
Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

1

Lecture 10: PI/T timer

g Introduction to the 68230 Parallel Interface/Timer
g Interface with the 68000
g PI/T Timer registers
g Timer Control Register

n Clock control

n Zero-detect control

g MOVEP instruction
g Examples

n Real-time clock

n Square wave generator

g Polling Vs. Interrupt
g Programming the PI/T in C language

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

2

Introduction to the 68230

g The 68230 PI/T (Parallel Interface/Timer) is a general-purpose peripheral
n Its primary function is a parallel interface
n Its secondary function is a programmable timer

g The PARALLEL INTERFACE provides 4 modes with various handshaking and buffering
capabilities

n Unidirectional 8-bit
n Unidirectional 16-bit
n Bidirectional 8-bit
n Bidirectional 16-bit

g The PROGRAMMABLE TIMER provides a variety of OS services
n Periodic interrupt generation
n Square wave generation
n Interrupt after timeout
n Elapsed time measurement
n System watchdog

g This lecture covers the (easier) programmable timer function
n The next two lectures will cover the parallel interface

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

3

PI/T simplified interface with the MC68000
g An address decoder places the PI/T at a given location within the address space of the processor

n On the SBC68K, the PI/T base address is $FE8000
g The 68230 is programmed and used by reading and writing data to the correct memory-mapped locations (registers)
g The 68230 contains 23 internal registers, which are are selected by the state of 5 register-select inputs (RS1-RS5) connected to

the address bus (A1-A5)
n Notice that ALL the registers are located at ODD memory locations
n Only 9 of the 23 registers are used for the programmable timer function

g Data to the internal registers is transferred through the data bus (D0-D7)
g There are three internal ports

n Port A and Port B are used for parallel interface
n Port C is shared by timer and parallel interface

g Handshaking is accomplished through lines H1-H4

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

4

PI/T timer registers

g Timer Control Register
n Determines the operation modes of the timer

g Timer Interrupt Vector Register
n Stores the interrupt vector number

g Counter Preload Register
n A 24-bit counter with the desired (by the

programmer) number of counts measured in ticks

g Counter Register
n A 24-bit counter down-counter that is

automatically decremented with every tick

g Timer Status Register
n Determines the status of the timer
n Only Bit #0 (Zero Detect Status or ZDS) is used
n In order to clear the ZDS bit after a zero-detect

YOU MUST WRITE A 1 to it (YES, the ZDS bit is
cleared by writing a ONE to it)

Register and Mnemonic Acc. Offset
Timer Control Register TCR R/W $21

Timer Interrupt Vector Register TIVR R/W $23
Counter Preload Register High CPRH R/W $27
Counter Preload Register Middle CPRM R/W $29
Counter Preload Register Low CPRL R/W $31
Counter Register High CNTRH R $2F
Counter Register Middle CNTRM R $31
Counter Register Low CNTRL R $33
Timer Status Register TSR R/W $35

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

5

Timer Control Register

g Timer Enable (TCR0)
n Turns the timer ON and OFF. The timer is disabled when the bit is cleared; it is enabled when set

g To start the timer, place an 1 in TCR0
g To stop the timer, place a 0 in TCR0

g Clock Control (TCR1-2)
n The PI/T timer permits different clock pulse operations. When the field is 00, every 32 CPU clock cycles

become 1 timer tick.

g Counter Load (TCR4)
n After completing its countdown, the tick counter is either reset from the Counter Preload Register (CPR) or it

rolls over to $FFFFFF
g Writing a 0 on TCR4 causes a reload from the CPR
g Writing a 1 on TCR4 causes a roll-over to $FFFFFF.

g Action on Zero Detect (TCR5-7)
n The timer can select from a series of actions when the tick counter reaches 0.

Mode TCR7 TCR6 TCR5 TCR4 TCR3 TCR2 TCR1 TCR0
1 1 X 1 0 X 00 or 1X 1
2 0 1 X 0 X 00 or 1X 1
3 1 X 1 1 X 00 or 1X 1
4 0 0 X 1 X 0 0 1
5 0 0 X 1 X 0 X 1
6 1 X 1 1 X 0 1 1

TOUT/TIACK* control ZD
control

Not
used Clock control Timer

enable
Mode 1: Real-time clock
Mode 2: Square wave generator
Mode 3: Interrupt after timeout

Mode 4: Elapsed time measurement
Mode 5: Pulse counter
Mode 6: Period measurement

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

6

Clock control (TCR2-TCR1)

g The counter can be decremented from three different signals
n TIN, the external clock input
n The output of a 5-bit prescaler driven by CLK and enabled by TIN

n CLK, the system clock (prescaled)

g The 5-bit prescaler allows us to divide the counter frequency by 32
g The SBC68K clock runs at 8MHz (125×10-9 seconds per count), so 1 second will require

250,000 CLK ticks (mode 00)

TCR2 TCR1 Clock Control Example

0 0
PC2/TIN is a port C function. The counter clock is prescaled by 32, thus

the counter clock is CLK/32. The timer enable bit determines whether the
timer is in the run or halt state.

