Lecture 2: MC68000 interrupt in C language

m Problem definition

m Vectored interrupts

m The vector table

m Introduction to the PI/T
m Basic PI/T operation

s C language solution

Design of Computing Systems

m i Ricardo Gutierrez-Osuna

Wright State University

Problem

m Setup the PI/T to read data from Port A and copy to Port B every 5
seconds

e Port A should be programmed for non-latched input
e Port B should be programmed for single-buffered output
e Timer should be setup to interrupt the MC68000 every 5 seconds

MC68000 PI/T
¢ Read Pzrt 4—— Sensor data
Write > P%rt » Motor command
Timer
f Interrupt (5 s.)

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

Vectored interrupts

68000 microprocessor
- i IRQ1*
Encoded BLa Priority < IRQ2* —
interrupt IPL1* |« b < IRQ3* f'e\;e s :
request - IRQ4* Oe n :l'irup
input IPL2* |+ < IRQs* eques
= IRQ6*
- IRQ7*
» |ACK1*
Function code Fco > |ACK2*
1,1,1 =1ACK FC1 IACK » |[ACK3* 7 levels
cycle encoder » |ACK4* of interrupt
FC2 » |ACK5* acknowledge
> |ACKB*
Ao » » IACK7*
IACK level (\
- '-'-—
on address Agz > [Make request
bug Ao I) to CPU.
3 e \
Memory Get acknowledgment
Processor status byte Stack pointer from CPU.
Reset vector r " .
IIIEH IRQ* IACK IRQ* IACK
Interrupt mask
bits set level /)' \ IVEC \ \ it |
below which nterrupt vector
. : / register supplies
interrupts will : . .
not be processed. Peripheral 1 Peripheral 2 interrupt vector
number to the
Vector 255 CPU.
Pointers

to interrupt
handling routines

Address bus

Data bus

Design of Computing Systems

m i Ricardo Gutierrez-Osuna

Wright State University

Vectored interrupts

m The 68000 provides two interrupt schemes

Vectored: intended for modern 16-bit peripherals
Auto-vectored: intended for older 8-bit peripherals

m There are seven levels of interrupts available
m The sequence of operations during a vectored interrupt request is the following

A peripheral requires attention by asserting its interrupt request output (IRQ*)

The priority encoder produces a 3-bit code with the highest IRQ* line active and passes it to
the 68000 on the IPLO*-IPL3* inputs

The 68000 compares the level of the interrupt with the interrupt mask flag (1,1,1,) in the SR.
If the requested input is greater than (1,1,1,), the interrupt is serviced, otherwise it is ignored

If the 698000 decides to service the interrupt:
= The code 111 is placed on (FC,FC,FC,) to inform the system that an interrupt is about to be serviced
= The priority of the interrupt is placed on (AzAA,)
s (FC,FC,FC,) and (A3AA,) are passed to an interrupt acknowledge decoder which asserts one of the
seven IACK* lines
The asserted IACK* line informs the interrupting device that it is about to be serviced

The peripheral whose interrupt level matches the asserted IACK* will “know” that it is going
to be serviced

The peripheral then writes the IVEC vector onto the data bus (D,D,) and asserts the
DTACK?* line (DTACK stands for Data Transfer Acknowledge)

the active DTACK* terminates the IACK cycle and the 68000 will execute the interrupt
handler pointed by the vector fetched from (D,D,)

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

The vector table

vechor number (Decimal)

address (Hex)

assignment

o

oooa

RESET: initial superyisorstack
pointer (S5P)

1 ooo4 REZET: initial program counker
(PL)

