
Odor Tracking Group
Critical Design Review

CPSC 483 – Spring 2003
Gutierrez-Osuna

Jason Hamor
Greg Albee
Ninh Dang

Simon Saugier

Table Of Contents

I. Executive Summary 3

II. Dispersion Model 4

III. Integrating External Code With LabVIEW 10

IV. Odor-Tracking Algorithm 13

V. Existing Dilution System 17

VI. Future Progress 23

VII. Schedule 24

VIII. References 25

IX. I. Executive Summary

We have made significant progress since our proposal stage. We have made

developments in every area. After receiving criticism on our initial design, we each chose

a topic to focus on and began individual research. The topics we chose were: finding a

dispersion model, interfacing external code with LabVIEW, researching and creating an

odor-tracking algorithm, and figuring out how the existing dilution system works and

how to model it.

We decided to use the Gaussian model for our dispersion model. This model

simulates the dispersion of a gas through an atmosphere after enough time has elapsed for

the gas to have sufficiently diffused. Although this model is not time-variant, it provides

a sufficient model of an odor plume for our purposes.

We have figured out how to interface C/C++ with LabVIEW, and thus we will

code our project in C/C++. We were relieved to discover that the version of LabVIEW

that is currently available to us is able to create external code modules in C/C++.

We have researched five different types of odor-tracking algorithms, and have

decided to develop a hybrid model for the time being, that is adapted to use the best parts

of each algorithm, and also to meet our constraints (no wind sensor, etc.) We may modify

the model in the future, based on its performance in testing.

We have investigated the existing odor-dilution system, and we understand how it

works. We have also obtained an equation that can be used to estimate the response of the

system to a chemical concentration.

Given these advances, we are poised to move forward on our project and begin

coding and integration.

II. Dispersion Model

To test our odor-tracking algorithm, we will need an odor/gas dispersion model.

The model will have to be capable of representing the dispersion of odor from one or

multiple odor sources. More specifically, we will need to use a model that will be able to

provide us with a certain chemical concentration at any three-dimensional Cartesian

coordinate (X, Y, Z). Given these criteria, we essentially have three models to choose

from - the Eulerian model, the Lagrangian model, and the Gaussian model.

The major advantage of the Eulerian and Lagrangian models over the Gaussian

model is that the first two models consider the change of the odor plume with respect to

time. The concentration at a certain point in space is dependent not only on the specific

location, but also the amount of time that has elapsed since the odor source began

emitting. While this representation of time variant dispersion is very realistic, the

consequence of this realism is that these two models are incredibly complex. For this

reason, we ended up choosing the Gaussian model. However, it is worth considering all

three models in this paper to properly explain and defend our assumptions,

considerations, and concerns.

The Eulerian model is based on the concept of tracking a certain “puff” of gas as

it travels through the air (Fig. 1). This model is based on collision theory; the puff of gas

collides with the atmosphere around it, resulting in a different shape, size, and diffusion.

The equation is given below (Eq. 1).

Fig. 1

()

1.

22

2

2

1
),(),,(

00

0
22

2
1

1)(1

0
1

0
2

),(

Eq

y

y

e

y

zxczyxc

urhh

x
z

Kq
i

e

i
J

qhz
iy

JqR
i

Jp

h

zR

uah

aQqh
zxc

˜
˜
˜
˜
˜
˜
˜

¯

ˆ

Á
Á
Á
Á
Á
Á
Á

Ë

Ê

˜
¯
ˆÁ

Ë
Ê

˜
¯
ˆÁ

Ë
Ê

-

=

Ô
Ô
Ô
Ô

˛

ÔÔ
Ô
Ô

˝

¸

Ô
Ô
Ô
Ô

Ó

ÔÔ
Ô
Ô

Ì

Ï

˙
˙
˙
˙
˙
˙
˙
˙

˚

˘

Í
Í
Í
Í
Í
Í
Í
Í

Î

È

-

•

˜̃
¯

ˆ
ÁÁ
Ë

Ê
-

˜̃
¯

ˆ
ÁÁ
Ë

Ê
-˜

¯
ˆ

Á
Ë
Ê

-
Â˜

¯

ˆ
Á
Ë

Ê+
+

=

˜
˜
¯

ˆ
Á
Á
Ë

Ê

s

ps

l
g

s

g
sg

g
sgsg

l

While the accuracy and intricacy of this model make it an appealing choice, the

complexity of the corresponding equation puts it beyond the present scope of this project.

