
Omni-Directional Vision System for Mobile Robots

Critical Design Review

Presented to Professor Ricardo Gutierrez-Osuna
on

March 5, 2003

by
The A Team

Denise Fancher – Kyle Hoelscher – Michael Layton – Eric Miller



- 2 -

Introduction

The purpose of the Critical Design Review (CDR) is to review and summarize our

current position on the omni-directional vision robot project.  In the review, we cover the

selection of the “mirror,” BOE-Bot assembly, tracking color hard code, obstacle

avoidance options, the pseudocode and camera commands, and risk status and scheduling

issues.

Omni-directional mirror selection

Our original proposal included an omni-directional mirror manufactured by Neovision

with a hefty price of $290.00.  After consultation with our advisors, we concluded that we

really do not need the accuracy that this advanced mirror would offer, thus we should be

able to find something much less expensive to fulfill our requirements.

After much brainstorming, one of our group members found a spherical lightbulb with a

silver chrome finish on the bottom half at Lowe’s Home Improvement store.  Actually,

the lightbulbs are sold as pairs – two for $2.97.  Now if our tiny BOE-Bot tips over and

breaks our “mirror,” the consequences will not be nearly as severe as they would have

been with a $300 mirror.

Fastening the camera and “mirror” to the BOE-Bot

We considered two designs for fastening the camera to the BOE-Bot (Board Of

Education robot).  The camera will require power source and ground connection wires to

connect the camera to the BASIC stamp.  The wires will serve as a serial interface for the



- 3 -

input and output ports.  The two wires will be connected to the specified pins on the

BASIC stamp.

Our next hardware assembly issue is fastening the lightbulb to the BOE-Bot.  We have to

be very careful that the bulb is the desired distance away from the camera lens to get the

optimal image while not creating a top-heavy contraption.  We initially had two different

designs for this assembly. 

The first design consists of attaching a light bulb fixture to the top of the camera.  We can

then screw the bulb into the fixture.  We can fasten the light fixture above the BOE-Bot at

the specified distance using three rods to hold the fixture above the robot.  Once in place,

we can screw the bulb into the fixture.

The second design for this issue is to first fasten a circular ring above the robot using

three rods to secure the ring.  The ring will have a radius that lets the bulb sit in the ring

meanwhile providing the largest viewing area possible on the bulb for the camera.  We

will then place the bulb into the ring above the camera lens.

The solution we chose for mounting the bulb onto the robot is the ring configuration.

We chose this solution for several different reasons.  Placing the bulb into the ring will

allow more movement for the bulb.  We may create the mount so that the ring height can

be adjusted.  The distance from the camera lens will be very important for obtaining an

optimal image on the bulb.  We also concluded that the height will be easier to calculate



- 4 -

with the ring design.  We will not have to take into consideration the thread length when

figuring the height.

Hard coding the tracking color

One issue we also need to address is if we can change the tracking color after the robot

initially locks onto the target upon power up.  When the robot initially powers up, it will

lock onto a specified target that we place in front of the lens.  In order to change the color

of the target, we will have to power down and turn the robot back on.  Then once again

during the initial lock on phase, we can place the desired color in front of the lens.

We can change the color of the target after the robot has locked onto another target.  This

will require us to hard code the color into the BASIC stamp using the CMU camera

commands.  We can do this by using the trace color command (TC).  This command will

take the minimum and maximum RGB value to distinguish the desired color.  In order to

implement this into the hardware, we will need to configure a switch that will activate the

corresponding command for that particular color.

Obstacle avoidance algorithm options

One issue we will have with our object tracking project is obstacle avoidance.  We have

two different approaches to this problem.  The first solution involves using potential

fields to avoid obstacles while staying locked onto the target.  The second solution is to

implement an algorithm that will avoid the obstacle using basic forward and backward

commands to the servos.



- 5 -

The first algorithm involving potential fields is a fairly common algorithm used for

obstacle avoidance.  The main advantage to this algorithm is that it will give the BOE-

Bot a smooth path to the desired destination.  This algorithm will take the sum of the two

force vectors and travel in that direction.  When the avoidance hardware detects an

obstacle, it will generate a force vector to tell the robot to avoid the obstacle.  Meanwhile,

another force vector is always present which tell the robot where to go to get to its

destination.  The potential field algorithm will take these two force vectors and sum them

up.  The sum will be the vector path the robot will take.

