L7: Linear prediction of speech

Introduction

Linear prediction

Finding the linear prediction coefficients
Alternative representations

This lecture is based on [Dutoit and Marques, 2009, ch1; Taylor, 2009, ch. 12; Rabiner and Schaefer, 2007, ch. 6]
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Introduction

Review of speech production

— Speech is produced by an excitation signal generated in the throat,
which is modified by resonances due to the shape of the vocal, nasal
and pharyngeal tracts

— The excitation signal can be

* Glottal pulses created by periodic opening and closing of the vocal folds
(voiced speech)

— These periodic components are characterized by their fundamental frequency
(F,), whose perceptual correlate is the pitch

e Continuous air flow pushed by the lungs (unvoiced speech)
* A combination of the two

— Resonances in the vocal, nasal and pharyngeal tracts are called
formants
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— On a spectral plot for a speech frame
* Pitch appears as narrow peaks for fundamental and harmonics
* Formants appear as wide peaks in the spectral envelope
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Linear prediction

The source-filter model

Originally proposed by Gunnar Fant in 1960 as a linear model of
speech production in which glottis and vocal tract are fully uncoupled

According to the model, the speech signal is the output y[n] of an all-
pole filer 1/A(z) excited by x[n]

Y(2) = X(2) ;=7

k=1 axz

1

Ap(2)

* where Y(z) and X(z) are the z transforms of the speech and excitation
signals, respectively, and p is the prediction order

The filter 1/A,,(z) is known as the synthesis filter, and A, (z) is called
the inverse filter

= X(2)

As discussed before, the excitation signal is either

* Asequence of regularly spaced pulses, whose period T, and amplitude o
can be adjusted, or

« White Gaussian noise, whose variance g2 can be adjusted
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[Dutoit and Marques, 2009]
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— The above equation implicitly introduces the concept of linear
predictability, which gives name to the model

— Taking the inverse z-transform, the speech signal can be expressed as
p
yin] =xnl + ) axyln—k]

— which states that the speech sample can be modeled as a weighted
sum of the p previous samples plus some excitation contribution

— In linear prediction, the term x[n] is usually referred to as the error (or
residual) and is often written as e[n] to reflect this
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Inverse filter

— For a given speech signal x[n], and given the LP parameters {a;}, the
residual e[n] can be estimated as

p
el =yln] = ) axyln—kl
e which is simply the output of the inverse filter excited by the speech

signal (see figure below)

— Hence, the LP model also allows us to obtain an estimate of the
excitation signal that led to the speech signal

* One will then expect that e[n] will approximate a sequence of pulses (for
voiced speech) or white Gaussian noise (for unvoiced speech)

{a;}

s

y[n] Ap(z) —e[n]

[Dutoit and Marques, 2009]
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Finding the LP coefficients

How do we estimate the LP parameters?

— We seek to estimate model parameters {a;} that minimize the
expectation of the residual energy e?(n)

{a;}°P* = argmin[e?(n)]

— Two closely related techniques are commonly used
e the covariance method
e the autocorrelation method
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The covariance method

— Using the term E to denote the sum squared error, we can state
N-1 N-1 p
E= Z e’(n) = z (y[n] = z ag yln — k])
n=0 n=0 k=1

— We can then find the minimum of E by differentiating with respect to
each coefficient a; and setting to zero

a—a]—0=>z ( ( Zp_ aky[n—k])y[n—j])=
=—22n=0y[n] n—j] +ZZ Zk 1akyn klyln—jl =0

‘v’]—12 .p

2

— which gives

N-1 N—-1
D nlyl-1=2)" ay yln-Kyln- )]
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— Defining ¢(j, k) as
N-1
6K =) yin—jlyln— Kkl

n=0
— This expression can be written more succinctly as
p
¢Ur 0) = , ¢(], k)ak
=1

— Or in matrix notation as
$(1,007 [0(1L1D)  ¢(1,2) ¢(1,p)] [
¢(2,0) ¢(2,1) ¢(2,2) ¢(2,p) |42

p(p,0)] Lo 1) ¢, 2) ¢ (p,p)] L9

— or even more compactly as ® = Wa

— Since ® is symmetric, this system of equations can be solved
efficiently using Cholesky decomposition in 0(p3)
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— NOTES

* This method is known as the covariance method (for unclear reasons)

* The method calculates the error in the region 0 <n < N — 1, but to do
so uses speech samplesin theregion—p<n<N —1

— Note that to estimate the error at y[0], one needs samples up to y[—p]
* No special windowing functions are needed for this method

* If the signal follows an all-pole model, the covariance matrix can produce
an exact solution

— In contrast, the method we will see next is suboptimal, but leads to more
efficient and stable solutions
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The autocorrelation method

— The autocorrelation function of a signal can be defined as
R =) ylmlyln—ml
m=—coo

— This expression is similar to that of ¢(j, k) in the covariance method but
extends over to + oo rather thantotherange 0 < n < N

Gk =) yln—jlyln -k
— To perform the calculation over + o0, we window the speech signal (i.e.,

Hann), which sets to zero all values outside 0 < n < N

— Thus, all errors e[n] will be zero before the window and p samples after
the window, and the calculation of the error over +co can be rewritten as

N—-1+
6=y yIn-jlyn—k

n=0
— which in turn can be rewritten as

N—1—(j—k)
$GR=Y  ylnlyln+j -k

n=0
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— thus, ¢(j, k) = R(j — k)

— which allows us to write ¢(j, 0) = X7 _, ¢, k)ay as

R(D=Y RG-ba

k=1

— The resulting matrix
‘R(1)1 [ R(0) R(1) R(p —1)ra17
RO|_| RO RO R(p—2)||%
R(p)l R(p—-1) R(p-—2) R(0) 119!

