
Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

1

Lecture 2: MC68000 architecture

g General information
g Programmer’s model
g Memory organization
g Instruction format
g Our first assembly program
g The sim68k simulator

g Machine translation

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

2

MC68000 general information

g Specifications
n 32-bit Data and Address Registers
n 16-bit Data Bus

n 24-bit Address Bus (16MB)
n 14 Addressing Modes
n Memory-Mapped Input/Output

n Program Counter
n 56 Instructions
n 5 Main Data Types

n 7 interrupt levels
n Clock speeds: 4MHz to 12.5MHz
n Synchronous and asynchronous data

transfers

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

3

What is a “microprocessor architecture”?

g For our purposes the architecture is the software or
programmer’s model of the microprocessor
n The CPU registers available to the programmer

n The basic instructions the CPU can perform
n The ways these instructions can specify a memory location
n The way data is organized in memory

n How the CPU accesses & controls peripheral devices

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

4

MC68000 register set

g 8 data registers (D0-D7)
g 8 address registers (A0-A7)

n There are TWO A7 registers
g User Stack Pointer (USP)
g Supervisor Stack Pointer (SSP)

g Program Counter (PC)
g Status Register / Condition Code

Register (SR/CCR)

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

5

Status/Condition Code Register

g More significant byte: SR
n Only modifiable in supervisor mode

n Details in later sections

g Least significant byte: CCR
n For user-level programs
n Behavior depends on instruction

Bit Meaning

T Tracing for run-time
debugging

S Supervisor or
User Mode

I System responds to interrupts
with a level higher than I

C Set if a carry or borrow is
generated. Cleared otherwise

V Set if a signed overflow
occurs. Cleared otherwise

Z Set if the result is zero.
Cleared otherwise

N Set if the result is negative.
Cleared otherwise

X Retains information from the carry
bit for multi-precision arithmetic

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

6

Condition Code Register example

g Add the numbers $19 and $70 and show the effect on the CCR
bits
n The following piece of code performs the operation

g MOVE.B #$70,D0

g ADD.B #$19,DO

n To illustrate the behavior of the CCR we will perform an addition in
base 2

0 1 1 1

0 0 0 1 1 0 0 1
+ 0 1 1 1 0 0 0 0

1 0 0 0 1 0 0 1
Negative result ⇒ N=1

No Carry ⇒ C=0

Non-Zero result ⇒ Z=0

Overflow ⇒ V=1

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

7

Data representation (review)

g Three bases will be used thoroughly
n Decimal

g 32110 = 3×102 + 2×101 + 1×100

n Hexadecimal
g AB616 = 10×162 + 11×161 + 6×160

n Binary
g 101 2 = 1×22 + 0×21 + 1×20

g Express the following numbers in base 10
g 011110
g FF0516
g 10002

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

8

2’s complement (review)

g How to express negative numbers in binary?
n Sign-Magnitude:

g Use the Most Significant Bit to encode the sign
n 01112=+710

n 11112=-710

n 2s Complement:
g The most commonly used form

g Subtraction is made very easy (perform the operation 5-7)
g The range of numbers that can be represented is from -2n-1 to +2n-1-1

Binary number (+510) 0 0 0 0 0 1 0 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1s complement 1 1 1 1 1 0 1 0

Add 1 + 1
2s complement (-510) 1 1 1 1 1 0 1 1

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

9

Memory organization

g 24-bit addresses
n 16MB can be addressed

g 3 data widths
n BYTE: 8-bit, can be at even or odd address

n WORD: 16-bit, must be at x2 address

n LONGWORD:32-bit, must be at x4 address

g Big-endian order
n Words are stored with the lower 8-bits in the higher of the two storage locations

g As opposed to little-endian processors, like the Intel 80x86 family

$000000 Byte0 Byte1
$000002 Byte2 Byte3
$000004 Byte4 Byte5

Memory
address

$000000 Word0 MSB Word0 LSB
$000002 Word1 MSB Word1 LSB
$000004 Word2 MSB Word2 LSB
$000006 Word3 MSB Word3 LSB

$000000 32 10MOVE $3210, 0

$000000 Longword 0 (MSW)
$000002 Longword 0 (LSW)
$000004 Longword 1 (MSW)
$000006 Longword 1 (LSW)

$000000 76 54
$000002 32 10

MOVE $76543210, 0

Since the data bus is 16-bit wide,
it makes sense to visualize
memory in blocks of 16 bits

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

10

Register Transfer Language (RTL)

g A notation that describes the micro-processors actions clearly and
unambiguously

g We’ll use a simplified version
n 100 means “#100”
n [M(4)] means “contents stored in memory location 4”

n [MAR] means “contents stored in MAR”

n [M(4)]=100 means “memory location 4 contains #100”

n [MAR]=100 means “MAR contains #100”

n [PC]←4 means “load number 4 onto PC”

n [M(4)]←100+[M(4)] means “add #100 to contents of memory location 4 and save”

