
Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

1

Lecture 3: MC68000 instruction set

g Assembler directives (the most important ones)
n ORG, EQU, END, DC, DS, EXTERN/PUBLIC

g Instructions (the most important ones)
n Data movement

n Integer arithmetic
n Boolean
n Shift and rotate

n Bit manipulation
n Binary Coded Decimal
n Program flow

n System control

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

2

Assembler directives

g Assembler directives
n are instructions to the assembler program

g and they appear in the mnemonic (opcode) field of the source code

n are not instructions to the microprocessor
g and they have no direct effect on the contents of memory (except DC)

g They cover a number of functions, including
n defining symbols and assigning them values

n controlling the flow of execution of the assembler
n setting format and content of the object and listing files

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

3

Assembler directives (the most important ones)

DIRECTIVE OPERATION SYNTAX
ORG set program origin ORG value
EQU equate value to symbol symbol EQU value
END end of source program END label
DC define data constant [label] DC number[,number][…]
DS define RAM storage [label] DS count
RSEG begin relocatable segment RSEG name
EXTERN define external symbol EXTERN symbol[,symbol][…]
PUBLIC define public symbol PUBLIC symbol[,symbol][…]

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

4

The ORG directive

g FUNCTION (ORIGIN)
n Sets the starting address in memory for the instructions or data constants that

follow

g EXAMPLE

g NOTES
n Hex address $1000 is set as the starting address for the following instruction
n The opcode for MOVE.L goes in address $1000

g The second word for MOVE.L goes in address $1002 … and so on

00001000 1 ORG $1000
00001000 203C 00000012 2 MOVE.L #$12,d0

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

5

The EQU directive

g FUNCTION (EQUATE)
n Assigns a value to a symbol. The symbol is used later in the program in place of the value

g EXAMPLE

g NOTES
n The value of $100 replaces the symbol in the binary code
n The use of EQU directives is encouraged because

g makes program more readable
g makes programs easier to maintain

00001000 1 ORG $1000
00000100 2 count EQU $100

3
00002000 4 ORG $2000
00002000 203C 00000100 5 MOVE.L #count,d0
00002006 6 END $2000

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

6

The END directive

g FUNCTION
n Used at the end of the source program
n Statements following the END directive are not processed by the assembler

g EXAMPLE

g NOTES
n The label of the END directive (optional) represents the entry point for the

program

n The address of the entry point is used by debuggers, loaders, conversion
utilities, and so on, to identify the starting address of the program

00001000 1 ORG $1000
00001000 203C 00000012 2 MOVE.L #$12,d0
00001006 3 END $1000

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

7

The DC directive

g FUNCTION (DEFINE CONSTANT)
n Places data constants WITHIN A PROGRAM

g EXAMPLE

g NOTES
n For words and longwords, the assembler adjusts the address of the constant to

ensure proper alignment.
n ASCII characters defined as words are left-justified within the word

0000000D 1 cr EQU $0D
00001000 2 ORG $1000
00001000 0005FFFF 3 num DC 5,-1
00001004 05FF 4 more DC.B 5,-1
00001006 777269676874 5 name DC.B ’wright’
0000100C 0D00 6 var DC.B cr,0
0000100E 7 END $1000

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

8

The DS directive

g FUNCTION (DEFINE STORAGE)
n Reserves RAM storage for use during execution of the program.

g EXAMPLE

g NOTES
n The memory locations reserved for buffer are not initialized, they will contain

garbage data

00000004 1 length EQU 4
00001000 2 ORG $1000
00001000 3 buffer DS.B length
00001004 FF 4 temp DC.B $FF
00001005 5 END

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

9

The EXTERN/PUBLIC directives

g FUNCTION
n Used when a program is split over multiple files (modules)

g EXAMPLE

g NOTES
n MAIN.ASM contains the code of a main program, whereas SUBS.ASM contains

the subroutines, which will typically be shared among several main programs.