— is now a Toeplitz matrix (symmetric, with all elements on each
diagonal being identical), which is significantly easier to invert

* In particular, the Levinson-Durbin recursion provides a solution in O(p?)
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Speech spectral envelope and the LP filter

— The frequency response of the LP filter can be found by evaluating the

transfer function on the unit circle at angles 2rtf /f, that is
2
G
1 — ZZ=1 ake_jzn'kf/fs

|H(e2nf/55)|* =

— Remember that this all-pole filter models the resonances of the vocal
tract and that the glottal excitation is captured in the residual e[n]

— Therefore, the frequency response of 1/A4,,(z) will be smooth and
free of pitch harmonics

— This response is generally referred to as the spectral envelope
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How many LP parameters should be used?

— The next slide shows the spectral envelope for p = {12, 40}, and the
reduction in mean-squared error over a range of values

 Atp = 12 the spectral envelope captures the broad spectral peaks (i.e.
the harmonics), whereas at p = 40 the spectral peaks also capture the
harmonic structure

* Notice also that the MSE curve flattens out above about p = 12 and then
decreases modestly after

— Also consider the various factors that contribute to the speech spectra

» Resonance structure comprising about one resonance per 1Khz, each
resonance needing one complex pole pair

* A low-pass glottal pulse spectrum, and a high-pass filter due to radiation
at the lips, which can be modeled by 1-2 complex pole pairs

* This leads to a rule of thumb of p = 4 4+ £, /1000, or about 10-12 LP
coefficients for a sampling rate of f; = 8kHz
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(a) Comparison of STFT with H (/27 /1<)
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[Rabiner and Schafer, 2007]
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Examples

ex/pl.m
= Computing linear predictive coefficients

= Estimating spectral envelope as a function
of the number of LPC coefficients

= |Inverse filtering with LPC filters

= Speech synthesis with simple excitation
models (white noise and pulse trains)

ex/p2.m
= Repeat the above at the sentence level
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Alternative representations

A variety of different equivalent representations can be
obtained from the parameters of the LP model

— This is important because the LP coefficients {a;} are hard to interpret
and also too sensitive to numerical precision

— Here we review some of these alternative representations and how
they can be derived from the LP model
* Root pairs
* Line spectrum frequencies
* Reflection coefficients
e Log-area ratio coefficients

— Additional representations (i.e., cepstrum, perceptual linear
prediction) will be discussed in a different lecture
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Root pairs
— The polynomial can be factored into complex pairs, each of which
represents a resonance in the model
* These roots (poles of the LP transfer function) are relatively stable and are
numerically well behaved
— The example in the next slide shows the roots (marked with a x) of a
12-th order model
* Eight of the roots (4 pairs) are close to the unit circle, which indicates
they model formant frequencies
* The remaining four roots lie well within the unit circle, which means
they only provide for the overall spectral shaping due to glottal and
radiation influences
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Line spectral frequencies (LSF)

— A more desirable alternative to quantization of the roots of 4, (z) is
based on the so-called line spectrum pair polynomials
P(z) = A(z) + z~@*V4(z™D)
Q(2) = A(z2) — z~P*DA(z™)
* which, when added up, yield the original A,,(z)

— The roots of P(z), Q(z) and A, (z) are shown in the previous slide

 All the roots of P(z) and Q(z) are on the unit circle and their frequencies
(angles in the z-plane) are known as the line spectral frequencies

* The LSFs are close together when the roots of 4,, (z) are close to the unit

circle; in other words, presence of two close LSFs is indicative of a strong
resonance (see previous slide)

e LSFs are not overly sensitive to quantization noise and are also stable, so
they are widely used for quantizing LP filters
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Reflection coefficients

— The reflection coefficients represent the fraction of energy reflected at
each section of a non-uniform tube model of the vocal tract
— They are a popular choice of LP representation for various reasons
* They are easily computed as a by-product of the Levinson-Durbin iteration
e They are robust to quantization error

* They have a physical interpretation, making then amenable to
interpolation
— Reflection coefficients may be obtained from the predictor coefficients
through the following backward recursion
rn=a Vi=p,..,1
i i i
. a, +a;a;_;
l_l _] l l_] . .
a; = 1<j<i
J 2
P —
l

* where we initialize a a;

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 23



Log-area ratios

— Log-area ratio coefficients are the natural logarithm of the ratio of the
areas of adjacent sections of a lossless tube equivalent to the vocal
tract (i.e., both having the same transfer function)

* While it is possible to estimate the ratio of adjacent sections, it is not
possible to find the absolute values of those areas

— Log-area ratios can be found from the reflection coefficients as
1—r
Ak = ln( k)
1+ Tk

* where g, is the LAR and 7y, is the corresponding reflection coefficient
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