L29: Fourier analysis
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The discrete Fourier Transform (DFT)

The DFT matrix
The Fast Fourier Transform (FFT)
The Short-time Fourier Transform (STFT)

Fourier Descriptors
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Introduction

Similarity between time series

— Suppose that you are to determine whether two time series x(k) and
y (k) are similar

x(K)
y(k)

— One measure of alignment is the inner product of the two signals

(x,y) = ) 2y
k

* If the inner product is large, then the two signals are very much in in
alignment

e If the inner product is zero, the two signals are orthogonal
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— The Euclidean distance is another measure of (dis)similarity
lx = ylI? = lIxlI? = 2(x, y) + lIyll®
* Note that, if we assume that the two signals have unit norm
IxII? = llyll* =1

e then the Euclidean distance and the inner product are equivalent

— Small distance < large inner product
— Large distance & small inner product

* For this reason, we will use the inner product for the rest of this lecture
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Example

— Assume the following time series
*x={.11,-1,-111-1,-1,1,1-1,-1, ..}
y=4{.1,-11,-11,-1,1,-1,1,—-1,1,-1, ...}

— Compute their inner product

* What can you say about their degree of similarity?

— How about the degree of similarity with the signal z below?
z=4{.,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... }
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— Since all inner products are zero, the three signals (x,y,z) are
orthogonal, and therefore independent

— Thus, linear combinations of these signals defines a subspace with

three dimensions
u=ax+ay+azz

* VIUTTTU Y ™S 1AL
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— Likewise, two sine waves (shown below) are orthogonal whenever
their frequencies are different (f1 + f2)
x(t) = sin(2mfit)
y(t) = sin(2mf,t)
— As we will see, a family of sine functions (for all possible frequencies
f;) is at the core of Fourier analysis

— Since sine waves are orthogonal, the analysis is dramatically simplified
(e.g., a unique representation exists for every conceivable signal)
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Cross-correlation and autocorrelation

Definition
— The inner-product operator allows us to define the cross-correlation
between two continuous signals x(t) and y(t) as:
(00]

Ry@® = ) x()y(k+1)

k=—o0

* where 7 is a shift applied to y(t)
— Or, for continuous-time signals

Rey@ = | x(0y(e+ D)t = (x(0,y(t + )

— When the cross-correlation is applied to a signal and a copy of itself, it
is called the autocorrelation

(0]

Ru(®) = ) x(xlk+7)

k=—o0
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Example

— Recall the two signals on slide 2

— The cross correlation function reveals that one signal is very close (in
our case identical ) to a delayed version of the other
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Example Il

X(K) = randn(1000,1)

x(K)
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x(k) = 100sin(270.01k)
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The Fourier Transform

In Fourier analysis, one represents a signal with a family of
sinusoidal functions

— Recall from a few slides back that sine waves of different frequencies
are orthogonal, so this representation is unique to each signal

— Fourier analysis transforms the signal from a “time-domain”
representation x(t) into a “frequency-domain” representation X(f)

— The collection of values of X (f) at each and every frequency f is
called the spectrum of x(t)

Mathematically, the Fourier Transform is defined as

(00]

X(f) = J x(t)eJ2Mde = (x(1), e/2™)

— 00

— which you can recognize as the inner product between our signal
x(t) and the complex sine wave e/t

« Recall Euler’s formula et/? = cos(8) + j sin()
* And the inner product of functions f and g being defined as

(. g) = J_o:ofg*dt
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Interpretation of the Fourier Transform

— The Fourier Transform X (f) is defined for each and every frequency f

* Each term in X(f) represents the inner product of our signal x(t) with a
sine wave of frequency f

* X(f) is a complex number with magnitude m and phase 6 , which
represent the sine wave that is “closest” to x(t)

* Because the sine waves are orthogonal, their magnitudes m represent the
amount of frequency f that is present in x(t)

— The collection of values of X (f) for every frequency (each defined by a
magnitude m and phase 0) is called the spectrum of x(t)

— The Fourier Transform is lossless and invertible, which means that the
original signal x(t) can be perfectly reconstructed from X (f)