Perhaps future researchers will feel this equation is worth investigating, but the amount of

research and time that it would take us to investigate and understand this equation make it

a non-ideal choice, given our time constraints and focus.

The Lagrangian model is similar to the Eulerian model. In fact, given the same

initial conditions, both equations would produce the same results. The Lagrangian model,

however, places the origin of the coordinate system at the center of the “puff” of gas

being considered. As the puff moves, the origin moves with it, so in fact the world is

represented as moving, while the puff holds still. The representative equation is given

below (Eq. 2).

Fig. 2

()

()
()

()
()

2.

2

1
,

','

,
)(

),(

2

2

2

1

2/3

3

1
3

Eq

elrrW

drlrrW

l
rA

lrrWm
l

rA
trc

l

rr

i

D

n

i
ii

i

˜
˜

¯

ˆ

Á
Á

Ë

Ê -
-

=

=-

-
=

-=

Ú

Â

p

This model seems much more accessible and well defined that the Eulerian

model. Indeed, the only unknown condition is “l”, which is based on the gas being

modeled. However, given that this equation calculates the concentration based upon the

movement of every particle, we decided that this model was too intensive for our

immediate purposes. Also, the research required to choose an appropriate “l” term for

each gas we may need to simulate was beyond the scope of this project.

We ultimately decided to use the Gaussian model, due to its simplicity and ability

to be coded in the allotted time. The major drawback of the Gaussian model, though, is

that it is not time dependent. The Gaussian model provides the concentration of a gas at

any point downwind, given that the gas has had adequate time to disperse into the room

(Fig. 3,4) . The Gaussian model provides more of an average, and does not take into

account eddies and swirls. It provides a very neat plume gradient, which is sufficient for

our purposes. The equation is given below (Eq. 3).

Fig. 3 [6]

Fig. 4 [6]

()

3.

2

2

1
2

2

1

2
,,

Eq

z

r
z

e
h

e
y

r
y

e
zy

Q
zyxc

˜
˜
˜
˜
˜

¯

ˆ

Á
Á
Á
Á
Á

Ë

Ê

˜̃

˜
˜
˜
˜

¯

ˆ

ÁÁ
Á
Á
Á
Á

Ë

Ê

-
--

=
ss

sps

The premise of this model, as can be seen in the illustrations, is to take the

standard deviation of the concentration at a certain cross-section of the plume. This

equation is fairly straightforward except for two cryptic terms; sY and sZ. These two

terms represent the standard deviation of the plume in the cross-wind (Y) and vertical (Z)

directions. According to in Schnelle [5], “It should be noted that sY and sZ are primarily

functions of the stability and downwind distance X which must be experimentally

determined.” However, Rod Barratt [6] points us to the website

www.industrialhygiene.com/calc/model, which provides us with a reliable estimation of

these terms based on the relative stability of the atmosphere. Since we will be modeling

an indoor environment, we can pick a stability rating and treat it as a constant.

The equations for sY and sZ then become:

sY =
894.0

1000
˜
¯

ˆ
Á
Ë

Ê•
Xdist

A

sZ = F
Xdist

C
D

-˜
¯

ˆ
Á
Ë

Ê•
1000

Where A, C, D, and F are all constants derived from the estimation provided by

industialhygiene.com. Given these approximations, we are able to easily encode this

equation in any programming language that can handle floating-point exponents.

III. Integrating External Code with LabVIEW

My task thus far has been to integrate external code with LabVIEW. This is a

necessary step because many of our algorithms and processes would be too difficult, or

impossible to implement entirely in LabVIEW. LabVIEW is of course an integral part of

our system, because the existing odor-detection unit already has a LabVIEW interface

that we will need to interact with the hardware.

LabVIEW already has an excellent resource for using external C/C++ code,

which is called a Code Interface Node (CIN). A CIN is a block diagram module that

allows you to pass variables of most common types into it, and output data that can

continue to be used in the rest of the VI. A CIN can have any number of input and output

terminals, and can have terminals declared as output-only if so desired. When the CIN is

called, the only arguments passed to the CIN object code are pointer references to the

input variables. When the code completes running, LabVIEW passes the output

variable(s) to the next block on the VI diagram.