SUBS.ASM

PUBLIC SQRT
SQRT ;subroutine is

;defined here
…
…
...
RTS

MAIN.ASM

EXTERN SQRT
MOVE.W #100,D7
BSR SQRT
…
…
…

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

10

Instruction categories

g Data movement
n Move operands (data) among memory locations or registers

g Integer arithmetic
n Addition, subtraction, multiply, divide, ...

g Boolean
n AND, OR, XOR, NOT, ...

g Shift and rotate
n Arithmetic-shift, logical-shift, rotate

g Bit manipulation
n Bit test, bit set, bit clear, ...

g Binary Coded Decimal
n Add, subtract and negate in BCD notation

g Program flow
n Branch, jump and return

g System control
n Miscellaneous: trap, reset, SR/CCR manipulation, ...

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

11

Data movement

INSTR. DESCRIPTION EXAMPLE

MOVE
Copies an 8-, 16- or 32-bit value from

one memory location or register to
another memory location or register

MOVE.B #$8C,D0 [D0]←$XXXXXX8C

MOVE.W #$8C,D0 [D0]←$XXXX008C
MOVE.L #$8C,D0 [D0]←$0000008C

MOVEA

Copies a source operand to an
address register. MOVEA operates

only on words or longwords.
MOVEA.W sign-extends the 16-bit

operand to 32 bits.

MOVEA.W #$8C00,A0 [A0]←$FFFF8C00

MOVEA.L #$8C00,AO [A0]←$00008C00

MOVEQ

Copies a 8-bit signed value in the
range –128 to +127 to one of the eight
data registers. The data to be moved
is sign-extended before it is copied to

its destination

MOVEQ #-3,D0 [D0]←$FFFFFFFD

MOVEQ #4,D0 [D0]←$00000004

MOVEM

Transfers the contents of a group of
registers specified by a list. The list of
registers is defined as Ai-Aj/Dp-Dq.
MOVEM operates only on words or

longwords.

MOVEM.L A0-A3/D0-D7,-(A7) ;copies all working
 ;registers to stack

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

12

Integer arithmetic

INSTR. DESCRIPTION EXAMPLE

ADD×
SUB×

ADD×/SUB× add/subtract the contents of a source to/from the
contents of a destination and deposits the result in the

destination location. Direct memory-to-memory operations are
not permitted. Assume [D0]=$11118000 and

[D1]=$11110123.

ADD.W D0,D1 ;[D1]←$11118123

ADD.L D0,D1 ;[D1]←$22228123
ADDQ #N,D1 ;N∈ [1,8]
SUB.L D1,D0 ;[D0]←$00007EDD

MULU
MULS

MULU (multiply unsigned) forms the product of two 16-bit
integers. The 32-bit destination must be a data register. MULS

is similar but treats data as signed. Assume
[D0]=$ABCD8000.

MULU #$0800,D0 ;[D0]←$00400000

DIVU
DIVS

DIVU (divide unsigned) works with a 32-bit dividend and a 16-
bit divisor. The dividend must be a data register. The 16-bit

result is stored in the low word of the destination, and the 16-
bit remainder in the high word. DIVS is similar but treats data

as signed. Assume [D0]=$0000000E, 1410.

DIVS #-3,D0 ;[D0]←$0002FFFC

CLR
NEG

CRL (clear) writes zeros into the destination operand. NEG
(negate) performs a 2s complement operation on the

destination data--subtracts it from zero. Assume
[D0]=$1234B021.

CLR.B D0 ;[D0]←$1234B000

CLR.L D0 ;[D0]←$00000000
NEG.W D0 ;[D0]←$12344FDF

EXT
Sign-extend increases the bit-size of a signed integer. EXT.W

converts an 8-bit into a 16-bit, and EXT.L converts a 16-bit
into a 32-bit. Assume [D0]=$1234B021.

EXT.W D0 ;[D0]←$12340021

EXT.L D0 ;[D0]←$FFFFB021

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

13

Boolean

INSTR. DESCRIPTION EXAMPLE

AND
ANDI

Bit-wise logical AND operation.
Normally used to clear, or mask,

certain bits in a destination operand.

ANDI.B #%0111111,D0 ;clear the 8th least
 ;significant bit of D0

OR
ORI

Bit-wise logical OR operation.
Normally used to set certain bits in a

destination operand.