* This reconstruction is achieved by means of the INVERSE Fourier
transform

x() = f " X(PeIdf = (X(f), eI

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 11



The Fourier Transform as a sound “prism”

high frequencies

r\f\f\fw = blue light
—— N\ middle frequencies
= yellow light
\ low frequencies

complex light wave

prism = red light

high frequencies

N
Digitize
— Waveform .| Fourier ~N__\___, Middie frequencies
In Transform = midrange
g
Computer
complex sound wave \ .
low frequencies

[Sethares (2007). Rhythms and transforms] = bass
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The Discrete Fourier Transform

The DFT differs from the Fourier Transform in three respects

— It applies to discrete-time sequences x[k] = x(nT), where T is the
sampling period of a continuous-time signal x(t)

— Because we operate in discrete time, the frequency representation is
also discrete, and the transform is a summation rather than an integral

— Finally, we work with a finite data record (i.e., we do not have access
to the value of the signal for k — o)

Mathematically, the DFT is defined as

N-1
_j2m _Jjam, .
X(n) = z xlkle” N 7" =\x|k],e N ,n=012..N—-1
k=0
— So the DFT is (again) the inner product of our signal x[k] with a sine

wave
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Frequency vs. time resolution

The DFT is only defined at frequency multiples of 2t /N, which
can be thought of as a “fundamental frequency”

— NOTE: 2m radians correspond to the sampling frequency in Hz

— Therefore, for a given window size, the frequency resolution of the DFT is
21 21 21 sampling rate (Hz
A =fo—foa =n—(n-1) =2 = Gtz

N window size (#sa.)
— So, the longer the recording, the better the frequency resolution

Why not then use long analysis windows?

— Because longer windows reduce the
temporal resolution of frequency events

— Therefore, there is a trade-off between
spectral resolution (long windows) and time (sec)
temporal resolution (shorter windows)

amplitude

[}
— NOTE: Zero-padding can be used to increase é
the smoothness (or apparent resolution) of g
the DFT spectrum, but not its true resolution, - 0 100 500 300
which remains limited by the length of the frequency (Hz)

original (unpadded) signal Sethares, 2007]
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The DFT matrix

— Let us denote the “fundamental frequency” signal as

2T
Wy = e N = cos(2n/N) — j sin(2m/N)
— Then, the DFT can be expressed as
N-1
X(m) = ) x[k](Wy)"

k=0
— Or, using matrix notation, as

o1 1 1 1 1 1c
x(0) 1 W Wi w1 *(0)
X(1) N N N x(1)
x2) |=|1 w2 Wi Wz x(2)

XV =D (1wt wy®D YA eV~ 1)

— So the DFT can also be thought of as a projection of the time series
data by means of a complex-valued matrix
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Symmetry of the DFT matrix

— Note that the k-th row of the DFT matrix consist of a unitary vector
rotating clockwise with a constant increment of 2wk /N

JWUINICCCICICCCICIEY
X[1 X[1]
X[2 X[2
X[3]] _ X[3:
X[4]| ~ X[4
NG 9.CIDCCIDN
X[6 X[6
X[7 X[7
X8I | J [ 48l

— The second and last row are complex conjugates
— The third and second-to-last are complex conjugates...
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Interpretation of the DFT

— So, expressing these rotating unitary vectors in terms of the underlying

sine waves, we obtain

xo] ===~ [0
| I | e e e e E e B R U
X@| |Fererererorerer o[ | e
] B | e B R
X4l — [ R | |
()| | S o e S S I
xel| |F-r-r-r-r—-r-r-r- (6]
(]| I | o e S e e S ==l I (1)
- = 3 | | | | | | | N=B B -

Ky

— where the solid line represents the real part and the dashed line represent
the imaginary part of the corresponding sine wave

— Note how this illustration brings us back to the definition of the DFT as an
inner product between our signal x[k] and a complex sine wave

[llustration borrowed from http://en.wikipedia.org/wiki/DFT_matrix
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Example |
— Sampling rate Fs = 2kHz
— Signal x(t) = sin(2r10¢t)

— Recording length 1sec 2
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Example Il
— Sampling rate Fs = 2kHz

— Signal x(t) = 10sin(2m10t) + 3sin(2m100t)

— Recording length 1 sec
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The Fast Fourier Transform

Definition
— The FFT refers to any fast algorithm for computing the DFT
— The DFT runs in O(N?), whereas FFT algorithms run in O(Nlog,N)

— Several FFT algorithms exists, but the most widely used are radix-2
algorithms, which require N = 2¥
* When the number of data points is not a power of 2, it is then just a
matter of padding the sequence x[k] with zeros
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What happens when the signal is not stationary?