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

11

MC68000 instructions

g Instruction format is

g <label> pointer to the instruction’s memory location

g opcode operation code (i.e., MOVE, ADD)

g <.field> defines width of operands (B,W,L)

g <operands> data used in the operation

g <;comments> for program documentation

g Examples

<label> opcode<.field> <operands> <;comments>

Instruction RTL
 MOVE.W #100,D0 [D0]←100
 MOVE.W 100,D0 [D0]←[M(100)]
 ADD.W D0,D1 [D1]←[D1]+[D0]
 MOVE.W D1,100 [M(100)]←[D1]
data DC.B 20 [data] ←20
 BRA label [PC] ←label

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

12

Instruction operands

g Operands can be
n registers

n constants
n memory addresses

g Basic addressing modes (to be expanded)
n Dn: data register direct MOVE.L D0, D1

n An: register indirect MOVE.L (A0), D1

n #n: immediate MOVE.L #10, D1

n n: absolute MOVE.L $08FF00, D1

g Immediate operands can be specified in several formats
n Hexadecimal: prefixed by $

n Octal: prefixed by @
n Decimal: prefixed by & (or nothing)
n Binary: prefixed by %

n ASCII: within single quotes ‘abc’

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

13

Our first program: first.asm

ORG $1000 ;start of PROGRAM area
MOVE.L #$12,d0
CLR.L d1
MOVE.B data,d1
ADD.B d0,d1
MOVE.B d1,result
RTS ;return

ORG $2000 ;start of DATA area
data DC.B $24
result DS.B 1 ;reserve a byte for result

END $1000 ;end of program and entry point

PROGRAM
AREA

DATA
AREA

LABEL OPCODE OPERAND(S) COMMENTS

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

14

Source program assembly

first.asm
assembly language

source code

asm68k
68000 cross-

assembler

first.lst
Assembly code
plus binary code
(for debugging)

first.s
s-record, HEX

object code in text
format ready to be

downloaded
over serial line

sim68k
MC68000
simulator

MC6800
evaluation

board

link
links object codes

from different
source files

first.obj
binary code plus

code relocation and
external references

object files from
other source code

(not required)

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

15

Compilation and execution steps

g Compilation steps
n Write source in text editor and save (first.asm)
n Create binary with assembler (asm68k first.asm -l)

g -l flag creates list file (first.lst) with assembly and binary code

n Link with linker --only if multiple source files

g Execution steps (on simulator)
n Start simulator (sim68k)
n Load program (LO first.s)

n Execute
g Directly (GO 1000) or
g Step by step (T)

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

16

The sim68k simulator

g Available on thor.cs.wright.edu and 339 Russ PCs
g Type sim68k on command line

g Basic simulator commands
Command Syntax Example

Display Formatted DF DF
Memory Dump MD <address> <count> [;DI] MD 1000 20 ;DI
Memory Modify MM <address> [;{ ,W,L}] MM 1000
Register Modify .<register> [<contents>] .PC 1000

Block Fill BF <addr1> <addr2> <data> BF 1000 2000 FF
Go GO [<address>] GO

Trace T [<address>] T
Set Breakpoint BR [<address>] BR 1000

Clear Breakpoint NOBR [<address>] NOBR
Load LO <fname> LO FIRST.S
Store ST <fname> <address> <count> ST FIRST 100 10
Exit EX EX

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

17

Run the simulator

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

18

How is the program’s machine code stored in physical memory?

00001000 1 ORG $1000 ;start of PROGRAM area
00001000 203C 00000012 2 MOVE.L #$12,d0
00001006 4281 3 CLR.L d1
00001008 1239 00002000 4 MOVE.B data,d1
0000100E D200 5 ADD.B d0,d1
00001010 13C1 00002001 6 MOVE.B d1,result
00001016 4E75 7 RTS ;return

8
00002000 9 ORG $2000 ;start of DATA area
00002000 24 10 data DC.B $24
00002001 11 result DS.B 1 ;reserve a byte for result
00002002 12 END $1000 ;end of program and entry point

MEMORY
LOCATION

MACHINE
CODE

SOURCE
LINE

ASSEMBLY
CODE

CODE
COMMENTS

$002000

$001000 20 3C

$001002 00 00

$001004 00 12

$001006 42 81

$001008 12 39

$00100A 00 00

$00100C 20 00

$00100E D2 00

$001010 13 C1

$001012 00 00

$001014 20 01

$001016 4E 75

20 00

data result

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

19

Machine code translation

ASSEMBLY CODE INSTRUCTION FORMAT MACHINE CODE

MOVE.L #$12,d0 00 10 000 000 111 100 203C 00000012
MOVE.B data,d1 00 01 001 000 111 001 1239 00002000

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

20

Memory organization example

$000000 Byte0 Byte1
$000002 Byte2 Byte3
$000004 Byte4 Byte5

Memory
address

$000000 Word0 MSB Word0 LSB
$000002 Word1 MSB Word1 LSB
$000004 Word2 MSB Word2 LSB
$000006 Word3 MSB Word3 LSB

$000000 32 10MOVE $3210, 0

$000000 Longword 0 (MSW)
$000002 Longword 0 (LSW)
$000004 Longword 1 (MSW)
$000006 Longword 1 (LSW)

$000000 76 54
$000002 32 10

MOVE $76543210, 0

Since the data bus is 16-bit wide,
it makes sense to visualize
memory in blocks of 16 bits

