
Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Lecture 2: MC68000 interrupt in C language

g Problem definition
g Vectored interrupts
g The vector table
g Introduction to the PI/T
g Basic PI/T operation
g C language solution

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Problem

g Setup the PI/T to read data from Port A and copy to Port B every 5
seconds

n Port A should be programmed for non-latched input
n Port B should be programmed for single-buffered output
n Timer should be setup to interrupt the MC68000 every 5 seconds

Port
A

Timer

PI/TMC68000

Port
B

Read

Write

Interrupt (5 s.)

Sensor data

Motor command

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Vectored interrupts

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Vectored interrupts

g The 68000 provides two interrupt schemes
n Vectored: intended for modern 16-bit peripherals
n Auto-vectored: intended for older 8-bit peripherals

g There are seven levels of interrupts available
g The sequence of operations during a vectored interrupt request is the following

n A peripheral requires attention by asserting its interrupt request output (IRQ*)
n The priority encoder produces a 3-bit code with the highest IRQ* line active and passes it to

the 68000 on the IPL0*-IPL3* inputs
n The 68000 compares the level of the interrupt with the interrupt mask flag (I2I1I0) in the SR.
n If the requested input is greater than (I2I1I0), the interrupt is serviced, otherwise it is ignored
n If the 698000 decides to service the interrupt:

g The code 111 is placed on (FC2FC1FC0) to inform the system that an interrupt is about to be serviced
g The priority of the interrupt is placed on (A3A2A1)
g (FC2FC1FC0) and (A3A2A1) are passed to an interrupt acknowledge decoder which asserts one of the

seven IACK* lines

n The asserted IACK* line informs the interrupting device that it is about to be serviced
n The peripheral whose interrupt level matches the asserted IACK* will “know” that it is going

to be serviced
n The peripheral then writes the IVEC vector onto the data bus (D7D0) and asserts the

DTACK* line (DTACK stands for Data Transfer Acknowledge)
n the active DTACK* terminates the IACK cycle and the 68000 will execute the interrupt

handler pointed by the vector fetched from (D7D0)

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

The vector table

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Introduction to the 68230

g The 68230 PI/T (Parallel Interface/Timer) is a general-purpose
peripheral

n Its primary function is a parallel interface
n Its secondary function is a programmable timer

g The PARALLEL INTERFACE provides 4 modes with various
handshaking and buffering capabilities

n Unidirectional 8-bit
n Unidirectional 16-bit
n Bidirectional 8-bit
n Bidirectional 16-bit

g The PROGRAMMABLE TIMER provides a variety of OS services
n Periodic interrupt generation
n Square wave generation
n Interrupt after timeout
n Elapsed time measurement
n System watchdog

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

PI/T simplified interface with the MC68000

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

PI/T simplified interface with the MC68000

g An address decoder places the PI/T at a given location within the address space
of the processor

n On the SBC68K, the PI/T base address is $FE8000
g The 68230 is programmed and used by reading and writing data to the correct

memory-mapped locations (registers)
g The 68230 contains 23 internal registers, which are are selected by the state of

5 register-select inputs (RS1-RS5) connected to the address bus (A1-A5)
n Notice that ALL the registers are located at ODD memory locations
n Only 9 of the 23 registers are used for the programmable timer function

g Data to the internal registers is transferred through the data bus (D0-D7)
g There are three internal ports

n Port A and Port B are used for parallel interface
n Port C is shared by timer and parallel interface

g Handshaking is accomplished through lines H1-H4

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

PI/T timer registers
g Timer Control Register (TCR)

n Determines the operation modes of the timer

g Timer Interrupt Vector Register (TIVR)
n Stores the interrupt vector number

g Counter Preload Register (CPR)
n A 24-bit counter with the desired (by the

programmer) number of counts measured in ticks

g Counter Register (CNTR)
n A 24-bit counter down-counter that is

automatically decremented with every tick

g Timer Status Register (TSR)
n Determines the status of the timer
n Only Bit #0 (Zero Detect Status or ZDS) is used
n In order to clear the ZDS bit after a zero-detect

YOU MUST WRITE A 1 to it (YES, the ZDS bit is
cleared by writing a ONE to it)