The steps to create a new CIN are as follows. First, on the block diagram, place a

CIN block, found under the “Functions\Advanced” palette. Then place the block objects

that you wish to input and output from the CIN on the front panel or block diagram.

Right click on the CIN block and add parameters as necessary. A terminal can also be

clicked on and made output only if desired. Wire the objects together on the block

diagram. The completed block diagram should look like the Figure 1, which has two

numbers entered into a CIN, which the CIN multiplies and outputs to a digital display.

The entire CIN operation can be turned on and off via a Boolean switch if desired.

Figure 1: Example CIN module

Right click on the CIN and select “Create .c File”, and put the file in a directory.

LabVIEW supports many IDEs for code development, such as Metrowerks CodeWarrior,

Microsoft Visual C++, and Gnu C for Unix environments. For my work, I have been

using Microsoft Visual C++ 6.0. The following steps describe how to compile the .c file

properly in this IDE. For other IDEs, consult the LabVIEW External Code

documentation. In Visual Studio, create a new .dll project, and give it a name. To add

the required files, go to Project\Add to Project\Files. Go to the Win32 subdirectory of the

LabVIEW cintools directory and select the files “cin.obj, labview.lib, lvsb.lib, and

lvsbmain.def”. Then go back to Project\Add to Project\Files, and add the .c file that was

created from LabVIEW. The next step is to edit the project settings. For the .c to

compile to the format LabVIEW needs, some very specific options need to be set. Go to

Project\Settings. In the Settings For field, select All Configurations. For the next steps,

do not click the OK button until all project build options are set. On the C/C++ tab, set

the category to Preprocessor. Add the absolute path to the cintools directory. The path

must be in MS-DOS format, or be contained in quotes for Windows format directories

(spaces, long filenames, etc.). Set the category to Code Generation. Change the Use

Run-time Library field to Multithreaded DLL. Set the Struct Member Alignment to l

Byte. On the Custom Build tab, set the Build Commands field to “<cintools path

here>\win32\lvsbutil” “$(TargetName)” –d “$(WkspDir)\$(OutDir)”. This command

must be on one line in the Build Commands field. For the options preceded by “$”, use

the Directory and Files macro buttons at the bottom to fill them in, rather than typing

them by hand. In the Output Files field, enter “$(OutDir)$(TargetName).lsb”. At this

point it is now safe to click the OK button for the project settings. Now enter the desired

code into your .c file by opening the file from the Work Space Window. Save the

project, and Build it. If the code compiles correctly, then select Build\Build <your

file>.dll. Verify that the .lsb file was created and placed in the \Debug directory of your

project. Now back on the block diagram in LabVIEW, right click the CIN and select

Load Code Resource, and select the .lsb that was created from the compile. The VI

should now be able to run and test it.

My initial attempts to get a CIN to work in LabVIEW were unsuccessful. The

first documentation that I found for CIN’s in LabVIEW has some imprecise wording in

them. When setting build options, the documentation does not specify that path

directories must be in quotes or in MS-DOS format, so Visual Studio was unable to find

and use the extra files LabVIEW requires. The first documentation that I found also did

not say that when setting build options, to complete all changes before pressing the OK

button. I had been doing each one at a time and pressing OK after each. After a search

on the National Instruments website, I found more detailed build instructions in the

developer section of the website. That web page contained the instructions as I outlined

above, which worked properly for me.

The next tasks I will be responsible for are to implement more tasks in LabVIEW.

For instance, we will need a way to display our odor plume graph on a LabVIEW front

panel. This should involve representing an equation in LabVIEW or perhaps using

external C code once again, and using Lab View’s graphing capabilities to display the

data in a meaningful fashion. I will also need to develop a way to integrate the existing

LabVIEW module that interfaces with the e-nose hardware with our LabVIEW modules.

IV. Tracking Algorithm

One of the main parts of our project is to discover the “best” odor-tracking

algorithm for robots. For the purposes of this project, our criteria for choosing a tracking

algorithm are simplicity of implementation and accuracy of results. We have researched

through many different resources and come up with our own tracking algorithm. The

following are four existing tracking algorithms from different research groups. The first

tracking algorithm is based on bacteria chemotaxis [1]. The second tracking algorithm is

based on the male silkworm moth to track for female moth sex-attractant pheromone [2].

