Lecture 2: MC68000 architecture

m General information

m Programmer’s model

s Memory organization

m Instruction format

m Our first assembly program
m The si n68k simulator

s Machine translation

Microprocessor-based System Design

m ¢ Ricardo Gutierrez-Osuna

Wright State University

MC68000 general information

D, |1 64 | Dy

m Specifications b, & | D
N 62 | D,

e 32-bit Data and Address Registers 0| o
e 16-bit Data Bus S e ¥ P
DS | 7 58| D,

e 24-bit Address Bus (16MB) e I oo
: DTACK | 10 55| D,

e 14 Addressing Modes = w|o
e Memory-Mapped Input/Output e e i
e Program Counter x| s e o n
e 56 Instructions | 1 |
e 5 Main Data Types gy w|n
. E| 20 51 A,

e 7 interrupt levels VFA | 21 ulal
BERR | 22 43| A,

e Clock speeds: 4MHz to 12.5MHz L, | 23 0| a,
PL, | 24 41| A,

e Synchronous and asynchronous data L, | 25 w0 a,
transfers e | wla
FC, | 28 37 A.,

A, | 29 36 | A,

A, | 30 35| A,

Al 31 34| A,

Al 32 33 | A,

Microprocessor-based System Design 2

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

What Is a “microprocessor architecture”?

m For our purposes the architecture is the software or
programmer’s model of the microprocessor

e The CPU registers available to the programmer

e The basic instructions the CPU can perform

e The ways these instructions can specify a memory location
e The way data is organized in memory

How the CPU accesses & controls peripheral devices

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

MC68000 register set

m 8 data registers (D0-D7)

m 8 address registers (A0-A7)

e There are TWO A7 registers
m User Stack Pointer (USP)
m Supervisor Stack Pointer (SSP)

m Program Counter (PC)

m Status Register / Condition Code
Register (SR/CCR)

(1]
(DY
D2
D3
D4
D=
Da
)

Al
A1
b2
A3
A
AS
Af

&7

31 16 1% 87 0
31 16 1% 87 0
Lget stack poinker
syshem stack poinker
23 I

program counter |
1% a7 I

| systern byte | userbyte |

Microprocessor-based System Design
¢ Ricardo Gutierrez-Osuna
Wright State University

Status/Condition Code Register

m More significant byte: SR

e Only modifiable in supervisor mode

e Details in later sections

m Least significant byte: CCR
e For user-level programs

e Behavior depends on instruction

13 135

T - Trace Mode X - Extend
5 - Supervisor State M - Megative
I - Interrupt Mask Z - Zero

¥ - Overflow
C - Carry

Bit Meaning
T Tracing for run-time
debugging
S Supervisor or
User Mode
| System responds to interrupts
with a level higher than |
C Set if a carry or borrow is
generated. Cleared otherwise
v Set if a signed overflow
occurs. Cleared otherwise
7 Set if the result is zero.
Cleared otherwise
N Set if the result is negative.

Cleared otherwise

Retains information from the carry
bit for multi-precision arithmetic

Microprocessor-based System Design
¢ Ricardo Gutierrez-Osuna
Wright State University

Condition Code Register example

s Add the numbers $19 and $70 and show the effect on the CCR
bits
e The following piece of code performs the operation
= MOVE. B #$70, DO
= ADD. B #%$19, DO

e To illustrate the behavior of the CCR we will perform an addition in
base 2

No Carry J C=0 |—/ 0 1 1 1
O 0o 0 1 1 0 0 1
Overflow 0 V=1 F + 0 1 1. 1 0 0 0 O
1 0 0 0 1 O O 1
Negative result 0 N=1 ~— —~— —
Non-Zero result Z=0 I
Microprocessor-based System Design
mﬁm R Ricardpo Gutierrez-Osunayt ’ °

Wright State University

Data representation (review)

m Three bases will be used thoroughly

e Decimal

m 321,, = 3x102 + 2x10! + 1x109
e Hexadecimal

m ABG,; = 10x162 + 11x161 + 6x16°
e Binary

m 101 , = 1x22 + Ox21 + 1x20

m Express the following numbers in base 10
x 0111,
m FFO5,4
= 1000,

Microprocessor-based System Design

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

2's complement (review)

s How to express negative numbers in binary?
e Sign-Magnitude:
= Use the Most Significant Bit to encode the sign

o 0111,=+7,,

e 2s Complement:
» The most commonly used form

Bi nary nunber (+54)

o
o
o
o
o
=
o
=

1s conpl enent
Add 1 +
2s conpl enment (-549)

-«
[EEN
[EEN
[EEN
[EEN
o
[EEN

— O

[EEN
[EEN
[EEN
[EEN
[EEN
o
[EEN
[EEN

m Subtraction is made very easy (perform the operation 5-7)
m The range of numbers that can be represented is from -2"-1 to +2n-1-1

