/**
The programinputs data through port A
in nonl atched nbde and then outputs the data to port
buf fered every 5 seconds.

B single

How is it done?

1. Initialize the PI/T for nonlatched input (node 0) Port A; and
single buffered output thru Port B.

2. To maintain 5 secs interval,
secs in the interrupt node.

the timer is programmed in to count 5

3. To coincide the I/Owith the 5 secs mark, the 1/Ois done within the

interrupt service routine.
Kok kkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkk k% |

/* Timer Register Addresses */

#define tnr ((unsigned char*) OxFE8021) /* Timer Base Address */
#define tcr ((unsigned char*) tnr) /* Timer Control Reg */
#define tivr ((unsigned char*) tnr+2) /* Timer Interrupt Vector Reg */
#define cprh ((unsigned char*) tnr+6) /* Preload H Reg */
#define cprm ((unsigned char*) tnr+8) /* Preload Md Reg */
#define cprl ((unsigned char*) tnr+10) /* Preload Lo Reg */
#define cnrh ((unsigned char*) tnr+12) /* Counter H Reg */
#define cnrm ((unsigned char*) tnr+14) /* Counter Md Reg */
#define cnrl ((unsigned char*) tnr+16) /* Counter Lo Reg */
#define tsr ((unsigned char*) tnr+20) /* Timer Status Reg */
#define tvector 0x40 /* Timer Vector reg */
#define tnrcntrl 0x80 /* Timer Mode */
/* Set PI/T */

#define PGCR (unsigned char*)0xFE8001 /* PI/T General Control Reg */
#define PSRR (unsigned char*)0xFE8003 /* PI/T Service Routine Reg */
#define PIVR (unsigned char*)OxFES800B /* PI/T Interrupt Vector Reg */
#define PSR (unsigned char*)OxFE801B /* PI/T Status Reg */
#define PACR (unsigned char*)OxFE800D /* PI/T Port A Control Reg */
#defi ne PADDR (unsigned char*)0xFE8005 /* Port A Data Direction Reg */
#define PADR (unsigned char*)0xFE8011 /* Port A Data Reg */
#define PBCR (unsigned char*)OxFE800F /* Port B Control Reg */
#defi ne PBDDR (unsigned char*)0xFE8007 /* Port B Data Direction Reg */
#define PBDR (unsigned char*)0xFE8013 /* Port B Data Reg */
/* Al of the above coul d have been saved in a header file and be included

via #include command */

void isr();

main ()

| ong *vtabl e;
int count=1250000;

/* set up interrupt

mask in status register

(see p. 21 of the textbook) */

asn("
/* set up parallel

*PGCR = OxOF;
*PADDR = 0x00;

/*
/*
PBDDR = OxFF; /
PSRR = 0x00; /
PBCR = 0x00; /
PACR = 0x40; /

/****Prepare CPU for an int

tivr = 70; / interrupt
vtable = (long *) (70%4);
/* vtable is an address,

nmove.w #$2400, SR");
ports (see p. 657 of the textbook) */

Di sable Port A & B */

Set Port A as input */

set Port B as Qutput */

set PI/T for no Interrupts */
Set Port B Control */

Set Port A Mdde */

errupt processing**/
vect or

so the type of 70*4 which

nunber (see p. 448 of the textbook)

nornally is a constant

casting operator (long *)

is changed to an address type by the

*vtable = (long) isr;
[****Set up timer control register (textbook p. 671) */
tcr = OxAO; / Set Tinmer Mode:

/* Set up the initial

val ue of timer. */

*cprl = (unsigned char) count;

count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;

count = count >> 8; /* shift right 8 bits */
*cprh = (unsigned char) count;

tcr = OxAL; / Start timer */

while (1) { /* Create an infinite | oop which does nothing*/ }

void isr()

printf("Five secs have passed\n\r");

*PBDR = *PADR

/* This is really the main job of

isr *

It copies the content of porta data regsiter (our
port) and then places it to port

*tsr

asm("
/* 1t

= 0x01;

rte");

/* return fromexception */]]
is to avoid to use the "rts" (return from subroutine) that wll

automatically attached by the conpiler. */

/* When an interrupt

is invoked,

in
B (our output port)

/* reset the ZDS bit so to re-enable the timer */

count down to zero and then interrupt

P

*/

u

/

*/

t

be

the status register which contains the

i nterrupt

executed for subroutine call.

"rts" int

mask I's pushed into the stack.

he extra stack pop operation.

Therefore "rte"

*/

That push operation is not
Is different from