The third tracking algorithm is based on gradient tracking [1]. And the fourth tracking

algorithm is based on odor concentration and wind direction [3].

1- The random walk of bacteria: This algorithm is adapted from Holland and

Mehuish [1]. Bacteria make a random movement depending on the concentration of the

odor. At the start, bacteria randomly move forward a distance “d”. They then stop and get

the concentration at that location. They compare the current concentration with the last

saved concentration. If the current concentration is greater than the last one, they will turn

randomly +/-5 degree and continue move forward. If the current concentration is less than

the last concentration, they will turn 180° and move forward (reversal process). They

repeat the random walk process until they find the source.

2- Male silkworm moth track a female moth pheromone plume: Female moths emit

a sex attractant called Bombykol. When a male moth detects this substance, it starts the

following movements to search for the female pheromone plume. First, it moves in the

upwind direction. Second, it starts a sinusoidal zigzag movement across the horizontal of

the odor plume. If it loses contact within a specific amount of time, it will loop back and

start a new search. The male moth repeats the tracking strategy until it finds the female

moth [2]. Please see the attached image.

Male moth behavior in odor plume

3- Robot movement based on gradient: “A possible way to find the sources of an

odor plume is to estimate the local concentration gradient and move the robot in the

direction of the gradient’s increase” [1]. To experimentally test this method, a robot is

supplied with two sensors on the left and the right sides. It compares the gradients of the

two sensors to determine the direction of concentration’s increase and makes a movement

following that direction.

4- The Spiral Surge Algorithm: to start, the robot will move spirally (SpiralGap1)

until it discovers an odor packet. Then, it will sample the wind direction and move

upwind for a distance (StepSize). “If during the surge another odor packet is encountered,

the robot resets the surge distance but does not resample the wind direction. After the

surge distance has been reached, the robot begins a spiral casting behavior, looking for

another plume hit. The casting spiral can be tighter than the plume finding spiral

(SpiralGap2)” [3]. The robot will repeat the process until it finds the odor source. Please

see the attached picture.

Spiral Surge Localization Algorithm

After looking at all the articles related to odor-tracking algorithms, we have come up with

the following proposed tracking algorithm:

To start, the robot is in its origin location (x,y). It begins moving spirally and

taking concentration samples at an interval time “t”. The robot will move spirally three

layers and then stops. It will compare the concentrations at different points and different

layers (C1, C2, C3). If C1<C2<C3, it will move a predefined distance ”d” and stop at a

location (x1, y1) with a different concentration (C4). The robot then will move randomly

in the direction of 90° different with direction of x1 a distance “d”. The stopping point

now has a concentration of C5. If C5>C4, the robot will move to the direction of

concentration’s increase. If C5<C4, it will move to the opposite direction a distance “2d”

and stop at a point C6. If C6>C4, the robot will move to the direction of concentration’s

increase. If C6<C4, it will once again change direction towards a point C7 and repeat the

tracking process until it finds the source. At the location (x1,y1), if the robot cannot

detect any odor after randomly rotating in different directions, it will assume it is lost and

will repeat the casting behavior. Please see the attached figure.

To find out the location of (x1,y1), we will use the following formula:

X1 = r cosq

Y1= r sinq

Where r and q are calculated by the following formulas:

r = kt

q = ct

(t = time, k = tightness, and c = # of spirals)

We chose this algorithm because it relatively simple to implement, and we feel it will

yield good results in practice.

There are some difficulties that we have encountered when we worked on

tracking algorithm research. To discover tracking algorithms that rely on understanding

how animals like moths, dogs, and lobsters track to their sources has taken some time for

us to fully absorb and comprehend. Many research groups are still experimenting in this

area of study. There are also not many papers about tracking algorithms published by the

research community. Dr. Ricardo Gutierrez-Osuna will help us to discover more sources

about tracking algorithms.

We will implement the proposed tracking algorithm in the next several weeks

while we continue searching for other new tracking algorithms.

V. Existing Dilution System

Jason was first assigned to study the dilution system that would be used later in

the project. The dilution system consists of three Model 1010 Precision Gas Diluters

from Custom Sensor Solutions, a sensor array chamber with four TGS26xx series odor

sensors from Figaro USA and one HIH series temperature/humidity sensor from

Honeywell, a vacuum pump, a PC Board (PCB) with all the circuitry, two Data

Acquisition Cards (DAQs) from National Instruments, and a user interface program made

in LabVIEW from National Instruments.