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Memory organization

m 24-bit addresses

e 16MB can be addressed

m 3 data widths
e BYTE: 8-bit, can be at even or odd address
e WORD: 16-bit, must be at x2 address
e LONGWORD:32-bit, must be at x4 address

= Big-endian order

e Words are stored with the lower 8-bits in the higher of the two storage locations
As opposed to little-endian processors, like the Intel 80x86 family

MOVE $3210, O

MOVE $76543210, O

]

Since the data bus is 16-bit wide,
it makes sense to visualize
memory in blocks of 16 bits

Memory

address

$000000 ByteO Bytel
$000002 Byte2 Byte3
$000004 Byte4 Byte5
$000000 | Word0O MSB .| Word0 LSB
$000002 | Word1 MSB | Word1 LSB
$000004 | Word2 MSB | Word2 LSB
$000006 | Word3 MSB | Word3 LSB
$000000 | 32 : 10 |
$000000 Longword 0 (MSW)
$000002 Longword 0 (LSW)
$000004 Longword 1 (MSW)
$000006 Longword 1 (LSW)
$000000 76 54
$000002 32 10

IR |

Microprocessor-based System Design

Ricardo Gutierrez-Osuna
Wright State University

Register Transfer Language (RTL)

m A notation that describes the micro-processors actions clearly and
unambiguously

s We'll use a simplified version

e 100 means “#100”

e [M(4)] means “contents stored in memory location 4”

e [MAR] means “contents stored in MAR”

e [M(4)]=100 means “memory location 4 contains #100”

e [MAR]=100 means “MAR contains #100”

e [PC]-4 means “load number 4 onto PC”

e [M(4)] - 100+[M(4)] means “add #100 to contents of memory location 4 and save”

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

10

MC68000 instructions

m Instruction format is

<| abel > opcode<. fi el d> <operands>

n <| abel > pointer to the instruction’s memory location
m opcode operation code (i.e., MOVE, ADD)

m <. field> defines width of operands (B,W,L)

m <oper ands> data used in the operation

for program documentation
s Examples

Instruction RTL

MOVE. W #100, D0 | [DO] — 100

MOVE.W 100,00 | [DO] - [M(100)]

ADD. W DO, D1 [D1] — [D1]+[DO]

MOVE. W D1, 100 [M(100)] —[D1]
dat a DC. B 20 [data] —20

BRA | abel [PC] —label

Microprocessor-based System Design
mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Instruction operands

m Operands can be
e registers
e constants
e memory addresses

m Basic addressing modes (to be expanded)

e D,: data register direct MOVE. L DO, D1
e A, register indirect MOVE. L (AO), D1
e #n:immediate MOVE. L #10, D1
e n: absolute MOVE. L $08FF00, D1

s Immediate operands can be specified in several formats
Hexadecimal: prefixed by $

Octal: prefixed by @

Decimal: prefixed by & (or nothing)

Binary: prefixed by %

ASCII: within single quotes ‘abc’

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Our first program: first. asm

LABEL OPCODE OPERAND(S) COMMENTS
P A ~ A ~— A - A —
ORG $1000 ;start of PROGRAM ar ea)
MOVE. L #$12,d0
CLR L dl
MOVE. B data, d1 AN
ADD. B do, d1
MOVE. B di,result
RTS ;return <
ORG $2000 ;start of DATA area
dat a DC. B $24 >Eé;ﬁ
resul t DS. B 1 ;reserve a byte for result
END $1000 ;end of program and entry point)

Microprocessor-based System Design 13

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Source program assembly

first.asm

asm68k

object files from
other source code
(not required)

N /4

first. obj

binary code plus
code relocation and
external references

link
| links object codes
from different
source files

4

sim68k

MC68000
simulator

assembly language

68000 cross-
source code

assembler

/4

first.s

s-record, HEX
object code in text
format ready to be
downloaded
over serial line

first.|st
Assembly code
plus binary code
(for debugging)

MC6800

evaluation
board

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

DL

14

Compilation and execution steps

m Compilation steps
e \Write source in text editor and save (fi rst. asm
e Create binary with assembler (asn68k first.asm-1I)
m -| flag creates list file (fi rst. | st) with assembly and binary code
e Link with linker --only if multiple source files
m Execution steps (on simulator)
e Start simulator (si n68k)
e Load program (LO first.s)

e EXecute
m Directly (GO 1000) or
m Step by step (T)

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

15

The si 68k simulator

m Available on thor.cs.wright.edu and 339 Russ PCs

m Type si n68k on command line
m Basic simulator commands

Command Syntax Example
Display Formatted DF DF
Memory Dump MD <address> <count> [; D] VD 1000 20 ; Di
Memory Modify MM <address> [;{ ,WL}] MM 1000
Register Modify . <regi ster> [<cont ent s>] . PC 1000
Block Fill BF <addr 1> <addr 2> <dat a> BF 1000 2000 FF
Go GO [<addr ess>] €]
Trace T [<address>] T
Set Breakpoint BR [<addr ess>] BR 1000
Clear Breakpoint NOBR [<addr ess>] NOBR
Load LO <f nane> LO FIRST. S
Store ST <fnane> <address> <count > ST FIRST 100 10
Exit EX EX

