Lecture 10: PI/T timer

m Introduction to the 68230 Parallel Interface/Timer
m Interface with the 68000
m PI/T Timer registers

m Timer Control Register
e Clock control
e Zero-detect control

m MOVEP instruction

m Examples
e Real-time clock
e Square wave generator

= Polling Vs. Interrupt
s Programming the PI/T in C language

Microprocessor-based System Design

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

Introduction to the 68230

The 68230 PI/T (Parallel Interface/Timer) is a general-purpose peripheral
e Its primary function is a parallel interface
e Its secondary function is a programmable timer
m The PARALLEL INTERFACE provides 4 modes with various handshaking and buffering
capabilities
e Unidirectional 8-bit
e Unidirectional 16-bit
e Bidirectional 8-bit
e Bidirectional 16-bit
= The PROGRAMMABLE TIMER provides a variety of OS services
e Periodic interrupt generation
e Sguare wave generation
e Interrupt after timeout
e Elapsed time measurement
e System watchdog

m This lecture covers the (easier) programmable timer function
e The next two lectures will cover the parallel interface

Microprocessor-based System Design

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

PI1/T simplified interface with the MC68000

= An address decoder places the PI/T at a given location within the address space of the processor
e Onthe SBC68K, the PI/T base address is $FE8000
= The 68230 is programmed and used by reading and writing data to the correct memory-mapped locations (registers)

= The 68230 contains 23 internal registers, which are are selected by the state of 5 register-select inputs (RS,;-RS;) connected to
the address bus (A;-A;)

¢ Notice that ALL the registers are located at ODD memory locations

e Only 9 of the 23 registers are used for the programmable timer function
= Datato theinternal registers is transferred through the data bus (D,-D,)
= There are three internal ports

e Port A and Port B are used for parallel interface

e Port Cis shared by timer and parallel interface
= Handshaking is accomplished through lines H;-H,

System clock
Dg-Dy < | Doy
DTACK |« DTACK et PAsPA,
— — l«——— PB,PB,
R/W +| R/W
-— Hl
»| CLK 11
RESET »| RESET Hs
) > H,
68230 l«—— PC,/TIACK
o800 — PI/T e—— PC/PIACK
' = FCPRG
Ag-Ays . +— PC,/DMAREQ
A—A Address »| CS +———— PC,/TOUT
! 3 4 decoder -— . PC',,J'TIN
“ > PC,
RS,-RS; > P(,
A-Ag

Microprocessor-based System Design

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

PI/T timer registers

s Timer Control Register

e Determines the operation modes of the timer

= Timer Interrupt Vector Register

. LK
e Stores the interrupt vector number © 0
s Counter Preload Register D, «44,]
. . . 45
e A 24-bit counter with the desired (by the g ‘a5l | I
. . 2]
programmer) number of counts measured in ticks 0, 44;; Mulliplexer —
. D, <48 o
m Counter Register o ot] PC7 120> TIACK®
e A 24-bit counter down-counter that is 05 «-§+ 5
automatically decremented with every tick D7 +—=# Timer logic PC3 = Tour
. . 32
s Timer Status Register AW = 2 - PC2|+ = Ty
. . DTACK® +—=
e Determines the status of the timer cgr 41, Timer control register TCR I
e Only Bit #0 (Zero Detect Status or ZDS) is used OLK 2, Tour/TIACK® | Zero-detect | Clock | 0 onapie Port C
] RESET* —3%| control control | control funci
e |n order to clear the ZDS bit after a zero-detect v Timer status register TSR S‘;’;f;g”;y
YOU MUST WRITE A 1to it (YES, the ZDS bit is RS, o8] oS timer
cleared by writing a ONE to it) RS =]
RS, 26. Count register (24 bits) CNTR
234 25 Count register high (CNTRH)
5 — " Count register middle (CNTRM)—
Register and Mnemonic Acc. | Offset Count register low (CNTRL)
Timer Control Register TCR R/W $21 Counter preload register CPR
- - Counter preload register high (CPRH)
Timer Interrupt Vecto!' Reglgter TIVR RIW $23 Interface Counter preload register middle (CPRM)
Counter Preload Register High CPRH RIW $27 to Counter oreload reqister low (CPRL)
Counter Preload Register Middle CPRM R/W $29 68000 P 9
Counter Preload Register Low CPRL R/W $31 — ,
nter R | r HI h NTRH R 2F imer interrupt vector register
Counter Register Hig c $ T terrupt vect t (mvR)_|
Counter Register Middle CNTRM R $31
Counter Register Low CNTRL R $33
Timer Status Register TSR R/W $35
Microprocessor-based System Design 4

