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and tradeoffs emphasizing low power are available across the en-
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the design decisions made in implementation of the architecture.
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I. INTRODUCTION

The increasing prominence of portable electronics and
consumer-oriented devices has become a fundamental
driving factor in the design of new computational elements
in CMOS very large-scale integration (VLSI) systems on
a chip. As the focus shifts away from tethered desktop
computing to the mobile appliance, a rethinking of design
optimizations traditionally targeting ever-increasing per-
formance goals and high clock rates at almost any cost are
required in order to optimize battery life and extend the
utility of these devices. The trend in the desktop world of
continuous growth in complexity and size of the underlying
CPU in terms of instruction issue strategies and the sup-
porting microarchitecture needs to be re-examined for these
devices, as the tradeoffs in energy consumption versus the
improved performance obtained may dictate a different set
of design choices. Power consumption arises as a third axis
in the optimization space in addition to the traditional speed
(performance) and area (cost) dimensions.

Improvements in circuit density and the corresponding
increase in heat generation must be addressed even for
high-end desktop systems. Current trends in technology
scaling of CMOS circuits cannot be reliably sustained
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without addressing power consumption issues. Envi-
ronmental concerns relating to energy consumption by
computers and other electrical equipment are another reason
for interest in low-power designs and design techniques.

Low-power design can be an important element in low-
ering system cost as well. Smaller packages, batteries, and
reduced thermal management overhead result in less costly
products, with higher reliability as an added benefit. Size,
available power budget, and weight of a device are important
metrics, and to a large extent, the power source is the pri-
mary determinant of these metrics. Energy efficient designs
maximize the useful lifetime of this source, while attempting
to meet throughput and peak performance requirements of
the overall application. Power efficient design implies that
the system minimizes the peak demands on this source, thus
improving its operating efficiency. The rate of energy use
can have a dramatic effect on the amount of energy avail-
able from a battery source as well as its cost [1], [2], thus,
there is value in not only minimizing average power con-
sumption, but also peak power consumption as well. Portable
product utility is constrained by the physical size and weight
of the power source. Current battery technologies, such as
Nickel–Metal Hydride systems, are available in “AA” sizes
with a capacity of 1600 mAh at a nominal voltage of 1.2 V.
For a portable device containing a pair of these cells, run-time
between charges of approximately 4 h is possible when the
system is dissipating 1 W of average power. For a device
to remain usable for a month between charges, the average
power dissipation must drop below 5 mW. For systems with
an active duty cycle of 10%, the power consumed by the
entire system when active must be less than 50 mW, sev-
eral orders of magnitude below today’s notebook computing
devices.

Opportunities for design tradeoffs emphasizing low power
are available across the entire spectrum of the overall de-
sign process for a portable system, and are effectively ap-
plied at many levels of the design hierarchy. From algorithm
selection to silicon process technology details, opportunities
abound. Generally speaking, the higher the level of abstrac-
tion, the greater the opportunity for power savings. Much re-
search as well as practical development has occurred in the
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past 30 or so years regarding low-power design. In the last
decade, popularity of the subject has produced a wealth of
technical information [3]–[7], as well as annual international
symposia and workshops dedicated to latest research and de-
velopments [8]–[10].

While the bulk of commercial activity addressing
low-power processor systems has focused on well-known
clocked CMOS design styles, important research and
commercial work in the area of asynchronous logic design
techniques continues as an alternative approach to lowering
power dissipation in systems. These techniques may also
provide a solution to the increasing problem of clock man-
agement and distribution as device frequencies approach
and even exceed 1 GHz. While not the focus of this paper,
the interested reader is referred to the overview presented
by Hauck [11] as a starting point for asynchronous design
styles.

II. POWER DISSIPATION IN CMOS CIRCUITS

Power dissipated in CMOS circuits consists of several
components as indicated in (1)

(1)

The individual components represent the power required to
charge or switch a capacitive load ( ), short circuit
power consumed during output transitions of a CMOS gate as
the input switches ( ), static power consumed by
the device ( ), and leakage power consumed by the de-
vice ( ). Components and are
present when a device is actively changing state, while the
components and are present regardless of
state changes. The largest active component, , is
defined as

(2)

where represents the capacitance being switched,
is the supply voltage, corresponds to the change
in voltage level of the switched capacitance,represents
a switching activity factor based on the probability of an
output transition, and represents the frequency of oper-
ation. The product is also referred to as the effective
switched capacitance, or . In most circuits, is
equal to , so (2) is commonly written as

(3)

The term occurs due to the overlapped conduc-
tance of both the PMOS and NMOS transistors forming a
CMOS logic gate as the input signal transitions. This term
has a complicated derivation, but in simplified form can be
written as [12]