Prescaler CounterCLK

0 1

PC2/TIN is a timer input. The prescaler is decremented on the falling edge
of CLK and the counter is decremented when the prescaler rolls over

from $00 to $1F (3110) Timer is in the run state when BOTH timer enable
bit and TIN are asserted.

Prescaler CounterCLK

TIN

1 0

PC2/TIN is a timer input and is prescaled by 32. The prescaler is
decremented following the rising transition of TIN after being

synchronized with the internal clock. The 24-bit counter is decremented
when the prescaler rolls over from $00 to $1F. The timer enable bit

determines whether the timer is in the run or halt state.

Prescaler CounterTIN

1 1

PC2/TIN is a timer input and prescaling is not used. The 24-bit counter is
decremented following the rising edge of the signal at the TIN pin after

being synchronized with the internal clock. The timer enable bit
determines whether the timer is in the run or halt state.

TIN Counter

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

7

TOUT/TIACK* control (TCR7-TCR5)

g Bits 7-5 of the Timer Control Register control the way the PI/T timer behaves on a zero-
detect (ZDS=1)

n Whether interrupts are supported (vectored, auto-vectored or none)
n How does the PC3/TOUT output pin behave
n How is the PC7/TIACK* input pin interpreted

TCR7 TCR6 TCR5
Timer response

(simplified) Timer response (detailed)

0 0 X Use timer pins for the
operation of I/O port C PC3/TOUT and PC7/TIACK* are port C functions

0 1 X
Toggle a square wave
with each expiration of

the timer

PC3/TOUT is a timer function. In the run state TOUT provides a square wave which
is toggled on each zero-detect. The TOUT pin is high in the halt state. PC7/TIACK*

is a port C function.

1 0 0 No vectored interrupt
generated on a count of 0

PC3/TOUT is a timer function. In the run or halt state TOUT is used as a timer
request output. Timer interrupt is disabled, the pin is always three-stated.
PC7/TIACK* is a port C function. Since interrupt requests are negated, PI/T

produces no response to an asserted TIACK*.

1 0 1 Generate a vectored
interrupt on a count of 0

PC3/TOUT is a timer function and is used as a timer interrupt request output. The
timer interrupt is enabled and TOUT is low (IRQ* asserted) whenever the ZDS bit

is set. PC7/TIACK* is used to detect the 68000 IACK cycle. This combination
operates in the vectored-interrupt mode.

1 1 0
No autovectored

interrupt generated on a
count of 0

PC3/TOUT is a timer function. In the run or halt state it is used as a timer interrupt
request output. The timer interrupt is disabled and the pin always three-stated.

PC7/TIACK* is a port C function.

1 1 1
Generate an auto-

vectored interrupt on a
count of 0

PC3/TOUT is a timer function and is used as a timer interrupt request output. The
timer interrupt is enabled and TOUT is low whenever the ZDS bit is set.

PC7/TIACK* is a port C function. This combination operates in an autovectored
interrupt mode.

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

8

MOVEP instruction

g The MOVEP instruction is provided to allow transfer of data to
alternate bytes in memory

n This is very useful for 68000-based peripherals

g Instruction format
MOVEP.size Di,d(Aj)

MOVEP.size d(Aj),Di

g Example

$1004 40
$1006 F0
$1008 3A
$100A 60

D0 40 F0 3A 60

A0 00 10 00

MOVEP.L D0,5(A0)

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

9

Example: Real-time clock

g The PI/T generates an interrupt at periodic intervals
g Hardware configuration

n TOUT MUST BE connected to one of the 68000’s IRQ* lines
n TIACK* MUST BE connected to the appropriate 68000’s IACK* line

g The counter is reloaded from CPCR on each zero-detect
n The ZDS MUST be cleared by the interrupt handler to remove the interrupt request

g Sample assembly code

PIT EQU $FE8000 ;PI/T base address on the SBC68K
TCR EQU $21 ;offset to the timer control reg
TIVR EQU $23 ;offset to the timer int. vector reg
CPR EQU $25 ;offset to the counter preload reg
TSR EQU $35 ;offset to the timer status reg
TIME EQU 4*timevec ;location of the PI/T int. handler

setup LEA PIT,A0
MOVE.B #timevec,TIVR(A0) ;load the interrupt vector
MOVE.L #$00FFFFFF,D0 ;setup the maximum count
MOVEP.L D0,CPR(A0) ;and load it into the CPR
MOVE.B #$10100001,TCR(A0) ;set up the TCR
RTS