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Timer Control Register

Timer Enable (TCRO)

e Turns the timer ON and OFF. The timer is disabled when the bit is cleared; it is enabled when set
= To start the timer, place an 1 in TCRO
m To stop the timer, place a 0 in TCRO

Clock Control (TCR1-2)
e The PI/T timer permits different clock pulse operations. When the field is 00, every 32 CPU clock cycles
become 1 timer tick.
Counter Load (TCRA4)

e After completing its countdown, the tick counter is either reset from the Counter Preload Register (CPR) or it
rolls over to $FFFFFF

= Writing a 0 on TCR4 causes a reload from the CPR
= Writing a 1 on TCR4 causes a roll-over to $FFFFFF.

Action on Zero Detect (TCR5-7)
e The timer can select from a series of actions when the tick counter reaches 0.

TCR1 TCRO

1 1 X 1 0 X 00 or 1X 1

2 0 1 X 0 X 00 or 1X 1

3 1 X 1 1 X 00 or 1X 1

4 0 0 X 1 X 0 0 1

5 0 0 X 1 X 0 X 1

6 1 X 1 1 X 0 1 1

Tour/TIACK* control coﬁ?rol u'\slcétd Clock control (;rr:i:belre
Mode 1: Real-time clock Mode 4: Elapsed time measurement
Mode 2: Square wave generator Mode 5: Pulse counter
Mode 3: Interrupt after timeout Mode 6: Period measurement
Microprocessor-based System Design 5

¢ Ricardo Gutierrez-Osuna
Wright State University

Clock control (TCR2-TCR1)

m The counter can be decremented from three different signals
e T, the external clock input
e The output of a 5-bit prescaler driven by CLK and enabled by T
e CLK, the system clock (prescaled)
m The 5-bit prescaler allows us to divide the counter frequency by 32
m The SBC68K clock runs at 8MHz (125%x10° seconds per count), so 1 second will require
250,000 CLK ticks (mode 00)

TCR; Clock Control Example
PC,/T\yis a port C function. The counter clock is prescaled by 32, thus
0 0 the counter clock is CLK/32. The timer enable bit determines whether the CLK —» Prescaler » Counter
timer is in the run or halt state.
PC,/T\yis atimer input. The prescaler is decremented on the falling edge
0 1 of CLK and the counter is decremented when the prescaler rolls over CLK ——>| Prescaler »| Counter
from $00 to $1F (31,0) Timer is in the run state when BOTH timer enable I
bit and TIN are asserted. TIN
PC,/T is atimer input and is prescaled by 32. The prescaler is
decremented following the rising transition of TIN after being
1 0 synchronized with the internal clock. The 24-bit counter is decremented TIN —» Prescaler > Counter

when the prescaler rolls over from $00 to $1F. The timer enable bit
determines whether the timer is in the run or halt state.

PC,/T\ is atimer input and prescaling is not used. The 24-bit counter is

decremented following the rising edge of the signal at the Ty pin after TIN »| Counter

being synchronized with the internal clock. The timer enable bit
determines whether the timer is in the run or halt state.

Microprocessor-based System Design
¢ Ricardo Gutierrez-Osuna
Wright State University

Tout/ TIACK* control (TCR7-TCRY)

m Bits 7-5 of the Timer Control Register control the way the PI/T timer behaves on a zero-
detect (ZDS=1)
e Whether interrupts are supported (vectored, auto-vectored or none)
e How does the PC3/T,; output pin behave
e How is the PC7/TIACK* input pin interpreted