(4)

where represents the average current drawn during the
input transition. is minimized for a single gate with
short input rise and fall times, and with long output transition

times, thus presenting a tradeoff in device sizing. When a set
of gates is considered, it is generally optimal to target equal
input and output transition times. For large devices such as
input–output (I/O) buffers or clock drivers, special design
considerations are often used to minimize the overlap current
[13]. For properly sized and ratioed gates, the contribution to
overall dynamic power due to is on the order of
10%–20%, although this factor may increase with increased
device scaling [14].

is not usually a factor in pure CMOS designs, since
static current is not drawn by a CMOS gate, but certain cir-
cuit structures such as sense amplifiers, voltage references,
and constant current sources do exist in CMOS systems and
contribute to overall power.

is due to leakage currents from reversed biased
PN junctions associated with the source and drain of MOS
transistors, as well as subthreshold conduction currents. The
leakage component is proportional to device area and tem-
perature. The subthreshold leakage component is strongly
dependent on device threshold voltages, and becomes an im-
portant factor as power supply voltage scaling is used to
lower power. For systems with a high ratio of standby opera-
tion to active operation, may be the dominant factor
in determining overall battery life.

Minimization of these components of power dissipation
is important in designing low-power systems, and there are
complex interactions that require tradeoffs to be made in-
volving each. Active power minimization involves reducing
the magnitude of each of the components in (3). With its
quadratic contribution in the power equation, reduction of
supply voltage is an obvious candidate technique for power
reduction, and can be applied to an entire design. Reducing
supply voltage by a factor of two ideally results in a factor of
four reduction in . There are limitations to simple
supply voltage scaling, however, since the performance of a
gate is reduced as is lowered, due to the reduced satu-
ration current available to charge and discharge load capac-
itance. Gate delay dependence on is approximated [15]
by

(5)

The energy-delay product is minimized when is equal
to . Reducing from (a typ-
ical value for 0.18m technology) to results in
an approximate 50% decrease in performance while using
only 44% of the power. This is a useful point of leverage if
performance goals can still be met. It would seem that re-
ducing threshold voltage of the devices and, thus, a corre-
sponding reduction in offers a path to arbitrarily low-
power consumption. Unfortunately, there are practical limits
to the degree that can be lowered, due to reduced
noise margins and since exponentially increased leakage cur-
rent becomes a limiting factor in contribution to
[16]. Controllability of variations in is also an issue
in manufacturing, and provides a lower bound on supply
voltage scaling [17]. A methodology for selecting supply and
threshold voltage targets is further described in [18].
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III. D ESIGNTECHNIQUES FORPOWER REDUCTION

Power reduction techniques may be applied at all levels of
the system design hierarchy. As noted in [19], these levels in-
clude Algorithmic, Architectural, Logic and Circuit, and De-
vice technology. A brief description of each is given followed
by some specific examples. This section is not intended to be
exhaustive.

A. Algorithmic

Algorithmic-level power reduction techniques focus on
minimizing the number of operations weighted by the cost
of those operations. Selection of an algorithm is generally
based on details of an underlying implementation such as
the energy cost of an addition versus a logical operation, the
cost of a memory access, and whether locality of reference,
both spatially and temporally can be maximized. The
presence and structure of cache memory, for example, may
cause a different set of operations to be selected, since the
cost of a memory access relative to an arithmetic operation
changes. In general, reducing the number of operations to be
performed is a first-order goal, although in some situations,
recomputation of an intermediate result may be cheaper than
spilling to and reloading from memory. Techniques used by
optimizing compilers, such as strength reduction, common
subexpression elimination, and optimizations to minimize
memory traffic are also useful in most circumstances in
reducing power. Loop unrolling may also be of benefit, as it
results in minimized loop overhead as well as the potential
for intermediate result reuse.

Number representations offer another area for algorithmic
power tradeoffs. For example, the choice of using a fixed
point or a floating-point representation for data types
can have a significant difference in power consumption
during arithmetic operations. Selection of sign-magnitude
versus two’s complement representation for certain signal
processing applications can result in significant power
reduction if the input samples are uncorrelated and dynamic
range is minimized [20]. Operator precision, or bit length, is
another tradeoff that can be selected to minimize power at
the expense of accuracy. For some floating point algorithms,
full precision can be avoided, and mantissa and exponent
width reduced below the standard 23 and 8 bits, respectively,
for single precision IEEE floating point. In [21], the authors
show that for an interesting set of applications involving
speech recognition, pattern classification, and image pro-
cessing, mantissa bit width may be reduced by more than
50% to 11 bits with no corresponding loss of accuracy. In
addition to improved circuit delays, energy consumption
of the floating point multiplier was reduced 20%–70% for
mantissa reductions to 16 and 8 bits, respectively. Truncation
of low-order bits of partial sum terms when performing a
16-bit fixed-point multiplication has been shown to result in
power savings of 30% due mainly to reduction in area [22].
Adaptive bit truncation techniques for performing motion
estimation in a portable video encoder are shown to save
70% of the power over a full bit width implementation [23].