2 ooos bus efror

3 nooc address error

4 o010 illegal insruction

= oo14 zeto divids

5 oo1e CHE instruction

7 oo1c TRAPY instruction

] ooza priviledge violakion

g 0024 frace

10 noz2g 10110 instructicn rap

11 002G 1111 Instruction rap

1% oozo not assigned, reserved by
Mobohola

1a* 0024 not assighed, reserved by
hoborola

Te* oozg not assigned, reserved by
hoborola

15 003c uninitialized infemrupt vechor

16-23* Qo<40-005F hot assigned, reserved by
kdoborala

24 0osn Spuricus inkerrupt

25 0oe4 Level 1 intemupt autevechor

26 (R Level 2 inferrupt auboyechor

27 D06C Level 3 infermupt autoyechor

28 oo7o Level 4 infemupt autoyechor

28 o074 Level S intetrupt auboyvechor

30 aove Letve| B inferrupt auboyechor

31 o7 Leve| 7 inferrupt autoyechor

32-47 00s0-00BF TRAP insfruction vechors*

48-63 O0c0-00FF not assigned, reserved by
Motonala

G4-255 0100-03FF Lser interrupt veckors

MOTES!

* o peripheral devices should be assigned these numbers
*e THAP #M uges vechsr numibser 32+0H

Design of Computing

IR

Systems

Ricardo Gutierrez-Osuna
Wright State University

Introduction to the 68230

m The 68230 PI/T (Parallel Interface/Timer) is a general-purpose
peripheral
e Its primary function is a parallel interface
e Its secondary function is a programmable timer
s The PARALLEL INTERFACE provides 4 modes with various
handshaking and buffering capabilities
e Unidirectional 8-bit
e Unidirectional 16-bit
o Bidirectional 8-bit
o Bidirectional 16-bit
= The PROGRAMMABLE TIMER provides a variety of OS services
e Periodic interrupt generation
Square wave generation
Interrupt after timeout
Elapsed time measurement
System watchdog

Design of Computing Systems

IR V) A Ricardo Gutierrez-Osuna

Wright State University

PI1/T simplified interface with the MC68000

System clock
pr-D, K
DTACK |=
R/W
RESET
68000
AS 1
A
AA AsAzs Address
A rzzzgz?,a- A
Z
7777777777777
&I-Aﬁ

Dg-D,
DTACK

CLK

RESET

68230
PI/T

RS,—RS;

LT

PC,/TIACK
PC,/PIACK
PCy/PIRQ
PC,/DMAREQ
PC/TOUT
PC,/TIN
PC,

PCy

LT

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

PI1/T simplified interface with the MC68000

An address decoder places the PI/T at a given location within the address space
of the processor

e On the SBC68K, the PI/T base address is $FE88000

The 68230 is programmed and used by reading and writing data to the correct
memory-mapped locations (registers)

The 68230 contains 23 internal registers, which are are selected by the state of
5 register-select inputs (RS,-RSg) connected to the address bus (A;-Ax)

o Notice that ALL the registers are located at ODD memory locations

e Only 9 of the 23 registers are used for the programmable timer function
Data to the internal registers is transferred through the data bus (Dy-D-)
There are three internal ports

e Port A and Port B are used for parallel interface

e Port C is shared by timer and parallel interface
Handshaking is accomplished through lines H;-H,

Design of Computing Systems
Ricardo Gutierrez-Osuna
i Wright State University

PI/T timer registers

s Timer Control Register (TCR)

o Determines the operation modes of the timer
= Timer Interrupt Vector Register (TIVR)

e Stores the interrupt vector number
s Counter Preload Register (CPR)

e A 24-bit counter with the desired (by the
programmer) number of counts measured in ticks
s Counter Register (CNTR)
e A 24-bit counter down-counter that is
automatically decremented with every tick
s Timer Status Register (TSR)
e Determines the status of the timer
e Only Bit #0 (Zero Detect Status or ZDS) is used

e In order to clear the ZDS bit after a zero-detect
YOU MUST WRITE A 1 to it (YES, the ZDS bit is
cleared by writing a ONE to it)

Reaister and Mnemonic Acc. Offset
Timer Control Register TCR RW $21
Timer Interrupt Vector Reqister TIVR RMW $23
Counter Preload Register High CPRH RW $27
Counter Preload Register Middle ~ CPRM RW $29
Counter Preload Register Low CPRL RW $31
Counter Register High CNTRH R $2F
Counter Register Middle CNTRM R $31
Counter Reqister Low CNTRL R $33
Timer Status Reqister TSR RMW $35