TCR, | TCRs | TCRq Timer response Timer response (detailed

Use timer pins for the

0 0 operation of 1/O port C PC3/Toyr and PC7/TIACK* are port C functions
Toggle asquare wave PC3/Toyr is a timer function. In the run state Toyy provides a square wave which
0 1 X with each expiration of is toggled on each zero-detect. The Toyr pin is high in the halt state. PC7/TIACK*
the timer is a port C function.
PC3/Tourt is a timer function. In the run or halt state Toyt is used as a timer
1 0 0 No vectored interrupt request output. Timer interrupt is disabled, the pin is always three-stated.
generated on a count of O PC7/TIACK* is a port C function. Since interrupt requests are negated, PI/T
produces no response to an asserted TIACK*.
PC3/Toyris atimer function and is used as a timer interrupt request output. The
1 0 1 Generate a vectored timer interrupt is enabled and Toyr is low (IRQ* asserted) when_ever the_ ZD_S bit
interrupt on a count of 0 is set. PC7/TIACK* is used to detect the 68000 IACK cycle. This combination
operates in the vectored-interrupt mode.
No autovectored PC3/Toyr is a timer function. In the run or halt state it is used as a timer interrupt
1 1 0 interrupt generated on a request output. The timer interrupt is disabled and the pin always three-stated.
count of 0 PC7/TIACK* is a port C function.
PC3/Toyr is a timer function and is used as a timer interrupt request output. The
Generate an auto- : . ; - o
1 1 1 vectored interrupt on a timer interrupt is enable_d and Tour is Iqw V_/henever the ZDS bit is set.
PC7/TIACK* is a port C function. This combination operates in an autovectored
count of O :
interrupt mode.
Microprocessor-based System Design 7

¢ Ricardo Gutierrez-Osuna
Wright State University

MOVEP Instruction

s The MOVEP instruction is provided to allow transfer of data to
alternate bytes in memory

e This is very useful for 68000-based peripherals
m Instruction format
MOVEP. si ze D, d(A)
MOVEP. si ze d(A), D

s Example
MOVEP. L DO, 5(AO)
DO| 40 | FO | 3A | 60 | $1004 40
$1006 FO
AQ | | 00 | 10 | 00 | $1008 3A
$100A 60

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Example: Real-time clock

m The PI/T generates an interrupt at periodic intervals
» Hardware configuration

Tour MUST BE connected to one of the 68000’s IRQ* lines
TIACK* MUST BE connected to the appropriate 68000’s IACK* line

m The counter is reloaded from CPCR on each zero-detect

s Sample assembly code

The ZDS MUST be cleared by the interrupt handler to remove the interrupt request

thhmnd:‘ Run mode R
Timer enable
bit (TCRO0)
Load counter FFFFFFg
PIT EQU $FE8000 ; PI/ T base address on the SBC68K
TCR EQU $21 ;offset to the timer control reg 24'““;:3"‘“ contamla
TIVR EQU $23 ;offset to the timer int. vector reg OXpracaec as an analog
CPR EQU $25 ;offset to the counter preload reg 000000y4
TSR EQU $35 ;offset to the tinmer status reg
TI ME EQU 4*t i mevec ;location of the PI/T int. handl er
setup LEA PI T, AO 1 { K
MOVE. B #ti mevec, Tl VR(AO) ;load the interrupt vector ZDS bit of TSR ‘\ﬁ —
MOVE. L #$00FFFFFF, DO ;setup the maxi mum count 1,
MOVEP. L DO, CPR(AQ) ;and load it into the CPR 0 [
MOVE. B #$10100001, TCR(A0) ;set up the TCR \
RTS \
; | \
|
o /
1 LY
TIACK* '\+L l- 1-
0
Microprocessor-based System Design 9
mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Example: Square wave generator

= The timer produces a square wave at its T,y output pin
e No interrupts are generated (supported)

s Hardware configuration
e Tyt MUST NOT be connected to an IRQ line or else the 68000 will be interrupted when T, goes to LOW
e TIACK* is ignored by the PI/T timer in this mode
m The SBC68K has a jumper (JP6) that allows us to configure the way 68000 and PI/T are connected
(SBC68K User’s Manual, pp. 5-18)
m The TCRY bit is cleared to allow the T, ; pin to be toggled each time the counter rolls down to zero

s The period of the wave is determined by the valued loaded on the counter preload register

Halt mode Run mode
— > 4

v

Timer enable
bit (TCRO)

Max count

24-bit counter contents
ue / | y

1 .
\f \“‘ﬂ \““1

F
v

Square wave

Microprocessor-based System Design 10

Eﬂm ¢ Ricardo Gutierrez-Osuna

Wright State University

Polling Vs. Interrupt

= An alternative to programming interrupts is to create a polling loop
e The CPU periodically reads the ZDS bit off the PI/T
e When ZDS=1 the CPU executes the code originally written for the interrupt handler
e Unless the CPU has nothing else to do between timeouts of the PI/T timer, polling is a waste of CPU cycles!

pol l'i ng.c interrupt.c
min () { isr() {
set _up_pit_polling(); cl ear _zds();
perform operation();
while (1) { }
while (zds!=1) {
/* do nothing until timeout */ main () {
} set _up_pit_interrupt(isr);
cl ear _zds();
perform operation(); while (1) {
} /* do sonething useful, isr()
} takes care of the timeout */
}
}
Microprocessor-based System Design 11