The three gas diluters are used for three different gases. There is one diluter

hooked up for each gas and then the three are mixed together to form one odor mixture.

Each diluter has a tube from the gas container to the input of the diluter. Each diluter is

also controlled by the LabVIEW program via the remote control terminals on the back of

the diluter. Based on the concentration entered in the LabVIEW program, the Data

Acquisition Cards send a voltage in the range of 0 to 5 volts, which corresponds to a

concentration range of 0 to 100 percent. The output of each diluter is attached to a three-

to-one tube, which combines the three diluters’ outputs into one output, and acts as a

mixing chamber.

This odor mixture is then passed through the sensor array. The sensor array

consists of four different odor sensors and one temperature/humidity sensor. Since the

temperature and humidity level can affect how the sensors react, it is important to have a

sensor that reads these levels in order to properly interpret the results. The four odor

sensors are based on chemical reactions. The metal oxides in the sensors join with the

oxygen in the air and create a resistive barrier layer around the sensor, which increases

the sensors’ electrical resistance. Odorous gases tend to be deoxidizing gases. As they

come into contact with the sensors, they react with the sensors and remove the oxygen

from the barrier layer that was formed. This in effect lowers the electrical resistance of

the sensors. The sensors’ resistance follows this general equation,

[]a-= CARs

where Rs = sensor resistance, A = some constant, [C] = gas concentration, and a = slope

of the Rs curve. This resistance is then inserted into a voltage divider circuit (Figure ?),

and the resulting voltage is then sent to the LabVIEW program via the Data Acquisition

Cards. With this circuit, as the sensor resistance decreases, the resulting sensor voltage

increases. Therefore, generally as concentration of an odor increases, the sensor

resistance decreases, and the sensor voltage increases.

Figure ?. Sensor Circuit.

The pump involved is a vacuum pump and is used to pull the odor through the

diluters and through the sensors. The pump is driven by a circuit that turns the pump on

whenever the voltage is greater than 4 volts. Otherwise, it is turned off. The PC Board

basically just holds all the circuitry in a small area to conserve space. The Data

Acquisition Cards interface the circuitry with the LabVIEW program on the computer,

and they also drive the diluters and the pump as well as collect the sensor responses.

The LabVIEW program acts as the interface between the user and the dilution

system. The program allows the user to set parameters for the heater voltage and the

dilution profile. The heater voltage inputs consist of an upper limit, a lower limit, a

period, and a pre-heat stage. The heater voltage upper limit is the maximum amplitude

voltage, which should be less than or equal to about six volts. The lower limit is the

minimum amplitude voltage, which should be greater than or equal to zero volts. The

period is the length of time for one heater voltage cycle, which should be about 2-3

seconds. The pre-heat stage is the length of time to heat the sensors before using them,

which should be about 15 minutes. The dilution profile consists of a table of

concentrations for each diluter for each step and the step duration. For the table of

concentrations, the columns correspond to each gas, and the rows correspond to each step

or time you run the dilution system. The step duration refers to the length of time of one

dilution step. This program also allows you to save the sensor responses to a file, load a

dilution profile from a file, and manually turn the pump on and off.

The analytes used in this system are ammonia, isopropyl alcohol, and acetone.

The group who designed this system normalized the gases to determine suitable relative

concentrations for each analyte so that all three could be detected when all three were

present. The normalized concentration for ammonia was 11.1 percent. The normalized

concentration for isopropyl alcohol was 0.41 percent. The normalized concentration for

acetone was 0.14 percent.

For our design, we determined what inputs and outputs of the dilution system

were needed. We decided that the heater voltage limits, period, pre-heat stage, and the

step duration would be set within the system, since they would be constant in our project

environment. We will have the dispersion model send a dilution profile consisting of the

concentrations of each odor at the robot’s location. The robot simulator would take either

the sensor voltages or the actual sensor resistances for all five sensors in the array. It

would then interpret the results and determine the concentrations of each odor and decide

on where to move next based on its tracking algorithm. We considered incorporating a

separate module that handled the sensor responses as the inputs and gave the individual

odor concentrations as its outputs. We considered this option so that as the sensor

response method became more complicated and changed, we can just work on this

module instead of modifying the robot simulator each time. After talking with Dr.