CLK
40

oLk 22,

RESET* —S2

RS, —29,

Interface
to
68000

|

Port C
PC7

PC3

- PC2

37

* TIACK"

33
> TOUT

32

Multiplexer
Timer logic
Timer control register TCR
Tour/TIACK* | Zero-detect | Clock Timar enablé
control control control
Timer status register TSR
2DS
Count register (24 bits) CNTR
Count register high (CNTRH)
Count register middle (CNTRM)[—
Count register low (CNTRL)
Counter preload register CPR
Counter preload register high (CPRH)
Counter preload register middle (CPRM)
Counter preload register low (CPRL)
Timer interrupt vector register (TIVR) |

T\N

T

Port C
functions
shared by
timer

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

Timer Control Register

= Timer Enable (TCRO)
e Turns the timer ON and OFF. The timer is disabled when the bit is cleared; it is enabled when set
m To start the timer, place an 1 in TCRO
= To stop the timer, place a 0 in TCRO

m Clock Control (TCR1-2)
o The PI/T timer permits different clock pulse operations. When the field is 00, every 32 CPU clock cycles
become 1 timer tick.

m Counter Load (TCR4)
o After completing its countdown, the tick counter is either reset from the Counter Preload Register (CPR) or it
rolls over to $FFFFFF

= Writing a 0 on TCR4 causes a reload from the CPR
= Writing a 1 on TCR4 causes a roll-over to $FFFFFF.

m Action on Zero Detect (TCR5-7)
e The timer can select from a series of actions when the tick counter reaches 0.

Mode TCR7 TCRG6 TCRS TCR4 TCR3 TCR2 TCR1

1 X 1 0 X 00 or 1X 1

2 0 1 X 0 X 00 or 1X 1

3 1 X 1 1 X 00 or 1X 1

4 0 0 X 1 X 0 0 1

5 0 0 X 1 X 0 X 1

6 1 X 1 1 X 0 1 1

Tour/TIACK* control coﬁ?rol ul\:;td Clock control eTnIQbelre

Mode 1: Real-time clock Mode 4: Elapsed time measurement
Mode 2: Square wave generator Mode 5: Pulse counter
Mode 3: Interrupt after timeout Mode 6: Period measurement

Design of Computing Systems

]]m t Ricardo Gutierrez-Osuna

Wright State University

Clock control (TCR2-TCR1)

m The counter can be decremented from three different signals

e T, the external clock input
o The output of a 5-bit prescaler driven by CLK and enabled by Ty

e CLK, the system clock (prescaled)
m The 5-bit prescaler allows us to divide the counter frequency by 32
= The SBC68K clock runs at 8MHz (125" 10-° seconds per count), so 1 second will require
250,000 CLK ticks (mode 00)

TCR, TCR, Clock Control Example
PC,/T\ is a port C function. The counter clock is prescaled by 32, thus
0 0 the counter clock is CLK/32. The timer enable bit determines whether the CLK

timer is in the run or halt state.

PC,/Tis atimer input. The prescaler is decremented on the falling edge |
of CLK and the counter is decremented when the prescaler rolls over CLK >|_Prescaler

0 ! from $00 to $1F (31,) Timer is in the run state when BOTH timer enable T
TIN

bit and TIN are asserted.
>| Prescaler l—bl Counter |

Counter

A 4

PC,/Tis atimer input and is prescaled by 32. The prescaler is
decremented following the rising transition of TIN after being
1 0 synchronized with the internal clock. The 24-bit counter is decremented TIN
when the prescaler rolls over from $00 to $1F. The timer enable bit
determines whether the timer is in the run or halt state.
PC,/T,y is atimer input and prescaling is not used. The 24-bit counter is
1 1 decremented following the rising edge of the signal at the Ty pin after
being synchronized with the internal clock. The timer enable bit
determines whether the timer is in the run or halt state.