B. Architectural

At the architectural and microarchitectural level, instruc-
tion set design and exploitation of parallelism and pipelining
are important in minimizing power consumption. Architec-
ture-driven voltage scaling as a method for power reduction
is presented in [19]. The approach is based on lowering
voltage to reduce power consumption, and then to apply
parallelism and/or pipelining to maintain throughput as the
speed of a function unit is decreased. This type of approach
is useful if enough parallelism exists at the application level
to keep the pipeline full, but trades off increased latency and
additional area overhead in the form of duplicated structures
(parallelism) or pipeline register overhead (pipelined). For
general purpose CPU development, exploiting pipelining
and parallelism is important for improved performance.
Increases in latency due to deeper pipelining affect the
metric of instructions per clock due to data dependencies
and control flow dependencies. In the search for maximum
overall performance, complicated value prediction schemes
and speculative fetch and execution of unresolved branch
target instruction streams are often employed for deeply
pipelined processors designed for highest performance in
order to reduce dependency-related stalls. The overhead
for these schemes results in extra energy consumption,
and additionally, incorrect speculation results in discarding
of operations, an additional waste of energy. Low-power
designs tend to avoid these deeply pipelined approaches
unless the amount of speculation is limited, the overhead for
speculation is low, and the accuracy of speculation is high.
Meeting required performance for an application without
overdesigning a solution is a fundamental optimization.
Additional circuitry designed to dynamically extract more
parallelism can actually be detrimental, since the power con-
sumption overhead of this logic is not generally controllable,
and will be present even when the additional parallelism is
absent from the application.

C. Logic and Circuit Level

Many techniques for power reduction are available at the
logic and circuit levels. Most focus on reducing the effec-
tive switched capacitance, in (3). Others focus on re-
duced signal swing, thus avoiding the quadratic dependence
on supply voltage.

Static and dynamic (clocked) logic families are both uti-
lized in CMOS designs. Depending on signal probabilities,
one or the other may offer reduced effective switched capac-
itance. For a two-inputNAND gate, assuming uniform distri-
bution of input values, the probability of the output being 0
( ) is 0.25 (both inputs are 1) and being a 1 () is 0.75.
For a static gate, the probability of a power consuming tran-
sition from ( ) is then 0.1875 ( ). For the
dynamic gate with the output precharged to logic 1, power is
consumed whenever the output was previously a 0. Relative
to a static gate, the probability of a power consuming tran-
sition is higher (0.25), and power is consumed even when
the logical value of the output remains 0, which is not the
case for the static version. The dynamic version typically has
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Fig. 1. Glitching in static logic and restructuring for elimination.

lower input capacitance by a factor of 2 to 3 however since
PMOS devices are not driven by logic inputs, thus for
the dynamic gate may be much lower, even though it has a
higher activity factor. For a wider input static gate, such as
a four-inputNAND, , and is 0.0586. For
the dynamic version, . Increasing the
number of inputs leads to a lower probability of an output
transition. On the other hand, input capacitive loading in-
creases if delay time is held constant, since larger transistors
must be used. Intrinsic capacitance of the gate also increases.
The power consumed in distributing the precharging signal
to the dynamic gate must also considered. A number of dif-
ferent logic families (both static and dynamic) have been pro-
posed in the literature including variants of pass transistor
logic (CPL), and cascode voltage switched logic (DCVSL)
offering area, speed, and power tradeoffs. An extensive re-
view of the many types of clocked and static logic families
may be found in [24].

Static logic may suffer from hazards (or glitches) that re-
sult in unnecessary power consumption due to differences
in gate input arrival times. These differences in arrival times
may cause multiple output transitions, resulting in a value for

that is 1. As an example, the output of a simple two-input
circuit in Fig. 1 has unnecessary signal transition from high

low high due to the difference in arrival times of in-
puts X and Y. This hazard may be propagated through ad-
ditional logic levels and result in multiple gate output tran-
sitions before the circuit resolves to a final state, even if
the final state is unchanged from the previous state. As the
number of logic levels increases in a combinational circuit,
the probability of unequal path delays from input to output
increases, thus increasing the potential for glitching. Logic
restructuring and path delay balancing may be used to reduce
glitch power, which can be responsible for20% of overall
dynamic power consumption in combinational circuits [25].
Fig. 1 shows a restructured circuit realizing the same logic
function with reduced glitching. Path delay balancing may
be performed by either resizing of individual logic gates to
equalize path delay, or by insertion of additional logic ele-
ments in faster paths. Since both methods can result in addi-
tional switched capacitance, they must be used judiciously.

Fig. 2. Equivalent logic mappings with different power costs.

Dynamic logic does not suffer from glitch power since all
inputs must be valid before the gate evaluates.