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

10

Example: Square wave generator

g The timer produces a square wave at its TOUT output pin
n No interrupts are generated (supported)

g Hardware configuration
n TOUT MUST NOT be connected to an IRQ line or else the 68000 will be interrupted when TOUT goes to LOW
n TIACK* is ignored by the PI/T timer in this mode

g The SBC68K has a jumper (JP6) that allows us to configure the way 68000 and PI/T are connected
(SBC68K User’s Manual, pp. 5-18)

g The TCR7 bit is cleared to allow the TOUT pin to be toggled each time the counter rolls down to zero
g The period of the wave is determined by the valued loaded on the counter preload register

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

11

Polling Vs. Interrupt

g An alternative to programming interrupts is to create a polling loop
n The CPU periodically reads the ZDS bit off the PI/T
n When ZDS=1 the CPU executes the code originally written for the interrupt handler
n Unless the CPU has nothing else to do between timeouts of the PI/T timer, polling is a waste of CPU cycles!

main () {
set_up_pit_polling();

while (1) {
while (zds!=1) {
/* do nothing until timeout */
}

clear_zds();
perform_operation();
}

}

isr() {
clear_zds();
perform_operation();

}

main () {
set_up_pit_interrupt(isr);

while (1) {
/* do something useful, isr()

takes care of the timeout */
}

}

polling.c interrupt.c

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

12

Example: Programming interrupts for the PI/T in C language

/* This code will setup the 68320 to generate an interrupt every

5 seconds. The interrupt service routine isr()clears the ZDS

bit so the 68320 stops asserting the IRQ* line since its

interrupt request has been serviced */

#define tmr ((unsigned char*) 0xFE8021) /* Timer Base Address */

#define tcr ((unsigned char*) tmr) /* Timer Control Reg */

#define tivr ((unsigned char*) tmr+2) /* Timer Int. Vect. Reg */

#define cprh ((unsigned char*) tmr+6) /* Preload Hi Reg */

#define cprm ((unsigned char*) tmr+8) /* Preload Mid Reg */

#define cprl ((unsigned char*) tmr+10) /* Preload Lo Reg */

#define cnrh ((unsigned char*) tmr+14) /* Counter Hi Reg */

#define cnrm ((unsigned char*) tmr+16) /* Counter Mid Reg */

#define cnrl ((unsigned char*) tmr+18) /* Counter Lo Reg */

#define tsr ((unsigned char*) tmr+20) /* Timer Status Reg */

#define tvector 0x40 /* Timer Vector reg */

#define tmrcntrl 0x80 /* Timer Mode */

void isr() {

/* so we get feedback when this function gets called */

printf("Five secs has passed\n");

/* reset the ZDS bit */

*tsr = 0x01;

/* return to main() */

asm(" rte");

}

main () {
long *vtable;
int count=1250000;

/* set supervisor mode and interrupt mask to 4 */
asm(" move.w #$2400,SR");

/* setup the stack pointer */
asm(" movea.l #$20000,SP");

/* setup timer control register */
*tcr = 0xA0;

/* setup vector table entry */
*tivr = 70;
vtable = (long *) (70*4);
*vtable = isr;

/* load the counter preload register */
*cprl = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprh = (unsigned char) count;

/* Start timer */
*tcr = 0xA1;

while (1) {
/*do the regular control loop*/
}

}

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

13

Example: Programming a polling loop for the PI/T in C language

/* This code will setup a polling loop so the 68320 continuously

checks the ZDS bit of the PI/T timer */

#define tmr ((unsigned char*) 0xFE8021) /* Timer Base Address */

#define tcr ((unsigned char*) tmr) /* Timer Control Reg */

#define tivr ((unsigned char*) tmr+2) /* Timer Int. Vect. Reg */

#define cprh ((unsigned char*) tmr+6) /* Preload Hi Reg */

#define cprm ((unsigned char*) tmr+8) /* Preload Mid Reg */

#define cprl ((unsigned char*) tmr+10) /* Preload Lo Reg */

#define cnrh ((unsigned char*) tmr+14) /* Counter Hi Reg */

#define cnrm ((unsigned char*) tmr+16) /* Counter Mid Reg */

#define cnrl ((unsigned char*) tmr+18) /* Counter Lo Reg */

#define tsr ((unsigned char*) tmr+20) /* Timer Status Reg */

#define tvector 0x40 /* Timer Vector reg */

#define tmrcntrl 0x80 /* Timer Mode */

/* The isr() function is not needed anymore since the

code it used to execute is now performed by main()

after it reads that the ZDS bit has been set to 1 */

main () {
int count=1250000;

/* set supervisor mode and interrupt mask to 4 */
asm(" move.w #$2400,SR");

/* setup the stack pointer */
asm(" movea.l #$20000,SP");

/* setup timer control register */
*tcr = 0x80;

/* load the counter preload register */
*cprl = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprh = (unsigned char) count;

/* Start timer */
*tcr = 0x81;

while (1) {
while (!(*tsr&1)) {

/* check until ZDS goes high */
}

printf("Five secs has passed\n");

/* reset the ZDS bit */
*tsr = 0x01;

}
}