Register and Mnemonic Acc. Offset
Timer Control Register TCR R/W $21
Timer Interrupt Vector Register TIVR R/W $23
Counter Preload Register High CPRH R/W $27
Counter Preload Register Middle CPRM R/W $29
Counter Preload Register Low CPRL R/W $31
Counter Register High CNTRH R $2F
Counter Register Middle CNTRM R $31
Counter Register Low CNTRL R $33
Timer Status Register TSR R/W $35

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Timer Control Register

g Timer Enable (TCR0)
n Turns the timer ON and OFF. The timer is disabled when the bit is cleared; it is enabled when set

g To start the timer, place an 1 in TCR0

g To stop the timer, place a 0 in TCR0

g Clock Control (TCR1-2)
n The PI/T timer permits different clock pulse operations. When the field is 00, every 32 CPU clock cycles

become 1 timer tick.

g Counter Load (TCR4)
n After completing its countdown, the tick counter is either reset from the Counter Preload Register (CPR) or it

rolls over to $FFFFFF
g Writing a 0 on TCR4 causes a reload from the CPR
g Writing a 1 on TCR4 causes a roll-over to $FFFFFF.

g Action on Zero Detect (TCR5-7)
n The timer can select from a series of actions when the tick counter reaches 0.

Mode TCR7 TCR6 TCR5 TCR4 TCR3 TCR2 TCR1 TCR0
1 1 X 1 0 X 00 or 1X 1
2 0 1 X 0 X 00 or 1X 1
3 1 X 1 1 X 00 or 1X 1
4 0 0 X 1 X 0 0 1
5 0 0 X 1 X 0 X 1
6 1 X 1 1 X 0 1 1

TOUT/TIACK* control ZD
control

Not
used Clock control Timer

enable
Mode 1: Real-time clock
Mode 2: Square wave generator
Mode 3: Interrupt after timeout

Mode 4: Elapsed time measurement
Mode 5: Pulse counter
Mode 6: Period measurement

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Clock control (TCR2-TCR1)

g The counter can be decremented from three different signals
n TIN, the external clock input
n The output of a 5-bit prescaler driven by CLK and enabled by TIN

n CLK, the system clock (prescaled)

g The 5-bit prescaler allows us to divide the counter frequency by 32
g The SBC68K clock runs at 8MHz (125×10-9 seconds per count), so 1 second will require

250,000 CLK ticks (mode 00)

TCR2 TCR1 Clock Control Example

0 0
PC2/TIN is a port C function. The counter clock is prescaled by 32, thus

the counter clock is CLK/32. The timer enable bit determines whether the
timer is in the run or halt state.

Prescaler CounterCLK

0 1

PC2/T IN is a timer input. The prescaler is decremented on the falling edge
of CLK and the counter is decremented when the prescaler rolls over

from $00 to $1F (3110) Timer is in the run state when BOTH timer enable
bit and TIN are asserted.

Prescaler CounterCLK

TIN

1 0

PC2/T IN is a timer input and is prescaled by 32. The prescaler is
decremented following the rising transition of TIN after being

synchronized with the internal clock. The 24-bit counter is decremented
when the prescaler rolls over from $00 to $1F. The timer enable bit

determines whether the timer is in the run or halt state.

Prescaler CounterTIN

1 1

PC2/TIN is a timer input and prescaling is not used. The 24-bit counter is
decremented following the rising edge of the signal at the TIN pin after

being synchronized with the internal clock. The timer enable bit
determines whether the timer is in the run or halt state.

TIN Counter

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

TOUT/TIACK* control (TCR7-TCR5)

g Bits 7-5 of the Timer Control Register control the way the PI/T timer behaves on a zero-
detect (ZDS=1)

n Whether interrupts are supported (vectored, auto-vectored or none)
n How does the PC3/TOUT output pin behave
n How is the PC7/TIACK* input pin interpreted

TCR7 TCR6 TCR5
Timer response

(simplified) Timer response (detailed)

0 0 X Use timer pins for the
operation of I/O port C PC3/TOUT and PC7/TIACK* are port C functions

0 1 X
Toggle a square wave
with each expiration of

the timer

PC3/TOUT is a timer function. In the run state TOUT provides a square wave which
is toggled on each zero-detect. The TOUT pin is high in the halt state. PC7/TIACK*

is a port C function.

1 0 0 No vectored interrupt
generated on a count of 0

PC3/TOUT is a timer function. In the run or halt state TOUT is used as a timer
request output. Timer interrupt is disabled, the pin is always three-stated.
PC7/TIACK* is a port C function. Since interrupt requests are negated, PI/T

produces no response to an asserted TIACK*.