Technology mapping of logic functions to gates may
choose to optimize power at the expense of area. A robust
standard cell library for low power will include gates with a
variety of logic functions as well as multiple drive strengths
for each function. Complex gates (AND–OR–INVERT, OR

–AND–INVERT, etc.), NAND and NOR gates with inverted
inputs, and a rich set of storage elements provide synthesis
tools with the flexibility to optimize power consumption.
Transition probabilities of the logic being mapped are used
in conjunction with loading models of the library elements
to select a mapping of the desired Boolean function onto a
set of gates in the library which minimizes power, subject to
meeting a set of delay constraints. Fig. 2 shows an example
of differences in a four inputAND function mapping. In the
example, mapping (a) consumes more power than mapping
(b) due to differences in the total transition probabilities of the
three two-input gates. Improvements averaging 10% on a set
of benchmarks were obtained in [26] by using power instead
of area as a minimization criteria. Their algorithm resulted in
an area increase of 12%, showing that minimized area does
not necessarily result in minimum power. A similar result is
reported by [27], where average power dissipation is reduced
by 21% with a corresponding 13% increase in area. Hiding
high-probability switching nodes inside of complex gates is
used to minimize total switched capacitance.

Synthesis techniques using a hybrid library composed
of static CMOS gates in conjunction with pass logic cells
have also been shown to be effective in improving power
dissipation [28]. Reordering of equivalent inputs of gates
and reordering of transistors in complex gates are also
techniques available to reduce power. Fig. 3 shows transistor
diagrams of a complex gate realizing the logic function

with an example of input reordering and tran-
sistor reordering. Input and transistor ordering affect the
amount of switched internal capacitance of the gate, and also
affect the speed of the gate and its static power dissipation.
In general, inputs signals with high probability of being
off are placed nearest the output node of the gate, subject
to timing constraints being met, and signals with high
probability of being on are placed nearest the supply node.
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Fig. 3. Input and transistor reordering.

Signals with a high probability of switching (high transition
density) are placed nearest the output. A set of rules for
ordering simple and complex gates and experimental results
are found in [29], where an average 10% savings in power
was found between the worst and best orderings.

Sequential circuits are also a focal point for power reduc-
tion. Clocks typically consume a large fraction of overall
power in synchronous systems; depending on the design
target, 30%–40% of total system power is consumed by
clock generation and distribution. Low-power optimizations
are targeted at minimizing unnecessary transitions on clock
signals as well as in combinational logic used for state ma-
chine control. Storage element design is also important, and
speed/power tradeoffs are available here as well [30]. State
assignment for low power has also been explored. In general,
the state assignment problem has targeted minimizing area,
and this approach tends to reduce power as well. As with
combinational logic minimization, area may be traded for
reduced power. Low-power state assignment techniques
augment the state transition graph (STG) of the state ma-
chine with state probabilities and transition probabilities
between states, and use these probabilities to guide the
state assignment. Adjacent binary encodings are assigned to
states connected with high probability edges of the graph.
This minimizes the number of state signal transitions, thus
attempting to minimize transitions in the next state and
output signal combinational logic. One approach attempts
to minimize area in conjunction with switching activity
by generating multiple sets of state encodings with similar
switching energy costs from which a final assignment is
chosen on the basis of area [31].

Clock power reduction is important in synchronous sys-
tems, since as was noted earlier, it can contribute to a large
portion of the overall power budget. Minimization of clock
power falls in to several categories including clock distri-
bution optimizations, clock gating, and low-swing clocking
techniques.

Gated clocking is a commonly applied technique used
to reduce power by gating off of clock signals to registers,
latches, and clock regenerators. Gating may be done when
there is no required activity to be performed by logic whose
inputs are driven from a set of storage elements. Since new
output values from the logic will be ignored, the storage
elements feeding the logic can be blocked from updating

Fig. 4. Clock gating.

to prevent irrelevant switching activity in the logic. Fig. 4
shows an example of clock gating. Clock gating may be
applied at the function unit level for controlling switching
activity by inhibiting input updates to function units such
as adders, multipliers, and shifters whose outputs are not
required for a given operation. Entire subsystems may
be gated off by applying clock gating in the distribution
network. This provides further savings in addition to logic
switching activity reduction since the clock signal loading
within the subsystem does not toggle. Overhead associated
with generation of the enable signal must be considered to
ensure that power saving actually occurs, and this generally
limits the granularity at which clock gating is applied. It
may not be feasible to apply clock gating to single storage
elements due to the overhead in generating the enable signal,
although self-gating storage elements have been proposed
that compare current and next state values to enable local
clocking [32]. If the switching rate of input values is low
relative to the clock, a net power saving may be obtained.