Microprocessor-based System Design
¢ Ricardo Gutierrez-Osuna
Wright State University

16

Run the simulator

11

Author Wayne Waolf

MOUE. B

AOD. B

MOUE. B

D&, 01

Microprocessor-based System Design
L . .
T [T g Ricardo Gutierrez-Osuna
Wright State University

17

How is the program’s machine code stored in physical memory?

MEMORY MACHINE SOURCE ASSEMBLY
LOCATION CODE LINE CODE
A A A A $001000 20 3C
r v e A N $001002 00 00
00001000 1 ORG $1000 $001004 00 12
00001000 203C 00000012 2 MOVE. L #$12, dO $001006 42 81
00001006 4281 3 CLR L di $001008 12 39
00001008 1239 00002000 4 MOVE. B dat a, d1 $00100A 00 00
0000100E D200 5 ADD. B do, d1 :ggiggg 3‘2’ gg
88881812 il.é% 00002001 s %E. B dl, result SR B o
$001012 00 00
8 $001014 20 01
00002000 9 ORG $2000 $001016 ZE 75
00002000 24 10 data DC. B $24
00002001 11 result DS. B 1
00002002 12 END $1000
dat a resul t
$002000 | 20 00 |
Microprocessor-based System Design 18

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

Machine code translation

ASSEMBLY CODE

INSTRUCTION FORMAT

MACHINE CODE

MOVE. L #%$12, dO

00 10 000 000 111 100

203C 00000012

00 01 001 000 111 OO1

1239 00002000

MOVE. B dat a, d1

MOVE MOVE

Mo ve Data From Sowrce to Destination

D stin alion Efective Address field — Specifies the destinafion location. Cnly daka
alterable addressing modes are allowed 25 shown:

S are

Opeeradion: [Source D esination
Assembler Addres[sjng hode hg:luju:llje _He ;;|istertI Addrs[sfnﬁ{_r;hde hﬁl:lije _He ;;|istertI
h register number h,Hi register number
Syntax MOVE cear, ceas &n — — &bz K 0o
Anrihutes: Size=[Byte W ord Long) [An] oo register number AbsL 111 [iIT]
[An]+ 011 register number d[Fi] — —

Do sori ption: Move the content of the source to the destnation location. The daka is examined as it is HAn] 100 register number d[FiC i) — —
movved, and the condition codes et accordingly. The size of the operaion masy be dAn] 101 register number I — —
specified to be bye, word orlong.

Sourze Effectve Address field — Specifies the source operand. All addressing mode

Condition Codes: allowed as shown:

M W
[=T T JoJo] Addressing Mode hode Fegister Addressing hMode | Mode Fiegister
M Setif the result is negative. Cleared otherwise. Dn 000 | register number diAn K| 110 | register number
£ Setif the result is zero. Clesrad otherwize. ANt [iTi}] reqister number Abz W 11 aon
g m:‘ﬁ Eﬁxﬂ TAr] O10_|_register number abzL 111 (0]
% Mot ;f‘fseded) [An]+ 011 register number d[Fi] 111 010
’ HAn] 100 register number d[FiC i) 111 011
Instruction Format: diAn] 101 register number I 111 100
15 14 12 12 11 109 & 7 6 5 4 2 2 1 0 * Forbete size operation, address register direct is not allowed.
| i | i | Size [re =tin alion Saurce
Fegister | Mode Mode | Register
Instruction Relds:
Size field — Specifies the size of the operand b be mowed.
o — begte operation.
1 — wiokd operation.
nm - long operation.
Microprocessor-based System Design 19

¢ Ricardo Gutierrez-Osuna
Wright State University

Memory organization example

Since the data bus is 16-bit wide,
Memory it makes sense to visualize
address - AR - memory in blocks of 16 bits

$000000 ByteO Bytel
$000002 Byte2 Byte3
$000004 Byte4 Byteb5

$000000 [WordO MSB : WordO LSB
$000002 | Word1l MSB : Word1 LSB
$000004 | Word2 MSB : Word2 LSB
$000006 | Word3 MSB : Word3 LSB

MOVE $3210, 0 [$000000[32 | 10 |
$000000 Longword 0 (MSW)
$000002 Longword 0 (LSW)
$000004 Longword 1 (MSW)
$000006 Longword 1 (LSW)
$000000 76 54

E $7654321
MVE $76543210, 0 $000002 32 10

Microprocessor-based System Design
¢ Ricardo Gutierrez-Osuna
Wright State University

20