The second algorithm we considered is simple and less expensive.  The algorithm will

use the sonar in front of the robot to prevent it from bumping into obstacles directly

ahead of the robot.  The robot will redirect itself when the sonar picks up the obstacle.

When the robot comes into contact with obstacles on the side, its whiskers will touch the

obstacle.  The robot will maneuver away from the obstacle, and then go back to chasing

the target.

The main reason we chose this second algorithm is because we are restricted to budget

and complexity.  The potential fields algorithm requires more sonar or infrared devices to

detect obstacles surrounding the robot.  Our whiskers would not supply us with the

necessary data to implement a potential field obstacle avoidance algorithm.



- 6 -

Pseudocode

Obstacle avoidance

Obstacle avoidance will be achieved by integrating the output from a sonar unit pointed

in the forward direction and the two whiskers attached on the left and right sides of the

BOE-Bot.  In our implementation, these devices will be active low: 0 means that an

obstacle is detected while 1 means that nothing has been detected.  From the sonar unit’s

output, we can calculate the distance between the BOE-Bot and the object detected.  If

this distance is less than 4 inches, we will set a flag to 0, indicating that the sonar has

detected an obstacle.  If the distance is greater than 4 inches, we will set the flag to 1,

indicating the sonar has not detected an obstacle.

By polling the left whisker, right whisker, and sonar unit, we can set a binary variable

that will tell us in which of the eight possible cases the BOE-Bot currently is.  We are

using the format described in the following table.  Based on the case in which the BOE-

Bot finds itself, an action or series of actions may be taken.  The basic actions are stop,

back up, turn left 90°, turn right 90°, turn left gradually, turn right gradually.



- 7 -

Obstacle Avoidance Algorithm
Case Left

Whisker
Right

Whisker
Sonar Interpretation Action

7 1 1 1 Blocked left, right,
front

Stop, back up

6 1 1 0 Blocked left, right Stop, back up
5 1 0 1 Blocked left, front Stop, turn right 90°
4 1 0 0 Blocked left only Turn right gradually
3 0 1 1 Blocked right, front Stop, turn left 90°
2 0 1 0 Blocked right only Turn left gradually
1 0 0 1 Blocked front only Stop, turn right/left 90°
0 0 0 0 Clear Continue in current

direction

Tracking algorithm

The tracking algorithm will use the object coordinates received from the CMU camera.

The coordinates will be separated into X-Y coordinates.  The image the CMU camera

will see is a 144 by 80 pixel image.  With the position (0,0) located in the top left corner,

the robot will be located at the center of the image at position (72,40).  We will also

implement a circle around the robot, which will define our comfort zone.  The comfort

zone will be the ideal distance the robot will attempt to stay away from the object.  If the

object is inside this comfort zone, then the robot will back away from the object until the

object is outside the comfort zone.

The object coordinates will be used to control the servos speed and direction, clockwise

or counterclockwise.  We will find the radius distance from the object by taking the

square root of the sum of the X-Y coordinate position.  We will use the X coordinate to

find the direction the robot should travel.  If the X coordinate is less than 72, then the



- 8 -

robot will move the right servo faster than the left servo to turn left.  If the X coordinate

is greater than 72, the servos will move in the opposite direction.  As the robot moves in

the direction of the object, the radius and Y values will become smaller.  The speed of the

robot will be controlled by the radius and Y values.  If the values are large, the robot will

move faster to the target.  As the values get smaller, the robot will slow its approach until

the object’s distance from the robot is equal to the distance of the comfort zone.

CMU commands

In order to have the CMUcam communicate with the BOE-Bot, we must be able to issue

commands to poll the information off the camera and back to the onboard memory so that

the appropriate actions can be taken.  There is an initialization period that must occur on

the camera that allows it to set the tracking window, initial tracking color, and sets the

appropriate commands in the camera registers.  In order to poll the information from the

camera, the Stamp will issue a SEROUT command with the appropriate camera command

followed by a SERIN command to accurately deal with the return information.  When the

camera receives a command, it will return the appropriate data values and ACK (for

successful acknowledgement) or NCK (for command failure).