Reduced swing clock drivers have been explored as an-
other method to reduce clock power. Reducing clock driver
supply voltage by 50% and providing specially designed flip-
flops that receive the half-swing clock results in a theoretical
power saving of 75%, and a reported savings of 63% in [33].
The drawback to this approach is an increase in the flip-flop
delay of 2 . Another approach in [34] reduces the swing
of a pair of complementary clocks by 50% and overcomes
the issue with increased flip-flop delay by providing full
to the clocked nodes of the flip-flop circuit. In this approach
the theoretical power savings is 50%, and an actual savings
of 43% is achieved.

Differential clock signaling is an alternative that allows
the clock swing to be reduced well below 50% of . Dif-
ferential signaling typically consumes static power, thus the
power savings due to a differential clock network are depen-
dent on the operating frequency of the clock and the load
being driven. With a signaling technique using a pair of dif-
ferential lines that swing at , the theoretical saving
in the clock distribution network is 60%. Static power con-
sumption in the driver and receiver reduces this saving. Duty
cycle and receiver skew effects must also be managed.

Using both edges of the clock to update registers is an
option that allows equivalent throughput at half the orig-
inal clock rate, thus cutting clock power in half. Dual-edge-
triggered flip-flops (DETFF) have been developed that up-
date state on both edges of the clock. Although larger than
standard single-edge flip-flops, and increased loading on the
clock, the 50% reduction in clock distribution power can re-
sult in significant power reductions. One drawback of the
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Fig. 5. Precomputation structure.

DETFF relative to the single edge version is the duty cycle of
the clock is now a factor in determining cycle time. A com-
prehensive comparison of various DETFF implementations
is provided in [35].

Retiming of sequential circuits and pipelined datapath
logic is a technique traditionally used to increase operating
speed of a circuit by balancing the delay of each stage of
logic in the circuit. Registers are moved either forward
or back along combinational logic paths until the total
delay between registers is equalized. As the registers are
moved, the number of required registers may increase
or decrease based on the number of signals crossing the
register boundary. Also, combinational logic optimization
opportunities may occur as new logic groups are exposed,
thus further improving the circuit speed. The balanced
circuit may then be operated at a lower frequency or voltage,
thus reducing power consumption further.

One observation made in [36] is that propagation of
unnecessary switching activity due to glitches can be halted
by insertion of a register in a combinational logic path. The
register output will transition once per clock cycle at most,
even if the input makes multiple transitions. By placing
registers at high fanout nodes, switched capacitance can
be minimized, assuming that the additional capacitive load
created in adding the register is low enough relative the
original load, and the original node had multiple transitions
per cycle. Retiming for low power is an approach that
attempts to minimize glitch power in a pipeline by moving
the registers forming the pipeline to positions that optimally
minimize switching activity in the logic network. Since
delay of the pipeline stages must be considered, only a
subset of nodes in the circuit are candidates for register
placement, i.e., those nodes which would not violate delay
constraints. Additionally, there is a desire to minimize the
number of registers due to area costs as well as the additional
clock power consumed.

Precomputation is an optimization technique for sequential
circuits which minimizes switching activity by selectively
precomputing the output values of a logic circuit before
they are required, and then using the computed values to
minimize switching activity by disabling inputs to the logic
circuit. The precomputed values are then substituted for the
original logic circuit output values. Precomputation logic
uses a small subset of the original input signals to generate

simple logic functions that indicate that the original logic
function is either True or False, respectively. By keeping these
functions simple, overhead associated with precomputation
is minimized. In addition, the original logic function may be
simplified since a portion of it is being handled by the pre-
computation logic itself, and the terms for this portion may be
assigned as don’t-cares for the original function. Fig. 5 shows
one variant of a precomputation circuit implementing a logic
function . In Fig. 5, the logic function is implemented by
precomputing a simple subset of the input combinations for
which is True ( block) and for which isFalse (
block). When either of these blocks is active, the inputs to the
larger combinational block computing the remaining terms
of are blocked, and the larger block remains quiescent. The
precomputation logic then forces the output of functionto
“1” or “0,” respectively.

As has been seen with other power saving techniques, in-
creased area is traded for reduced power. In [37], the authors
report power savings of 11%–66% using precomputation on
a number of combinational logic circuits. Methods for gen-
erating the precomputation functions are also described.

Guarded evaluation is a similar technique that relies on
input blocking for transition reduction [38]. Transparent
latches are added to inputs of existing logic and are appro-
priately disabled when the logic output can be determined
without new input values being driven from the disabled
latches. This technique is common in the design of datapath
functions in low-power processors as will be described later.

For synthesized portions of a design using gates from a
predetermined library, gate sizing should be performed when
possible to ensure that no noncritical circuit path is overly
fast. Gate size selection is typically based on output loading,
and fanout ranges of 3–8 are typical. As fanout increases,
delay increases but dynamic power is reduced. Care must be
taken not to increase fanout to the degree that signal rise and
fall times become an issue in increased short circuit power.
Custom portions of a design have an additional degree of
freedom in that individual transistors may be sized to min-
imize power. Algorithms have been developed to size indi-
vidual transistors in a design to minimize delay, power, or
the power-delay product within an area constraint. Edge rate
constraints are also considered [39].