1 0 1 Generate a vectored
interrupt on a count of 0

PC3/T OUT is a timer function and is used as a timer interrupt request output. The
timer interrupt is enabled and TOUT is low (IRQ* asserted) whenever the ZDS bit

is set. PC7/TIACK* is used to detect the 68000 IACK cycle. This combination
operates in the vectored-interrupt mode.

1 1 0
No autovectored

interrupt generated on a
count of 0

PC3/T OUT is a timer function. In the run or halt state it is used as a timer interrupt
request output. The timer interrupt is disabled and the pin always three-stated.

PC7/TIACK* is a port C function.

1 1 1
Generate an auto-

vectored interrupt on a
count of 0

PC3/T OUT is a timer function and is used as a timer interrupt request output. The
timer interrupt is enabled and TOUT is low whenever the ZDS bit is set.

PC7/TIACK* is a port C function. This combination operates in an autovectored
interrupt mode.

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Parallel I/O general description

g The parallel function has three ports
n Two independent 8-bit ports (and B)
n A third dual-function port C

g Ports A and B be can be used as I/O ports
with various handshaking and buffering
capabilities in four different modes

n Mode 0: Unidirectional 8-bit
n Mode 1: Unidirectional 16-bit
n Mode 2: Bidirectional 8-bit
n Mode 3: Bidirectional 16-bit

g Port C can be used as
n a simple 8-bit port without handshaking or

double-buffering
n an interrupt interface to the timer
n an interrupt interface to parallel I/O
n a support interface for DMA operation

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Brief overview of parallel I/O registers

g Port General Control Register (PGCR)
n Selection of I/O modes (0, 1, 2 and 3) and handshaking signals (H1, H2, H3 and H4)

g Port Service Request Register (PSSR)
n Selection of Port C functions: DMA requests, IRQ/IACK signals and handshaking signal

priority

g Port {A,B,C} Data Direction Register (PxDDR)
n Selection of individual port bits as inputs or outputs

g Port Interrupt Vector Register (PIVR)
n Storage of vector number for vectored interrupts

g Port {A,B} Control Register (PxCR)
n Selection of port sub-modes and handshake signals operation

g Port {A,B,C} Data Register (PxDR)
n Contents of the I/O ports

g Port {A,B} Alternate Data Register (PxADR)
n Instantaneous logic levels of the I/O pins of the port

g Port Status Register (PSR)
n Status information of the handshake signals

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

The PI/T’s modes of operation

H2(H4)
H1(H3)

A(B) [8]

M
C

68
23

0

H2(H4)
H1(H3)

A(B) [8]

M
C

68
23

0

H2(H4)
H1(H3)

A(B) [8]

M
C

68
23

0

H4
H3

A+B [16]

M
C

68
23

0

H2
H1

H4
H3

A+B [16]

M
C

68
23

0
H2
H1

H4
H3

M
C

68
23

0

H2
H1

B [8]

A [8]

Output Xfers

Input Xfers
H4
H3

M
C

68
23

0

H2
H1

A+B [16]

Output Xfers

Input Xfers

Mode 0 (1D/8bit) Mode 1 (1D/16bit) Mode 2 (2D/8bit) Mode 3 (2D/16bit)

S
ub

-m
o

d
e

00
S

ub
-m

o
d

e
01

S
ub

-m
o

d
e

1X

S
ub

-m
od

e
X

0
S

ub
-m

od
e

X
1

NPd*

Unidirectional

Single-buffered

Non-latched

LEGEND

*NPd: This is the ONLY mode that is Not Pin-definable

Double-buffered

Bidirectional

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Port General Control Register

g PGCR7-PGCR6
n Select the operating mode of the PI/T

g PGCR5-PGCR4
n Enables the handshake pairs H3-H4 and H1-H2. These bits have to be set before we can

make use of the control inputs and outputs. Doing this avoids spurious operation of the
handshake lines before the PI/T has been fully configured

g PGCR3-PCGR0
n Determine the sense of the four handshake lines. These control lines can be programmed to

be active-low or active-high

Bit PGCR7 PGCR6 PGCR5 PGCR4 PGCR3 PGCR2 PGCR1 PGCR0

Function Port mode control H34 enable H12 enable H4
sense

H3
Sense

H2
Sense

H1
Sense

PGCR7 PGCR6 Port mode control
0 0 Mode 0
0 1 Mode 1
1 0 Mode 2
1 1 Mode 3

PGCR5 H3, H4 control
0 H34 disable
1 H34 enable

PGCR4 H1, H2 control
0 H12 disable
1 H12 enable

PGCR3-0 Sense
(Assertion Level)