TIN —» Counter

Design of Computing Systems

]]m t Ricardo Gutierrez-Osuna

Wright State University

Tout/ TIACK* control (TCR7-TCR5)

m Bits 7-5 of the Timer Control Register control the way the PI/T timer behaves on a zero-

detect (ZDS=1)

o Whether interrupts are supported (vectored, auto-vectored or none)
o How does the PC3/T,; output pin behave
e How is the PC7/TIACK* input pin interpreted

TCR, TCR, TCR, Timer response

Timer response (detailed)

(simplified)
0 0 X Use timer pins for the
operation of I/O port C

PC3/Toyr and PC7/TIACK* are port C functions

Toggle a square wave

PC3/Tour is a timer function. In the run state Toyr provides a square wave which
is toggled on each zero-detect. The Tqyr pin is high in the halt state. PC7/TIACK*
is a port C function.

PC3/Tq,7 is a timer function. In the run or halt state T, is used as a timer

request output. Timer interrupt is disabled, the pin is always three-stated.

PC7/TIACK*is a port C function. Since interrupt requests are negated, PI/T
produces no response to an asserted TIACK*.

PC3/Toyris atimer function and is used as a timer interrupt request output. The
timer interrupt is enabled and Ty is low (IRQ* asserted) whenever the ZDS bit
is set. PC7/TIACK* is used to detect the 68000 IACK cycle. This combination
operates in the vectored-interrupt mode.

PC3/T oyt is a timer function. In the run or halt state it is used as a timer interrupt
request output. The timer interrupt is disabled and the pin always three-stated.
PC7/TIACK* is a port C function.

0 1 X with each expiration of
the timer
No vectored interrupt
1 0 0
generated on acount of 0
1 0 1 Generate a vectored
interrupt on a count of 0
No autovectored
1 1 0 interrupt generated on a
count of O
Generate an auto-
1 1 1 vectored interrupt on a

count of O

PC3/T oyt is atimer function and is used as a timer interrupt request output. The
timer interrupt is enabled and Tyyr is low whenever the ZDS bit is set.
PC7/TIACK*is a port C function. This combination operates in an autovectored
interrupt mode.

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

Parallel 1/O general description

= The parallel function has three ports

e Two independent 8-bit ports (and B) > PAO

e A third duakfunction port C T+ BAM
= Ports A and B be can be used as I/0 pc T = G j ' :::
with various handshaking and bufferin -l S
capabilities in four different modes i darales corbns . P
« Mode 0: Unidirectional 8-bit e ——» Pas
e Mode 1: Unidirectional 16-bit > PA7

e Mode 2: Bidirectional 8-bit H1

« Mode 3: Bidirectional 16-bit > He
= Port Ccan be used as 1 Pro
« asimple 8-bit port without handshaking or | Timer > PBI
double-buffering Itrtnc ‘ » PB2
e an interrupt interface to the timer $$$$$$$$$$ R > PB3
e an interrupt interface to parallel /0 B _ A interface > PB4
e asupport interface for DMA operation B : :::
> PB7

®etotace . Ha

» H4

v v A J A4 A 4 v v b

PC? PC6 PO5 PC4 PO3 PC2 PCI PCO
TIACK' PIACK' PIARQ" DMAREQ' Toyr Ty

Design of Computing Systems

IR V) A Ricardo Gutierrez-Osuna

Wright State University

Brief overview of parallel I/O registers

m Port General Control Register (PGCR)
o Selection of I/O modes (0, 1, 2 and 3) and handshaking signals (H1, H2, H3 and H4)
m Port Service Request Register (PSSR)
o Selection of Port C functions: DMA requests, IRQ/IACK signals and handshaking signal
priority
m Port {A,B,C} Data Direction Register (PxDDR)
o Selection of individual port bits as inputs or outputs
m Port Interrupt Vector Register (PIVR)
o Storage of vector number for vectored interrupts
m Port {A,B} Control Register (PxCR)
e Selection of port sub-modes and handshake signals operation
m Port {A,B,C} Data Register (PxDR)
« Contents of the 1/O ports
m Port {A,B} Alternate Data Register (PXADR)
o Instantaneous logic levels of the 1/O pins of the port

m Port Status Register (PSR)
o Status information of the handshake signals

Design of Computing Systems

IR V) A Ricardo Gutierrez-Osuna

Wright State University

The PI/T’'s modes of operation

Mode 0 (1D/8bit)