D. Device Technology

At the device level, threshold voltage selection plays an
important role in the tradeoff between performance and
leakage power. Supply and threshold voltage selection was
discussed earlier [16]–[18]. Alternative process technologies
to bulk CMOS such as silicon on insulator (SOI) may be
attractive due to lowered parasitic capacitance and reduced
body effect. Dual device threshold technologies are also an
approach to lowering power consumption. High-threshold
devices may be used in noncritical delay paths, while re-
serving low-threshold devices for speed-critical paths, thus
minimizing standby power consumption. A methodology
for selection of individual device sizes and thresholds to
optimize speed and standby power goals is described in
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[40]. Alternate approaches for standby power reduction are
to raise the threshold of all devices while in standby mode
by providing a transistor well biasing circuit.

IV. EMBEDDED PROCESSOREXAMPLE

Low-power embedded processors fall into several cate-
gories. At the extreme low power range, these are typically
8-bit CPUs with power dissipation measured in microwatts,
which power devices such as digital watches, calculators, and
other long-life devices. In the midrange, 16- and 32-bit pro-
cessors power handheld devices with dissipation measured in
milliwatts. Higher performance 32-bit processors dissipating
watts of power cover high-end applications, such as notebook
computers.

In the midrange of performance, one example of a 32-bit
processor architecture designed specifically for portable and
low-power applications is the Motorola MCORE family.
This architecture and its implementations were specifically
designed from the ground up to address low-power em-
bedded applications with a range of power and performance
constraints, but targeted initially at the midrange applica-
tions requiring tens to hundreds of MIPS of performance,
while dissipating tens to hundreds of milliwatts of power.
Cost is an important factor that cannot be ignored in the
design of a commercial, high-volume application, and cost
considerations were balanced with power optimizations in
both the architecture definition and implementation aspects.
Some details of the architecture and implementations are
described in the following subsections.

A. Instruction Set Design, Programmer’s Model

At the architectural level, the specification of an instruc-
tion set can have a large effect on system power dissipa-
tion as well as performance. As is to be expected, there are
tradeoffs to be made. RISC, CISC, and VLIW architectures
are examples of approaches to instruction set design, each
with their own merits. For low-cost systems, instruction code
density is an important factor, since the cost of instruction
memory is directly related to the size of the binary images of
the programs embedded into the system. CISC designs typ-
ically provide good code density due to the complexity of
individual instructions and due to their use of variable length
instruction formats. Traditional RISC and VLIW instruction
sets trade code density for simplified decoding and straight-
forward instruction fetch units. While code density remains
high with CISC approaches, the complications in control cir-
cuitry for fetching, decoding, and sequencing tend to cause
increased overhead in power, and either cost or performance
tend to suffer.

For a low-power focus, the desire is to have as large a per-
centage of power consumption utilized for the fundamental
computational operations required by the algorithm being ex-
ecuted. Fetch, decode, and sequencing of instructions repre-
sents overhead associated with managing the computational
task, and an approach that reduces the power in these areas
is important. Traditional RISC architectures define a fixed-
length instruction that is not highly encoded, thus reducing

the sequencing overhead significantly. Typically a load–store
(or register–register) model is chosen in which operations
are performed using a set of general-purpose registers, and
the only operations on memory are loads and stores. Ease
of decoding and the ability to pipeline operations with low
control overhead are advantages. The increased instruction
fetch bandwidth required represents a drawback, as the typ-
ical RISC instruction is encoded as a 32-bit word. Average in-
struction lengths for CISC architectures with variable length
instructions are on the order of 22–24 bits, and these instruc-
tions have more semantic content than a RISC instruction.
They typically support operations on memory directly, via a
set of complex addressing modes.

An instruction set design based on a fixed-length 16-bit
instruction format was selected for the MCORE architec-
ture, as well as a RISC load-store model with a 16-entry
general purpose register file, where the only operations per-
formed on memory are loads and stores. The ISA departs
from a pure RISC approach in several areas to achieve im-
proved code density, such as support for instructions that
save and restore a group of general-purpose registers to and
from memory for increased code density. Relative to a 32-bit
ISA, the limitations of 16-bit instructions cause longer exe-
cution pathlengths due to limitations on the size of imme-
diate fields, effective address offsets, and a 2-operand in-
struction format in which one of the source registers also
serves as the destination. Using compiler-driven instruction
definition during development minimized these limitations.
Trace analysis was used to minimize instruction bandwidth
requirements and instructions were selected to minimize the
overhead for common code sequences.