Initialization will consist of SEROUT commands in a particular order as specified by the

manufacturer to set up the camera while the SERIN will simply listen for an

acknowledgement from the camera to insure the command was taken.  After the

initialization process has occurred, there is an option to redefine the color to be tracked or

leave it as the color that was captured during the initial set up.  During the actual running

of the robot, assuming there is no color change, the only commands necessary to issue in



- 9 -

order to poll information from the camera are SEROUT outpin, 240, [“TC”,CR]

where outpin is the output pin connected from the stamp to the camera and SERIN

inpin, 240, [STR CamData\10] where inpin is the input pin connected from the

camera to the stamp.  By calling SERIN inpin, 240, [STR CamData\10], this

will take the returned values from the track color command and place them into a string

array of size ten for easy access.

There will be actually only a few commands that will need to be issued to the camera.

These commands are L1, PM, TC, TW, RS, RM, and CR.  More detail about

these particular commands can be found in the CMU cam documentation but a brief

synopsis is given below:

L1 – This command controls the green LED on the camera board.  While it

serves no real purpose, it can be useful in testing and error checking.  The

command has three arguments that can be issued to it: 0, 1, and 2(default).

0 disables the LED, 1 turns the LED on, and 2 enables auto mode so that

the LED is on when tracking and off when the desired color is not present.

PM – PM controls the poll mode status of the camera board and limits information

coming back across the serial line.  It has two arguments that can be

issued: 0 (default) or 1.  0 disengages poll mode and the camera returns

multiple packets of info to the camera, and 1 enables poll mode to allow

only one packet of data to be returned.  Enabling poll mode is used for



- 10 -

rapidly changing data or a microcontroller that runs to slowly to keep up

with the frame rates on the camera.

TC – Track Color is issued as the Rmin, Rmax, Gmin, Gmax, Bmin, and Bmax where each

indicates an intensity value in the range of 0 – 255.  When the track color

command is issued without any arguments, the last color values used will

be utilized again.  Track color returns information about the object being

tracked and its location in the screen.

TW – Track Window has no arguments and will simply look to the center of the

active window on the camera to obtain a new color and then issue the

track color command on its own to track that new color.  Since it calls

track color, similar return values will be produced.

RS – This command resets the camera board to its original state.  It returns all the

registers to default values and wipes information from the camera board.

RM – This command causes data to be transferred in raw serial transfer mode.  It

reads a three-bit number and sets the transfer according to how those bits

are activated.  If the LSB is enabled, then the output to the camera is in

raw bytes. If the middle bit is enabled, then the ACK and NCK returns from

the camera are suppressed.  If the MSB is enabled, then the input to the



- 11 -

camera is in raw bytes.  For this project, only the LSB and middle bit will

be enabled.

CR – Altering the camera’s internal registers allows for more flexibility and

control over the system.  A multitude of registers can be modified to

control the saturation, brightness, contrast, clock speed, color mode, band

filter for fluorescent lights, and auto adjusting for white balance and gain.

Essentially this command will be used only to activate band filter and

ensure that the auto white-balance is activated.

Risk status and scheduling issues

At this point, we have experienced only minor delays in our proposed schedule.  Since

the parts arrived later than expected, we were slightly behind schedule.  We thought there

was a chance this might happen, and allotted extra time for construction.  At this point in

time we are still on schedule.  The next major completion deadline will be to have the

basic tracking software functioning by the end of March.  This seems entirely feasible.

We have already begun pseudocoding the omni-visional software, placing us ahead of

schedule in this area.



- 12 -

Preliminary Design (Proposal)

Parts Ordering and arrival

Boe-bot and BASIC stamp assembly

Boe-bot component testing

CMUcam hardware integration to boe-bot

CMUcam object tracking software implementation

Integrate software for CMUcam to BASIC STAMP

Test CMUcam object tracking software

Fasten hyperbolic mirror to camera

Omni-visional software implementation

Omni-visional software testing

Final demonstration

Feb March April May

Conclusion

We have refined the design of our omni-directional vision system for the BOE-Bot in

many ways since the submission of our original proposal.  We found an inexpensive

substitution for a very expensive omni-directional mirror.  We conceived the idea of

having a comfort radius to guide the speed of the robot when tracking its target.  We

explored obstacle avoidance options and determined that a simple algorithm will meet

our needs, and that it can be implemented with the single sonar unit that we requested

originally.  We have a clearer understanding of our project and the specific steps we need

to take to reach our goals.