Gutierrez-Osuna, we determined that we would be dealing only with a single odor source,

so the sensor response method could easily be handled within the robot simulator.

We will need to implement an electronic nose simulator before using the dilution

system provided by a previous class. We will use this simulator to provide a sensor

response based on the given concentration so that we can quickly and efficiently modify

the robot simulator’s algorithms for interpreting the sensor response and tracking the odor

source. Once these algorithms are working, we will replace the electronic nose simulator

with the actual electronic nose system and continue to test and refine our algorithms. For

our electronic nose simulator we planned on using the general equation, mentioned

earlier, and is given here:

[]a-= CARs

The values for A and a vary according to the gases present. Therefore, since we are only

using one odor source, we decided to use the following equation and values associated

with methane (CH4),

[]()b-+= 40 4
1 CHKRR CH

where R = sensor resistance, R0 = 27.4 kW, KCH4 = 4.37x10-3 ppm-1, [CH4] =

concentration of methane gas, and b = 0.34. We used this equation because it was similar

to the general equation for sensor response. It also did not really matter which gas was

used since the only purpose of the electronic nose simulator is to test the robot

simulator’s algorithms for interpreting the sensor response and tracking the odor source.

During the next stage of our project, we will begin coding the electronic nose

simulator, since we now know what programming language we will be using and we

have the equation for the simulator. As soon as the other two modules are completed, we

can begin testing the algorithms. Once we feel that everything is working according to

plan, we will attach the dilution system and continue to test and modify the algorithms to

work with real sensor responses.

Once the coding for the electronic nose is completed and awaiting the completion

of the other modules, we will begin running tests on the dilution system to begin the

pattern recognition to use for interpreting the sensor responses later on. We will have to

do more research on the methods of pattern recognition and figure out how we will do

ours. From this pattern recognition, we will be able to determine the algorithm for the

robot simulator to use in interpreting the sensor responses when attached to the dilution

system.

We will also have to modify some of the LabVIEW interface for the dilution

system so that our dilution module can automatically send the concentration of the odor

at the robot’s location. We will also need the sensor responses to be sent directly to the

robot simulator so that it can track the odor to the odor source.

VI. Future Progress

The advances described here have allowed us to progress in our initial goal of

creating three modules; a dispersion module to model the odor concentration in the air, a

tracking module to implement our tracking algorithm, and a dilution system module to

model the existing dilution system. The next step we will take is to begin coding. Having

each done our research, we are going to come together again as a group and combine our

results. The dispersion model will be easy to code in C or C++, and coding will begin

immediately. This module will then be integrated with LabVIEW. We will also begin

coding the tracking algorithm we have chosen. We must figure out how to accept the

appropriate input from LabVIEW in this module, and figure out how to interpret it. Given

the information expressed in this paper, this next stage should not be too difficult.

VII. Scheduling

CDR Due
Define System
Write Proposal

Research
Define, Code, Test E-nose

Define, Code, Test Diffusion System
Define, Code, Test Robot Simulator

Integrate, Test Modules
Add Dilution System

Test
Write Final Report

1/27 2/3 2/10 2/17 2/24 3/3 3/10 3/17 3/24 3/31 4/7 4/14 4/21 4/28 5/5

original proposal
actual time already spent
future planned times

So far, we are close to being on schedule according to our Gantt chart. One area

that appears to be taking too long is research. However, this is misleading; we have done

sufficient research to proceed with our development, but we have also discovered that we

will have to continue to do research for the lifetime of the project. Other than this, we are

roughly on schedule, and we foresee no obvious or major difficulties to befall us in the

weeks to follow.

VIII. References

[1] Marques, L. et al. Olfaction-based Mobile Robot Navigation. Thin Solid Films 418

(2002) 51-58

[2] Danny,G. et al. Modeling Approaches to Understand Odor-guided Locomotion.

http://flightpath.neurobio.arixona.edu/Model/index.html

[3] Hayes, T Adam et al. Distributed Odor Source Localization. IEEE Sensors Journal,

Vol.2, No.3, June 2002

[4] Barratt, Rod, Atmospheric Dispersion Modeling, An Introduction to Practical

Applications, 2002

[5] Schnelle, Jr., Partha R. Dey, Karl B., Atmospheric Dispersion Modeling Compliance

Guide, 1999

[6] Zannetti, P., Air Pollution Modeling, 1990

