Lecture 10: Dimensionality reduction

m The curse of dimensionality

m Feature extraction vs. feature selection
m Principal Components Analysis

m Linear Discriminant Analysis
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Dimensionality reduction

m The “curse of dimensionality”
e Refers to the problems associated with multivariate data analysis as the
dimensionality increases
m Consider a 3-class pattern recognition problem
e Three types of objects have to be classified based on the value of a

single feature:

X1
e A simple procedure would be to
m Divide the feature space into uniform bins
m Compute the ratio of examples for each class at each bin and,
m For a new example, find its bin and choose the predominant class in that bin
e We decide to start with one feature and divide the real line into 3 bins

= Notice that there exists a lot of overlap between classes [1 to improve
discrimination, we decide to incorporate a second feature
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Dimensionality reduction

m Moving to two dimensions increases the number of bins from 3

to 32=9

e QUESTION: Which should we maintain constant?

m The density of examples per bin? This increases the number of examples from

91to 27

m The total number of examples? This results in a 2D scatter plot that is very

sparse

A

x, # Constant density

A

m Moving to three features ...

e The number of bins grows to 33=27

e To maintain the initial density of examples,
the number of required examples grows to 81

I 4

X, T Constant # examples

3

e For the same number of examples the

3D scatter plot is almost empty

I 4
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Dimensionality reduction

m Implications of the curse of dimensionality

e Exponential growth with dimensionality in the number of examples
required to accurately estimate a function

m In practice, the curse of dimensionality means that

e For a given sample size, there is a maximum number of features above
which the performance of our classifier will degrade rather than improve

= |n most cases, the information
that was lost by discarding some
features is compensated by a
more accurate mapping in lower-
dimensional space

n

N

performance

] ] ] dimensionality g
m How do we beat the curse of dimensionality?
e By incorporating prior knowledge
e By providing increasing smoothness of the target function

e By reducing the dimensionality
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Dimensionality reduction

s Two approaches to perform dim. reduction ON- [OM (M<N)
e Feature selection: choosing a subset of all the features

feature

[X, X,...x,] O Tt [xil xiz...xiM]

e Feature extraction: creating new features by combining existing ones

feature
[, X,..x, | OB [y, v,...y,] :f([xil xiz...xiM])
= In either case, the goal is to find a low-dimensional representation of the data that
preserves (most of) the information or structure in the data

m Feature extraction is covered in more detail in CS790
m Linear feature extraction

e The “optimal” mapping y=f(x) is, in general, a non-linear function whose form is
problem-dependent
= Hence, feature extraction is commonly limited to linear projections y=Wx

X, O (X, O
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Signal representation versus classification

m Two criteria can be used to find the “optimal” feature extraction
mapping y=f(x)

e Signal representation: The goal of feature extraction is to represent the samples
accurately in a lower-dimensional space

e Classification: The goal of feature extraction is to enhance the class-
discriminatory information in the lower-dimensional space

>

s Within the realm of linear feature
extraction, two techniques are
commonly used

e Principal Components (PCA)
m Based on signal representation

e Fisher’s Linear Discriminant (LDA)
m Based on classification

Feature 2

Feature 1
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Principal Components Analysis

m Let us illustrate PCA with a two dimensional problem
e Data x follows a Gaussian density as depicted in the figure
e Vectors can be represented by their 2D coordinates:

X=XU +X,U, = (Xl’ Xz)

91192

e We seek to find a 1D representation x’ “close” to x

x'=yv =(y),
e Where “closeness” is measured by

the mean squared error over all points
in the distribution

(), = argminEUg—ﬂzj
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Principal Components Analysis

m RESULT (for proof check CS790 notes)

¢ It can be shown that the “optimal”’lD representation consists of

projecting the vector x over the direction of maximum variance in the
data (e.g., the longest axis in the ellipse)

m This result can be generalized for more than two dimensions

The optimal* approximation of a random vector x[II N by a linear combination of
M (M<N) independent vectors is obtained by projecting the random vector x onto

the eigenvectors v; corresponding to the largest eigenvalues A, of the covariance
matrix of X (Z,)
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Principal Components Analysis

m Summary

X' =Y,V +Y,V, -y, vy,

[ X, [
T 1
Ly, L El/lﬂ Vi, Vi, Vin [l
0 O+ 0 2]
- ZD_DZZ%_ 21 Va2 3 [
X==. == ==. 3
0: 0 U 0 1.0
O O U0 g O
YO ¥, B v Vwe VN E
N

e where y, is the eigenvector corresponding to the k' largest eigenvalue
of the covariance matrix
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Linear Discriminant Analysis, two-classes

m The objective of LDA is to perform dimensionality reduction

while preserving as much of the class discriminatory
information as possible

e Assume we have a set of N-dimensional samples (X, X,, ..., X), P, of

which belong to class w,, and P, to class w,. We seek to obtain a scalar
y by projecting the samples x onto a line

A
e Of all the possible lines we would X2
like to select the one that maximizes
the separability of the classes
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Linear Discriminant Analysis

m In a nutshell, we want
e Maximum separation between the means of the projection
¢ Minimum variance within each projected class

(b, —,)

maximize
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Linear Discriminant Analysis

m RESULT (for proof check CS790 notes)

e |t can be shown that the optimal projection matrix W* is the one whose columns
are the eigenvectors corresponding to the largest eigenvalues of the following
generalized eigenvalue problem

. ov's.vQd
V = = B 0 (Ss —AS =0
[Vl |V2 | |Vc—1] argmm%m% ( B i W)V|

e Where Sg and S, are the BETWEEN-CLASS and WITHIN-CLASS covariance
matrices

X
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PCA Versus LDA
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Limitations of LDA

m LDA assumes unimodal Gaussian likelihoods

¢ If the densities are significantly non-Gaussian, LDA may not preserve
any complex structure of the data needed for classification

m LDA will fail when the discriminatory
information is not in the mean but
rather in the variance of the data
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Limitations of LDA

s LDA has atendency to overfit training data

e To illustrate this problem, we generate an artificial dataset

m Three classes, 50 examples per class, with the exact same likelihood: a multivariate
Gaussian with zero mean and identity covariance

= As we arbitrarily increase the number of dimensions, classes appear to separate
better, even though they come from the same distribution
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