The instruction set supports byte, halfword and word
(32-bit) data types, and a complete set of logical, shift, bit
manipulation, and arithmetic operations that operate on a
register and either another register or a 5-bit immediate field.
Load and store instructions provide a single base4-bit
scaled displacement addressing mode. A single condition
code bit is defined, and conditional branch instructions
test the value of this bit for either true or false. Branch
instructions support an 11-bit displacement field, sufficient
to satisfy 98% of all displacements. Providing multiple
compare instructions allows any Boolean relationship of
variables to be generated, and requires less precious opcode
space than providing conditional branch instructions that
test for multiple conditions, due to the size of branch dis-
placements. Sizes of immediate fields are limited, so special
instructions are provided for generation of commonly
occurring constants. Constants from 0–128, all powers of
two, and all powers of two 1 are available directly in the
ISA. Larger arbitrary values are either synthesized with a
pair of instructions, or are loaded from memory as 32-bit
constants with a PC-relative load word instruction (LRW).
A single storage location for these large constants may be
referenced by multiple LRWs, thus amortizing the storage
cost. Conditional move, increment, decrement, and clear
instructions are provided to eliminate some branches. A
complete description of the MCORE processor architecture
and ISA can be found in [41] and [42].
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By careful selection of instruction semantics and imme-
diate/displacement widths, we find that object code compiled
for this ISA is less than 70% the size of code for a typical
32-bit RISC, which results in a significant cost advantage.
The penalty in terms of pathlength increase (number of in-
structions executed) across a variety of embedded applica-
tions is on the order of 15%–20% relative to a 32-bit RISC
instruction encoding. Similar conclusions were reached in
[43]. From a power perspective, this means memory traffic
(in bytes) is reduced dramatically since instructions are 16
bits in length. In spite of the greater number of instructions
executed, the overall power consumption is reduced, since
on-chip instruction memory power consumption is typically
1.5–2 greater than the CPU in our designs, and instruction
memory traffic has been reduced by 40%.

Other advantages related to power and performance are
realized. For designs utilizing cache memory, the instruction
cache capacity is effectively doubled, since approximately
twice as many instructions can be stored. Cache miss rates
of typically sized embedded cache designs (4–32 kB) may
be reduced 30%–50% with this effect. Given that accessing
the next level of the memory hierarchy can result in factors
of 20 greater power consumption or more due to traversing
chip boundaries, this reduction in miss rate is significant.
In cacheless designs where memory is embedded on-chip,
the power consumption of memory is reduced due to the
reduced capacity requirement. For on-chip memories or
caches, a 32-bit data path is typically provided, which
results in double the effective fetch bandwidth relative to a
32-bit instruction word, allowing instruction memory to be
accessed every other cycle on average, even with a target
of single cycle instruction execution. For low-cost designs
where instruction memory is off chip, the ability to fetch a
pair of instructions at a time across a 32-bit interface reduces
effective memory latency. Even a narrow 16-bit interface
path results in greatly reduced performance degradation
relative to a wider instruction word.

After selecting the set of operations to minimize code size
and execution pathlength and defining the instruction for-
mats, the task of encoding of opcodes remained. We per-
formed an initial encoding assignment and then iterated it
to reduce the number of terms and literals in a two-level pro-
grammable logic array targeted for controlling a processor
data path which implemented the data operations defined
by the instruction set, as well as control of an instruction
prefetch and program counter unit. By viewing this task as a
state assignment problem for sequential logic minimization,
each instruction opcode is assigned to a state. A Moore-ma-
chine model was used in which control outputs are a function
of present state only. Inputs to the state machine are the next
instruction opcode, and all states are completely intercon-
nected via an exhaustive set of edges. Next state equations
are ignored, since they are a function of only the inputs, not
current state. By casting the opcode assignment problem in
this fashion, state assignment tools were used to automate
the process. This process was iterated as the control signal
requirements were altered to further minimize area. Often,
multiple equivalent control sets can be used to obtain the de-

sired function. As an example, to implement the logical NOT
instruction, we can either exclusive–or the source value with

1 in a logical unit, or we may perform a subtract from 0 with
inverted carry-in in the add unit. Since the energy used by
the logical unit is lower than the adder, it is the obvious first
choice. In some circumstances, however, utilizing the adder
results in lower overall energy usage, since it may allow addi-
tional reduction in control circuitry transitions by collapsing
control terms in the output equations of the control decoder.
This is particularly true when the instruction or function in
question has a low dynamic frequency of execution. Com-
piler-directed feedback was used to determine the best trade-
offs between control decoder power and execution unit power
in a number of instances.

In addition to area minimization, minimizing control unit
power consumption is desired. This was done by instru-
menting an instruction set simulator to capture the frequency
of execution of all instructions, as well as instruction pairs.
Opcodes were ordered by frequency and by frequency
of execution pairs, and an initial state assignment was
performed on the most frequently occurring instructions,
with the objective of assigning adjacent states to frequently
occurring instruction pairs. The remainder of the state
assignments were made with automated state assignment
tools. We achieved control section power savings of approx-
imately 15% with this approach to opcode assignment for
our baseline machine, with no increase in area.