ORI.B #%10101010,D0 ;set even bits of D0
 ;lowest byte

EOR
EORI

Bit-wise logical XOR operation. EOR.B #%11111111,D0 ;XOR of the lowest byte of D0

NOT Bit-wise NOT operation. Assume
[D0]=$1234F0F0. NOT.W D0 ;[D0]←$12340F0F

TST Similar to CMP #0, operand TST D0 ;update N,Z and clear V,C

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

14

Shift and rotate

Operand

X

C

OperandC

X

0

Operand0

X

C

OperandC

Operand C

16 bits 16 bits

OperandC

X

0

INSTR. OPERATION BIT MOVEMENT

ASL
Arithmetic
shift left

ASR
Arithmetic
shift right

LSL
Logic shift

left

LSR
Logic shift

right

ROL Rotate left

ROR Rotate right

SWAP
Swap words
of a longword

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

15

Bit manipulation

INSTR. DESCRIPTION EXAMPLE (Assume [D0]=$00000009)

BSET

Bit test and set Causes the Z-bit to
be set if the specified bit is zero and
then forces the specified bit of the

operand to be set to one

BSET #2, D0 ;[D0]←$0000000D and [Z]←1

BCLR

Bit test and clear works like BSET
except that the specified bit is

cleared (forced to zero) after it has
been tested

BCLR #0, D0 ;[D0]←$00000008 and [Z]←0

BCHG

Bit test and change causes the
value of the specified bit to be

reflected in the Z-bit and then toggles
(inverts) the state of the specified bit

BCHG #4, D0 ;[D0]←$00000019 and [Z]←1

BTST Bit test reflects the value of the
specified bit in the Z-bit

BTST #2, D0 ;[Z]←1

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

16

Binary Coded Decimal

INSTR. DESCRIPTION EXAMPLE (Assume [X]=0, [D0]=48, [D1]=21)

ABCD

Adds the source operand and the X-bit to the
destination operand using BCD arithmetic. This is
a BYTE operation only; the X-bit is used to provide

a mechanism for multi-byte BCD operations.

ABCD D0,D1 ;[D1]←00000069

SBCD

Subtract the source operand and the X-bit from the
destination operand using BCD arithmetic. This is

a BYTE operation only, so the X-bit is used to
provide a mechanism for multi-byte BCD

operations.

SBCD D1,D0 ;[D0]←00000027

NBCD Subtract the destination operand and the X-bit
from zero.

NBCD D1 ;[D1]←00000052
 ;[X]←1, [V]←1, [C]←1

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

17

Program flow (details in Lecture 5)

INSTR. DESCRIPTION

BRA

BRA (branch always) implements an
unconditional branch, relative to the PC. The
offset is expressed as an 8- or 16-bit signed

integer. If the destination is outside of a 16-bit
signed integer, BRA cannot be used.

Bcc

Bcc (branch conditional) is used whenever
program execution must follow one of two

paths depending on a condition. The condition
is specified by the mnemonic cc. The offset is
expressed as an 8- or 16-bit signed integer. If

the destination is outside of a 16-bit signed
integer, Bcc cannot be used.

BSR
RTS

BSR branches to a subroutine. The PC is
saved on the stack before loading the PC with
the new value. RTS is use to return from the

subroutine by restoring the PC from the stack.

JMP

JMP (jump) is similar to BRA. The only
difference is that BRA uses only relative

addressing, whereas JMP has more
addressing modes, including absolute address

(see reference manual).

cc CONDITION BRANCH
TAKEN IF

CC Carry clear C=0

CS Carry set C=1

NE Not equal Z=0

EQ Equal Z=1

PL Plus N=0

MI Minus N=1

HI Higher than 1ZC =
LS Lower than or same as C+Z=1

GT Greater than 1ZVNZNV =+
LT Less than 1VNVN =+
GE Greater than or equal to 0VNVN =+
LE Less than or equal to 1V)NV(NZ =++

VC Overflow clear V=0

VS Overflow set V=1

T Always true Always

F Always false Never

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

18

System control

INSTR. DESCRIPTION
MOVE
ANDI
ORI

EORI

Unique variations of MOVE, AND, OR and EOR that allow
altering the bits in the status and condition code registers.

TRAP
TRAP performs three operations: (1) pushes the PC and SR
to the stack, (2) sets the execution mode to supervisor and
(3) loads the PC with a new value read from a vector table

STOP
RESET

STOP loads the SR with an immediate operand and stops
the CPU. RESET asserts the CPU’s RESET line for 124
cycles. If STOP or RESET are executed in user mode, a

privilege violation occurs.

