego, La Jolla,
CA (1986).

102. Willshaw, D., Holography, associative memory, and inductive generalization, in: G.E.
Hinton and J.A. Anderson (Eds.), Parallel Models of Associative Memory (Erlbaum,
Hillsdale, NJ, 1981).

103. Willshaw, D.J. and vonder Malsburg, C., A marker induction mechanism for the establish-
ment of ordered neural mapping: Its application to the retino-tectal connections, Philos.
Trans. Roy. Soc. Lond. B 287 (1979) 203-243.