— As we saw a few slides back, if the DFT/FFT is applied to the entire
signal, we will be unable to resolve the spectral changes over time

— Instead, we can divide the signal into “chunks”, and apply the DFT/FFT
to each one of them

— This strategy is known as the Short-Time Fourier Transform (STFT), and
the resulting time-frequency representation is known as a
spectrogram

The SFTF preserves both temporal and spectral information

— By adjusting the size of the “chunks”, the STFT provides a tradeoff
between

— Perfect temporal resolution, as given by the original signal x(t)
— Perfect spectral resolution, as obtained by the Fourier Transform X (f)
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The SFTF is performed as follows

Define an analysis window size
(e.g., 30 ms for narrowband,
5 ms for wideband)

Define the amount of overlap
between windows (e.g., 30%)

Define a windowing function
(e.g., Hann, Gaussian)
Generate windowed segments
(by multiplying signal with the
windowing function)

Apply the FFT to each windowed
segment
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Windowing

— The window function serves several purposes

* It localizes the Fourier Transform in time, by considering only a short time
interval in the signal

e By having a smooth shape, it minimizes the effects (e.g., high side lobes)
of chopping the signal into pieces

* By overlapping windows, it provides spectral continuity across time

— The windowing functions w[k — nS] must be such that, when
overlapped, their sum is unity (or constant)

X[K]
> wik-nS] \
: [k - 5] W[k - 35 Wik - 55]
SN 7N SN,
wlk -nS]
<5 wik- 25] wik-45] -
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— The STFT is then computed as

N-—1
X(f, t) = z x[klw[k — ']e—f%”"" = <x[k], wlk — i]ef%””">
k=0

— where f,, is the n-th discrete frequency, and ¢; is the starting time of
the i-th analysis window
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Example |
F = 2kHz FFT

Window length = 30ms
Window shift = 1ms

Two concatenated sine waves 1024 points

N N
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=< Or 1 = =
4| | E
o2l 1 “ 200
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31 ] 100
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MARRA ~
! | I _ ! ! 0
50 100 150 200 0 100 200 300 400 500 2 4 6 8
time (sa.) frequency (Hz) time (frames)
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Fourier descriptors

Problem definition

— Consider the object below, with contour defined in terms of the
coordinates of N points along its periphery

* We assume that these points are ordered (e.g., CW or CCW)
(XOIyO)

(X1,¥1)

(X5,Y,)

(X3Iy3)

— which can be represented by a complex vector u as

X0+ JYo
X1 +JY1

Xy + JYN.
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— Taking the (one-dimensional) DFT of the complex vector u, we obtain
N-1

U(n) = FFT[u z ~jynk

— Properties of U(n)

* Translation (u = u + d) only affects the first FD (U(0) — U(0) + Nd)
e Scaling by a factor a (u = au) scales all FDs accordingly (U — aU)
« Rotation by an angle 6, results in a phase shift (U — e/?U)

* Changing the starting point by m positions (u[k] — u[k + m]), also
results in a phase shift U(n) — e/2™M/N{j(n)
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— Hence, by ignoring U(0) and U (1), taking norms, and dividing by

U(D)|
. U(n)|
U(n) = n=23...N—1
|U(1)]
— The coefficients become translation-, scale-, rotation-, and start-point-
invariant

— These are known as the Fourier Descriptors of the shape defined by u

* However, by ignoring the phase of U(n), an essential part of the contour
is lost (e.g., two different shapes may have the same FDs)

— Additionally, smooth versions of the original contour can be obtained
by performing the IDFT on a subset of the coefficients U(n)

) —> =
=
) D
Original n=1..5 n=1..13 n=1..25 n=1..65

shape

. . . [Krzyzak et al. 1988]
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