Mode 1 (1D/16bit)

Mode 2 (2D/8bit)

Mode 3 (2D/16bit)

Wright State University

= S ‘ HL seo» Al8l
Pt see>|AE) (8] > = A+B [16]
(b} o () o o B [8] o
c| 8 S| 2 &
©l g o % o ee>(A+B [16] 3 7
g O E O O HL 0utput Xfers o Hi Output Xfers
A = _é = S |la—»H S |ae—>»H
S <——H1(H3) S l—H3 «—H3 | put Xfers «—H3 } Input Xfers
) <«—— H2(H4) 0p) l— H4 -« H4 <> H4
— — l—H1
o X - H2
ol o , A®B) [8] ol o LEGEND
= : 3|3 \
] -«—)A+B [16
2|8 2|2 .)
o = o = Unidirectional
> <¢—H1(H3) > —H3
N «——» H2(H4) P - H4 Double-buffered
5 Bidirectional
ol o <..._“' A(B) [8] J
© ™
o & Pivivid }Single-buffered
£l 0
ol = <—— Non-latched
S «———HI1(H3)
0 «—» H2(H4) *NPd: This is the ONLY mode that is Not Pin-definable
Design of Computing Systems
m i Ricardo Gutierrez-Osuna

Port General Control Register

m PGCR7-PGCRG6
o Select the operating mode of the PI/T

m PGCR5-PGCR4

e Enables the handshake pairs H3-H4 and H1-H2. These bits have to be set before we can
make use of the control inputs and outputs. Doing this avoids spurious operation of the
handshake lines before the PI/T has been fully configured

m PGCR3-PCGRO

o Determine the sense of the four handshake lines. These control lines can be programmed to
be active-low or active-high

Bit PGCR7 PGCR6 PGCR5 PGCR4 PGCR3 PGCR2 PGCR1 PGCRO
Function Port mode control H34 enable H12 enable H4 H3 H2 H1
, | | | sense | Sense | Sense , Sense |
PGCR5 H3, H4 control
PGCR7 PGCR6 Port mode control 0 H34 disable Sense
0 0 Mode 0 7 1 | H34enable | PGCR3-0 (Assertion Level)
0 1 Mode 1 0 LOW
1 0 Mode 2 PGCR4 H1, H2 control 1 HIGH
1 1 Mode 3 | 0 H12 disable
1 H12 enable |

Design of Computing Systems

!m t Ricardo Gutierrez-Osuna

Wright State University

Port Data Direction Registers

m Port Data Direction Registers: PADDR,PBDDR and PCDDR

o Select the direction and buffering characteristics of each of the appropriate port pins
= Alogical ONE makes the corresponding pin act as an OUTPUT
= Alogical ZERO makes the corresponding pin act as an INPUT
o Port C behaves in the same fashion and determines whether each dual-function chosen for
port C operation is an input or an output

Bit PADDR7 PADDRG6 PADDRS PADDR4 PADDR3 PADDR?2 PADDR1 PADDRO
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit PBDDR7 PBDDR6 PBDDR5 PBDDR4 PBDDR3 PBDDR2 PBDDR1 PBDDRO
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit PCDDR7 PCDDR6 PCDDR5 PCDDR4 PCDDR3 PCDDR2 PCDDR1 PCDDRO
Function Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Design of Computing Systems

!m t Ricardo Gutierrez-Osuna

Wright State University

Port Service Request Register

m PSSR6-PSSRS5 (service request)
o Determines whether the PI/T generates an interrupt or a DMA request

m PSSR4-PSSR3 (operation select)

o Determines whether two of the dual-function pins belong to port C or perform special-
purpose functions

m PSSR2-PSSRO (interrupt-priority control)