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Example: Programming interrupts for the PI/T in C language

/* This code will setup the 68320 to generate an interrupt every main () {
5 seconds. The interrupt service routine isr()clears the ZDS I'ong *vtabl e;
bit so the 68320 stops asserting the |RQ* line since its int count =1250000;

H H *
interrupt request has been serviced */ /* set supervisor node and interrupt mask to 4 */

asn(" nove. w #$2400, SR") ;
#define tnr ((unsigned char*) OxFE8021) /* Ti mer Base Address */
#define tcr ((unsigned char*) tnr) /* Timer Control Reg * | /* setup the stack pointer */
#define tivr ((unsigned char*) tnr+2) /* Timer Int. Vect. Reg */ asn(” novea. | #$20000, SP");
#define cprh ((unsigned char*) tnr+6) /* Preload H Reg */ /* setup timer control register */
#define cprm ((unsigned char*) tnr+8) /* Preload Md Reg */ *tcr = OXAO;
#define cprl ((unsigned char*) tnr+10) /* Preload Lo Reg */
#define cnrh ((unsigned char*) tnr+14) /* Counter H Reg * | /* setup vector table entry */
#define cnrm ((unsigned char*) tnr+16) /* Counter M d Reg */ “tivr =_70; . o
#define cnrl ((unsigned char*) tnr+18) /* Counter Lo Reg */ Yt/?g:ﬁe_:(:g?g) (7074);
#define tsr ((unsigned char*) tnr+20) /* Tinmer Status Reg */
#defi ne tvector 0x40 /* Timer Vector reg */ /* load the counter preload register */
#define tnrcntrl 0x80 /* Timer Mde] *cprl = (unsigned char) count;
count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;
o count = count >> 8; /* shift right 8 bits */
void isr() { *cprh = (unsigned char) count;
/* so we get feedback when this function gets called */ [* Start tiner */
printf("Five secs has passed\n"); *ter = OxAlL;
. while (1) {
/* reset the ZDS bit */ /*do the regul ar control |oop*/
*tsr = 0x01; }
}

/* return to main() */
asm(" rte");

Microprocessor-based System Design

mﬁm R Ricardo Gutierrez-Osuna

Wright State University

Example: Programming a polling loop for the PI/T in C language

/* This code will setup a polling | oop so the 68320 conti nuously

checks the ZDS bit of the PI/T timer */

#define tnr ((unsigned char*) OxFE8021) /*
#define tcr ((unsigned char*) tnr) /*
#define tivr ((unsigned char*) tnr+2) /*
#define cprh ((unsigned char*) tnr+6) /*
#define cprm ((unsigned char*) tnr+8) /*
#define cprl ((unsigned char*) tnr+10) /*
#define cnrh ((unsigned char*) tnr+14) /*
#define cnrm ((unsigned char*) tnr+16) /*
#define cnrl ((unsigned char*) tnr+18) /*
#define tsr ((unsigned char*) tnr+20) /*
#define tvector 0x40 /*
#define tnrcntrl 0x80 /*

/* The isr() function is not needed anynore
code it used to execute is now perfornmed
after it reads that the ZDS bit has been

Ti mer Base Address
Ti mer Control Reg
Timer Int. Vect. Reg
Prel oad H Reg
Prel oad M d Reg
Prel oad Lo Reg
Counter H Reg
Counter Md Reg
Counter Lo Reg

Ti mer Status Reg
Ti mer Vector reg
Ti mer Mode

since the
by main()
set to 1 */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

main () {

int count=1250000;

/* set supervisor node and interrupt mask to 4 */
asn(" nove. w #$2400, SR') ;

/* setup the stack pointer */
asn(" novea. | #%$20000, SP");

/* setup tiner control register */
*tcr = 0x80;

/* load the counter preload register */

*cprl = (unsigned char) count;

count = count >> 8; /* shift right 8 bits */
*cprm = (unsigned char) count;

count = count >> 8; /* shift right 8 bits */
*cprh = (unsigned char) count;

/* Start tiner */

*tcr = 0x81;

while (1) {

while (!'(*tsr&l)) {
/* check until ZDS goes high */

printf("Five secs has passed\n");

/* reset the ZDS bit */
*tsr = 0x01;

Ricardo Gutierrez-Osuna
Wright State University

DL

Microprocessor-based System Design

13