0 LOW
1 HIGH

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Port Data Direction Registers

g Port Data Direction Registers: PADDR,PBDDR and PCDDR
n Select the direction and buffering characteristics of each of the appropriate port pins

g A logical ONE makes the corresponding pin act as an OUTPUT
g A logical ZERO makes the corresponding pin act as an INPUT

n Port C behaves in the same fashion and determines whether each dual-function chosen for
port C operation is an input or an output

Bit PADDR7 PADDR6 PADDR5 PADDR4 PADDR3 PADDR2 PADDR1 PADDR0
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit PBDDR7 PBDDR6 PBDDR5 PBDDR4 PBDDR3 PBDDR2 PBDDR1 PBDDR0
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit PCDDR7 PCDDR6 PCDDR5 PCDDR4 PCDDR3 PCDDR2 PCDDR1 PCDDR0
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Port Service Request Register

g PSSR6-PSSR5 (service request)
n Determines whether the PI/T generates an interrupt or a DMA request

g PSSR4-PSSR3 (operation select)
n Determines whether two of the dual-function pins belong to port C or perform special-

purpose functions

g PSSR2-PSSR0 (interrupt-priority control)

Bit PSRR7 PSRR6 PSRR5 PSRR4 PSRR3 PSRR2 PSRR1 PSRR0

Function × SRVRQ
(DMA control) Interrupt control Port interrupt priority

PSRR6 PSRR5 Interrupt pin function
0 × PC4/DMAREQ* = PC4 DMA not used

1 0 PC4/DMAREQ* = DMAREQ* Associated with double-buffered transfers controlled by H1
H1 does not cause interrups in this mode

1 1 PC4/DMAREQ* = DMAREQ* Associated with double-buffered transfers controlled by H3
H3 does not cause interrups in this mode

PSRR4 PSRR3 Interrupt pin function

0 0 PC5/PIRQ* = PC5
PC6/PIACK* = PC6

 No interrupt support
No interrupt support

0 1 PC5/PIRQ* = PIRQ*
PC6/PIACK* = PC6

Autovectored interrupt supported
Autovectored interrupt supported

1 0 PC5/PIRQ* = PC5
PC6/PIACK* = PIACK*

1 1 PC5/PIRQ* = PIRQ*
PC6/PIACK* = PIACK*

Vectored interrupt supported
Vectored interrupt supported

PSRR2 PSRR1 PSRR0
Order of priority interrupt
Higuest ←→Lowest

0 0 0 H1S H2S H3S H4S
0 0 1 H2S H1S H3S H4S
0 1 0 H1S H2S H4S H3S
0 1 1 H2S H1S H4S H3S
1 0 0 H3S H4S H1S H2S
1 0 1 H3S H4S H2S H1S
1 1 0 H4S H3S H1S H2S
1 1 1 H4S H3S H2S H1S

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Mode 0, sub-mode 00

H2(H4)
H1(H3)

A(B) [8]

M
C

68
23

0

g Data flow
n Double-buffered input or
n Single-buffered output

g Applications
n Normally used to receive data from devices such as A/D converters

g Handshaking
n Data is latched into the input register by the asserted edge of H1
n H2 behaves according to its programming function defined below

g Port B behaves identically (using H3 and H4)

Bit PACR7 PACR6 PACR5 PACR4 PACR3 PACR2 PACR1 PACR0
0 0 H2 Control H2 Int. H1 Control

←→
Sub-mode 00

PACR5 PACR4 PACR3 H2 Control H2S
0 X X Input pin: Edge-sensitive input Set on asserted edge
1 0 0 Output pin: negated Always clear
1 0 1 Output pin: asserted Always clear
1 1 0 Output pin: interlocked input handshake Always clear
1 1 1 Output pin: pulsed input handshake Always clear

PACR1 PACR0 H1 Control
0 X H1 interrupt and DMA request disabled
1 X H1 interrupt and DMA request enabled

