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Lecture 10: Dimensionality reduction
g The curse of dimensionality
g Feature extraction vs. feature selection
g Principal Components Analysis
g Linear Discriminant Analysis
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g The “curse of dimensionality”
n Refers to the problems associated with multivariate data analysis as the 

dimensionality increases

g Consider a 3-class pattern recognition problem
n Three types of objects have to be classified based on the value of a 

single feature:

n A simple procedure would be to 
g Divide the feature space into uniform bins
g Compute the ratio of examples for each class at each bin and, 

g For a new example, find its bin and choose the predominant class in that bin

n We decide to start with one feature and divide the real line into 3 bins
g Notice that there exists a lot of overlap between classes ⇒ to improve 

discrimination, we decide to incorporate a second feature

Dimensionality reduction

x1x1
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g Moving to two dimensions increases the number of bins from 3 
to 32=9
n QUESTION: Which should we maintain constant?

g The density of examples per bin? This increases the number of examples from 
9 to 27

g The total number of examples? This results in a 2D scatter plot that is very 
sparse

g Moving to three features …
n The number of bins grows to 33=27
n To maintain the initial density of examples,

the number of required examples grows to 81
n For the same number of examples the

3D scatter plot is almost empty

Dimensionality reduction

x1

x2 Constant density Constant # examples

x1

x2

x1

x2

x3



Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

4

Dimensionality reduction
g Implications of the curse of dimensionality

n Exponential growth with dimensionality in the number of examples
required to accurately estimate a function

g In practice, the curse of dimensionality means that
n For a given sample size, there is a maximum number of features above 

which the performance of our classifier will degrade rather than improve
g In most cases, the information 

that was lost by discarding some 
features is compensated by a 
more accurate mapping in lower-
dimensional space

g How do we beat the curse of dimensionality?
n By incorporating prior knowledge

n By providing increasing smoothness of the target function
n By reducing the dimensionality

dimensionality
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Dimensionality reduction
g Two approaches to perform dim. reduction ℜ N→ℜ M (M<N)

n Feature selection: choosing a subset of all the features

n Feature extraction: creating new features by combining existing ones

g In either case, the goal is to find a low-dimensional representation of the data that 
preserves (most of) the information or structure in the data

g Feature extraction is covered in more detail in CS790

g Linear feature extraction
n The “optimal” mapping y=f(x) is, in general, a non-linear function whose form is 

problem-dependent
g Hence, feature extraction is commonly limited to linear projections y=Wx
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g Two criteria can be used to find the “optimal” feature extraction 
mapping y=f(x) 
n Signal representation: The goal of feature extraction is to represent the samples 

accurately in a lower-dimensional space
n Classification: The goal of feature extraction is to enhance the class-

discriminatory information in the lower-dimensional space

g Within the realm of linear feature 
extraction, two techniques are 
commonly used
n Principal Components (PCA)

g Based on signal representation

n Fisher’s Linear Discriminant (LDA)
g Based on classification

Signal representation versus classification
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Principal Components Analysis
g Let us illustrate PCA with a two dimensional problem

n Data x follows a Gaussian density as depicted in the figure

n Vectors can be represented by their 2D coordinates:

n We seek to find a 1D representation x’ “close” to x

n Where “closeness” is measured by
the mean squared error over all points

in the distribution
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Principal Components Analysis
g RESULT (for proof check CS790 notes)

n It can be shown that the “optimal”1D representation consists of 
projecting the vector x over the direction of maximum variance in the 
data (e.g., the longest axis in the ellipse)

g This result can be generalized for more than two dimensions

The optimal* approximation of a random vector x∈ℜ N by a linear combination of 
M (M<N) independent vectors is obtained by projecting the random vector x onto 
the eigenvectors vi corresponding to the largest eigenvalues λ i of the covariance 
matrix of x (Σx)

The optimal* approximation of a random vector x∈ℜ N by a linear combination of 
M (M<N) independent vectors is obtained by projecting the random vector x onto 
the eigenvectors vi corresponding to the largest eigenvalues λ i of the covariance 
matrix of x (Σx)
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Principal Components Analysis
g Summary

n where vk is the eigenvector corresponding to the kth largest eigenvalue 
of the covariance matrix 
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Linear Discriminant Analysis, two-classes
g The objective of LDA is to perform dimensionality reduction 

while preserving as much of the class discriminatory 
information as possible
n Assume we have a set of N-dimensional samples (x1, x2, …, xN), P1 of 

which belong to class ω1, and P2 to class ω2. We seek to obtain a scalar 
y by projecting the samples x onto a line

n Of all the possible lines we would 

like to select the one that maximizes 
the separability of the classes

x1
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Linear Discriminant Analysis
g In a nutshell, we want

n Maximum separation between the means of the projection

n Minimum variance within each projected class
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Linear Discriminant Analysis
g RESULT (for proof check CS790 notes)

n It can be shown that the optimal projection matrix W* is the one whose columns 
are the eigenvectors corresponding to the largest eigenvalues of the following 
generalized eigenvalue problem

n Where SB and SW are the BETWEEN-CLASS and WITHIN-CLASS covariance 
matrices

[ ] ( ) 0vSS
VSV
VSV

argminv||v|vV iWiB
W

T
B

T

1C21 =−⇒








== −�

( )( )

( )( )

∑∑

∑

∑ ∑∑

∀∈

=

= ∈=

==

−−=

−−==

xxi
i x

N
1

andx
N
1

where
i

C

1i

T
iiiB

C

1i x

T
ii

C

1i
iW

PS

xxSS
i



Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

13

PCA Versus LDA
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Limitations of LDA
g LDA assumes unimodal Gaussian likelihoods

n If the densities are significantly non-Gaussian, LDA may not preserve 
any complex structure of the data needed for classification

g LDA will fail when the discriminatory 
information is not in the mean but 
rather in the variance of the data

ω1 ω2

ω2 ω1

µ1=µ2=µ

ω1

ω2

µ1

µ2

µ1=µ2=µω1

ω2

x1

x2

LD
APCA



Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

15

Limitations of LDA
g LDA has a tendency to overfit training data

n To illustrate this problem, we generate an artificial dataset
g Three classes, 50 examples per class, with the exact same likelihood: a multivariate 

Gaussian with zero mean and identity covariance

g As we arbitrarily increase the number of dimensions, classes appear to separate 
better, even though they come from the same distribution
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