Lecture 8: Data Acquisition II

- Sample and hold
- Multiplexing
- Analog to digital conversion
- Digital to analog conversion

Architecture of data acquisition systems

Sample and hold

- A Sample and hold (S/H) circuit has two basic operating modes
 - **Sample mode**: The output follows the input
 - Hold mode: The output is held constant until sample mode is resumed

- The main application of S/H circuits is to hold the input signal to an ADC constant during conversion
 - Why? Imagine trying to photograph a moving object!

From [FB00]

Basic S/H circuit

Basic elements

- Voltage followers
- FET switch

Operation

- IC1 provides low Z_{out} version of input signal
- Q1 passes the signal during 'sample' and disconnects during 'hold'
- C preserves the value during 'hold'
- IC2 is a high Z_{in} op-amp to minimize capacitor discharge during 'hold'

S/H response characteristics

Response parameters

- Aperture time: time required for the switch to open (~50ns)
- Droop: capacitor discharge
- (~1mV/ms)
- Acquisition time: switch operation plus capacitor charging time

Considerations for choosing C

- C should be large enough to minimize 'droop' caused by leakage currents in Q1 and IC2
- C should be small enough to track fast signals since it forms a low-pass filter with Q1's ON resistance!
 - In practice, the slew rate of the entire circuit is determined by IC1's output current and Q1's ON resistance

Multiplexers

- A multiplexer is a circuit that allows you to select any of several inputs, as specified by digital control signals
 - Since analog switches are bi-directional, this circuit could also be used as a demultiplexer!
 - It could also be uses as a digital MUX since logic levels are just voltages

FET analog switches

- N-channel enhancement-mode MOS-FET
 - When Gate is grounded or negative, the FET is non-conducting
 - Drain-source resistance in the order of $10,000M\Omega$
 - Bringing the Gate to +15V puts the drainsource channel into conduction
 - Drain-source resistance in the order of 100Ω

Analog-to-digital converters

- Single slope or ramp
- Successive approximation
- Dual slope
- Parallel or 'flash'

Single slope or ramp ADC

- While $V_A > V_B$ counter increments
- When $V_A = V_B$ counter stops and binary code is available at the output

Characteristics

 Relatively slow since conversion time could be up to 2^N, where N is the resolution of the ADC

Successive approximation ADC

Basic elements

- A digital-to-analog converter
- An analog comparator
- A control logic module
- A successive approx. register

Diaital

Operation is based on a binary search

• Initially, the register provides

From [BW96]

an output corresponding to half the range (1000...0)

- If the analog input is greater, then MSB=1, else MSB=0
- The register performs the same operation from MSB to LSB

Characteristics

- Conversion requires only N steps, where N is the resolution of the ADC
 - Conversion times of µs are typical

Dual slope ADC

Basic elements

- An integrator
- A zero-crossing detector
- A binary counter
- Logic gates and switches

Operation

- Counter is reset and switch is connected to the analog input
 - The integrator generates a negative ramp whose slope is proportional to the analog input
 - The comparator goes HIGH, enabling clock pulses into the counter
- When counter overflows, it resets to zero and the control circuit switches the switch to a reference negative voltage
 - This causes the integrator to generate a positive slope ramp
 - When this ramp reaches zero, the comparator goes low and stops the counter, whose value represents the analog input

Characteristics

- Very high resolution, but also slower (30 conversions/sec)
 - Widely used in digital multi-meters
- Insensitive to clock drift, RC drifts and high-frequency noise

Dual slope ADC

Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

Parallel or flash ADC

Basic elements

- A multiple voltage divider
- A set of comparators
- A priority encoder

Operation

- Analog input applied to all comparators
- Priority encoder converts comparator pattern into binary
 - E.g.: A 3-bit ADC:

- 'Va -O Vret R Comparators R Priority encoder Digital outputs R From [BW96]
- For comparator outputs of 0001111, priority encoder generates 100
- For comparator outputs of 0111111, priority encoder generates 110

Characteristics

- Very fast (e.g., 8-bit ADCs capable of 20 million conversions/sec)
- Very expensive for large N since the number of comparators is $2^{N}\mathchar`-1$

Digital-to-analog converters

- Binary weighted ladder
- R-2R ladder
- Pulse width modulation

Binary weighted ladder

- Based on the summing op-amp circuit from lecture 5
 - Each input resistor is twice the value of the previous one
 - Inputs are weighted according to their resistors

Characteristics

- The lowest value resistor R affects the MSB and must have the highest precision
- This circuit is impractical for large N since it would require high precision resistors for a wide range

Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

R-2R ladder

Basic elements

- 2N resistors
- An op-amp
- N switches

Operation

- Switches
 - When bit $I_k=1$, the corresponding switch is connected to V_{REF}^{-}
 - When bit $I_k=0$, the corresponding switch is connected to GND
- Assume all the legs but one are grounded
 - The one connected to V_{REF} will generate a current that flows towards the inverting input of the op-amp
 - This current is halved by the resistor network at each node
 - Therefore, the current contribution of each input is weighted by its position in the binary number

R-2R ladder

- The R-2R operation is better understood by redrawing the resistor network
 - In (b) only the MSB is ON
 - In (c) only the next bit to the MSB is ON

Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

Pulse Width Modulation

Basic components

- A digital line
- An RC low-pass filter

Operation

- The digital line is used to generate a train of pulses of fixed frequency
- The width (duty cycle) of the pulse is made proportional to the desired analog output
- The pulse train is then passed through a low-pass filter, which generates an output voltage proportional to the average time spent in the HIGH state

References

[Ram96]	D. C. Ramsay, 1996, Principles of Engineering Instrumentation, Arnold, London, UK
[Tay97]	H. R. Taylor, 1997, Data Acquisition for Sensor Systems, Chapman and Hall, London, UK.
[HH89]	P. Horowitz and W. Hill, 1989, The Art of Electronics, 2 nd Ed., Cambridge University Press, Cambridge, UK
[BW96]	J. Brignell and N. White, 1996, Intelligent Sensor Systems, 2 nd Ed., IOP, Bristol, UK.
[FB00]	R. S. Figliola and D.E. Beasley, Theory and design of Mechanical Measurements, 3 rd Ed., Wiley, New York.