X X H1S status set anytime data is available
in the double-buffered input path

PACR2 H2 interrupt
0 H2 interrupt disabled
1 H2 interrupt enabled

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

g Data flow
n Double-buffered output or
n Non-latched input

g Applications
n Normally used to send data to devices such as D/A converters or printers

g Tables are almost identical to 0/00 except for PACR0
n If PACR0=0, H1S is set when port A is half-empty
n If PACR0=1, H1S is set when port A is full-empty

g Port B control is identical (using H3 and H4, of course)

H2(H4)
H1(H3)

A(B) [8]

M
C

68
23

0

Bit PACR7 PACR6 PACR5 PACR4 PACR3 PACR2 PACR1 PACR0
0 1 H2 Control H2 Int. H1 Control

←→
Sub-mode 01

PACR5 PACR4 PACR3 H2 Control H2S
0 X X Input pin: Edge-sensitive input Set on asserted edge
1 0 0 Output pin: negated Always clear
1 0 1 Output pin: asserted Always clear
1 1 0 Output pin: interlocked input handshake Always clear
1 1 1 Output pin: pulsed input handshake Always clear

PACR2 H2 interrupt
0 H2 interrupt disabled
1 H2 interrupt enabled

PACR1 PACR0 H1 Control
0 X H1 interrupt and DMA request disabled
1 X H1 interrupt and DMA request enabled

X 0 H1S status set if either initial or final output
latches can accept data and cleared otherwise

X 1 H1S status set if both initial and final output
latches are empty and cleared otherwise

Mode 0, sub-mode 01

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

Solution

/* Timer Register Addresses */

#define tmr ((unsigned char*) 0xFE8021) /* Timer Base Address */
#define tcr ((unsigned char*) tmr) /* Timer Control Reg */
#define tivr ((unsigned char*) tmr+2) /* Timer Interrupt Vector Reg */
#define cprh ((unsigned char*) tmr+6) /* Preload Hi Reg */
#define cprm ((unsigned char*) tmr+8) /* Preload Mid Reg */
#define cprl ((unsigned char*) tmr+10) /* Preload Lo Reg */
#define cnrh ((unsigned char*) tmr+14) /* Counter Hi Reg */
#define cnrm ((unsigned char*) tmr+16) /* Counter Mid Reg */
#define cnrl ((unsigned char*) tmr+18) /* Counter Lo Reg */
#define tsr ((unsigned char*) tmr+20) /* Timer Status Reg */

/* Parallel I/O Register Addresses */

#define PGCR (unsigned char*)0xFE8001 /* PI/T General Control Reg */
#define PSRR (unsigned char*)0xFE8003 /* PI/T Service Routine Reg */
#define PIVR (unsigned char*)0xFE800B /* PI/T Interrupt Vector Reg */
#define PSR (unsigned char*)0xFE801B /* PI/T Status Reg */
#define PACR (unsigned char*)0xFE800D /* PI/T Port A Control Reg */
#define PADDR (unsigned char*)0xFE8005 /* Port A Data Direction Reg */
#define PADR (unsigned char*)0xFE8011 /* Port A Data Reg */
#define PBCR (unsigned char*)0xFE800F /* Port B Control Reg */
#define PBDDR (unsigned char*)0xFE8007 /* Port B Data Direction Reg */
#define PBDR (unsigned char*)0xFE8013 /* Port B Data Reg */

void isr() {
printf("Five secs has passed\n");

*pbdr = *padr ; /* This is really the main job of isr *
It copies the content Port A data register (our input port)
and then places it to Port B (our output port)*/

tsr = 0x01; / reset the ZDS bit */

asm(" rte");
}

main () {
long *vtable;
int count=1250000;

asm(” move.w #$2400,SR");
asm(” movea.l #$20000,SP);

PGCR = 0x0F; / disable Port A & B */
PADDR = 0x00; / Set Port A as input */
PBDDR = 0xFF; / set Port B as Output */
PSRR = 0x00; / set PI/T for no Interrupts */
*PBCR = 0x00; /*0r 0x80*/ /* Set Port B Control */
*PACR = 0x40; /*0r 0x80*/ /* Set Port A Control */

/****Prepare CPU for an interrupt processing**/

*tivr = 70;
vtable = (long *) (70*4);
*vtable = isr;

/****Set up timer control register*/

tcr = 0xA0; / Set Timer Mode */

*cprl = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprh = (unsigned char) count;

tcr = 0xA1; / Start timer */

while (1) {
/* Create an infinite loop which does nothing*/

}
}