Bit PSRR7 PSRR6 PSRR5 PSRR4 PSRR3 PSRR2 PSRR1 PSRRO
SRVRQ

Function (DMA control)

Interrupt control Port interrupt priority

PSRR6 PSRR5 Interrupt pin function

0 PC4/DMAREQ* =PC4 DMA not used
1 0 PC4/DMAREQ* = DMAREQ* Associated with doyble-buffgred t.ransfers controlled by H1
H1 does not cause interrups in this mode
1 1 PC4/DMAREQ* = DMAREQ* ﬁgsdociated with double-buffered transfers controlled by H3
| 0es not cause interrups in this mode
PSRR4 PSRR3 Interrupt pin function Order of priority interrupt
0 0 PC5/PIRQ* =PC5 No interrupt support PSRR2 PSRRL | PSRRO Higuest = %%3% ® Lowest
PC6/PIACK* = PC6 No interrupt support 0 0 0 H1S H2S H3S HA4S
0 1 PC5/PIRQ* = PIRQ* Autovectored interrupt supported 0 0 1 H2S H1S H3S H4S
PC6/PIACK* = PC6 Autovectored interrupt supported 0 1 0 H1S H2S H4S H3S
1 0 PC5/PIRQ* = PC5 0 1 1 H2S H1S H4S H3S
PC6/PIACK* = PIACK* 1 0 0 H3S H4S H1S H2S
1 1 PC5/PIRQ* = PIRQ* Vectored interrupt supported 1 0 1 H3S H4S H2S H1S
PC6/PIACK* = PIACK* Vectored interrupt supported 1 1 0 H4S H3S H1S H2S
1 1 1 H4S H3S H2S H1S

Design of Computing Systems

!m t Ricardo Gutierrez-Osuna

Wright State University

Mode 0, sub-mode 00

= Data flow
e Double-buffered input or
e Single-buffered output

= Applications
o Normally used to receive data from devices such as A/D converters

= Handshaking
o Data is latched into the input register by the asserted edge of H1
e H2 behaves according to its programming function defined below

= Port B behaves identically (using H3 and H4)

Bit PACR7 PACRG6 PACRS5 PACR4 PACR3 PACR2 PACR1 PACRO
0 0 H2 Control H2 Int. H1 Control

= V¥ ¥aYYaVaVa®
Sub-mode 00

PACRS5 PACR4 PACR3

H2 Control

MC68230

(-0-0-0—» A(B) [8]

-« H1(H3)

<« H2(H4)

0 X X Input pin: Edge-sensitive input Set on asserted edge
1 0 0 Output pin: negated Always clear
1 0 1 Output pin: asserted Always clear
1 1 0 Output pin: interlocked input handshake Always clear
1 1 1 Qutput pin: pulsed input handshake Always clear
PACR2 H2 interrupt PACR1 PACRO H1 Control
0 H2 interrupt disabled 0 X H1 interrupt and DMA request disabled
1 H2 interrupt enabled 1 X H1 interrupt and DMA request enabled
X X H1S status set anytime data is available
in the double-buffered input path

O

Design of Computing Systems
Ricardo Gutierrez-Osuna
Wright State University

<”’“> A(B) (8]

Mode 0, sub-mode 01

MC68230

= Data flow

e Double-buffered output or

e Non-latched input
= Applications

o Normally used to send data to devices such as D/A converters or printers
m Tables are almost identical to 0/00 except for PACRO

e If PACRO=0, H1S is set when port A is half-empty

o If PACRO=1, H1S is set when port A is full-empty

= Port B control is identical (using H3 and H4, of course)

-« H1(H3)
<« H2(H4)

Bit PACR7 PACRG6 PACRS5 PACR4 PACR3 PACR2 PACR1 PACRO
0 1 H2 Control H2 Int. H1 Control

= V¥ ¥aYYaVaVa®
Sub-mode 01

PACRS5 PACR4 PACR3 H2 Control
0 X X Input pin: Edge-sensitive input Set on asserted edge
1 0 0 Output pin: negated Always clear
1 0 1 Output pin: asserted Always clear
1 1 0 Output pin: interlocked input handshake Always clear
1 1 1 Qutput pin: pulsed input handshake Always clear
PACR2 H2 interrupt PACR1 PACRO H1 Control
0 H2 interrupt disabled 0 X H1 interrupt and DMA request disabled
1 H2 interrupt enabled 1 X H1 interrupt and DMA request enabled
) X 0 H1S status set if either initial or final output
latches can accept data and cleared otherwise
H1S status set if both initial and final output
X 1)
latches are empty and cleared otherwise

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

Solution

/* Tinmer Register Addresses */ main () {
long *vtable;
#define tnmr ((unsigned char*) OxFE8021) /* Timer Base Address */ int count=1250000;
#define tcr ((unsigned char*) tnr) /* Tinmer Control Reg */
#define tivr ((unsigned char*) tnr+2) /* Timer Interrupt Vector Reg */ asm(” nove. w #$2400, SR") ;
#define cprh ((unsigned char*) tnr +6) /* Preload H Reg */ asm(” novea. | #$20000, SP) ;
#define cprm ((unsigned char*) tnr +8) /* Preload Md Reg */
#define cprl ((unsigned char*) tnr+10) /* Preload Lo Reg */ *PGCR = O0xOF; /* disable Port A & B */
#define cnrh ((unsigned char*) tnr+14) /* Counter H Reg */ *PADDR = 0x00; /* Set Port A as input */
#define cnrm ((unsigned char*) tnr+16) /* Counter Md Reg */ *PBDDR = OXFF; /* set Port B as Qutput */
#define cnrl ((unsigned char*) tnr+18) /* Counter Lo Reg */ *PSRR = 0x00; /* set PI/T for no Interrupts */
#define tsr ((unsigned char*) tnr+20) /* Timer Status Reg */ *PBCR = 0x00; /*Or 0x80*/ /* Set Port B Control */
*PACR = 0x40; /*O0r 0x80*/ /* Set Port A Control */
/* Parallel 1/0O Register Addresses */
#define PGCR (unsigned char*)0xFE8001 /* PI/T General Control Reg */ /****pPrepare CPU for an interrupt processing**/
#define PSRR (unsigned char*)0xFE8003 /* PI/T Service Routine Reg */
#define PIVR (unsigned char*)0OxFE800B /* PI/T Interrupt Vector Reg */ *tivr = 70;
#defi ne PSR (unsigned char*)0xFE801B /* PI/T Status Reg */ vtable = (long *) (70*4);
#define PACR (unsigned char*)O0xFE800D /* PI/T Port A Control Reg */ *vtable = isr;
#defi ne PADDR (unsigned char*)0xFE8005 /* Port A Data Direction Reg */
#define PADR (unsigned char*)OxFE8011 /* Port A Data Reg */ [****Set up timer control register*/
#define PBCR (unsigned char*)O0xFE800F /* Port B Control Reg */
#define PBDDR (unsigned char*)0xFE8007 /* Port B Data Direction Reg */ *tcr = OXAQ; /* Set Timer Mode */

#define PBDR (unsigned char*)O0xFE8013 /* Port B Data Reg */

*cprl = (unsigned char) count;
void isr() { count = count >> 8; /* shift right 8 bits */
printf ("Five secs has passed\n"); *cprm = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*pbdr = *padr ; /* This is really the main job of isr * *cprh = (unsigned char) count;
It copies the content Port A data register (our input port)
and then places it to Port B (our output port)*/ *tcr = OxA1; /* Start timer */
tsr = 0x01; / reset the ZDS bit */
while (1) {
asm(" rte"); /* Create an infinite | oop which does not hing*/
} }

}

Design of Computing Systems

IR A Ricardo Gutierrez-Osuna

Wright State University