Beyond just CPU power reduction, system-level power
savings are supported by the ISA with three low-power op-
erating mode instructions. The WAIT, DOZE, and STOP in-
structions are provided to enable a system to be placed in in-
creasingly lower power modes as appropriate for operating
conditions. When the CPU encounters one of these instruc-
tions, it completes all previous instructions in the pipeline,
finishes all outstanding prefetch operations, and then enters
a state where internal clocks are gated off. A pair of control
outputs that encode the present operating mode are driven
to the rest of the system to allow specific low-power oper-
ating conditions to be defined by the system designer. The
CPU will exit these modes and resume normal operation once
a pending wakeup request is recognized. As an example of
system use, the WAIT mode might be used to disable only
the CPU, while keeping system PLLs and peripherals ac-
tive. If there is not expected to be a need for processing
for a longer period of time, the DOZE mode might be de-
fined to disable PLLs and certain peripherals that are unnec-
essary in that mode. Wakeup from this state would entail a
longer period of time. The STOP mode can be used to enter
a deep power-down state in which all clocks are stopped at
the system level, and power supply voltage either reduced or
totally switched off to major subsystems.

B. CPU Microarchitecture

While many processor implementation techniques in
extremely high-end designs are focused on extracting all
possible instruction-level parallelism, these techniques tend
to have a correspondingly high level of power inefficiency.
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Fig. 6. Instruction buffer supporting the unified bus architecture.

Many embedded control algorithms do not display a high
degree of opportunity to exploit parallelism, except in the
areas of signal processing and multimedia. Power efficient
solutions for both of these domains tend to rely on special-
ized hardware acceleration, not general purpose computing
solutions. For midrange controller applications, a simple
pipelined microarchitecture offers a reasonable balance
between performance, cost, and power efficiency.

We selected a five-stage instruction pipeline (Fetch, De-
code, Execute, Memory, and Writeback) and optimized for
power consumption in initial MCORE implementations. A
unified memory system was chosen with a 32-bit-wide inter-
face, as opposed to dual instruction and data memory ports.
This was due to the 16-bit instruction word size. Since the
goal of the initial CPU microarchitecture was to achieve an
ideal execution rate of one instruction per clock and instruc-
tion fetch bandwidth of two instructions per clock is avail-
able, the additional overhead and inefficiency of memory uti-
lization for dual (Harvard-style) memories was avoided. As
long as the relative frequency of data memory operations is
less than 50%, the memory port remains underutilized. In our
typical benchmark suite, load and store instructions comprise
about 23% of the overall dynamic instruction mix. For situa-
tions requiring more data bandwidth, load and store instruc-
tions are available that move 128 bits of data. Priority is given
to data accesses across the unified interface since an instruc-
tion buffer is provided in the CPU. Fig. 6 shows a diagram
of the instruction buffer structure. The buffer captures a pair
of instructions per transfer into an even and an odd slot. Idle
cycles on the unified bus are used to fill empty slot pairs, pro-
viding an increase in effective instruction bandwidth. More
aggressive microarchitectures that attempt to issue multiple
instructions per clock would likely require either a wider port
or separate instruction and data ports to memory.

Custom logic design was used in the datapath of the pro-
cessor for the register file, function units, operand multi-
plexers, and writeback logic. Synthesized logic was used in
the control section. Evaluation of synthesized logic for data-
path elements showed an average area increase of 2and
power dissipation increase of 2.5over custom designed
units. The functionality of the datapath logic was established
early in the design phase, thus, the degree of change was lim-
ited. Control logic, on the other hand, typically remains in

Fig. 7. Processor datapath.

a state of flux until very late in the design cycle, thus, the
flexibility of logic synthesis is an overriding consideration.
A high-level diagram of the datapath appears in Fig. 7. Initial
sizing of datapath circuits was performed manually, followed
by an automated sizing tool Focus [39], which provides a set
of solutions with various speed and area tradeoffs. Focus be-
gins with a minimally sized circuit netlist, and then iteratively
sizes transistors along critical paths based on a sizing merit
formula until timing constraints are met. In comparison with
the manual device sizing, Focus was able to achieve area sav-
ings of 17% on the logic unit with no performance penalty.

Gated clocks and delayed clocks are used to control all
datapath control points; there are no free-running clocks in
the datapath. This is critical to reduced power. Clock gating
elements eliminate unnecessary transitions on the clock
distribution circuits as well as preventing unnecessary logic
transitions in computational elements that are not being used
in a particular cycle. Storage elements are also simplified,
since a feedback path from output to input is no longer
required to maintain present state. Using an approach sim-
ilar to the concept of guarded evaluation, the adder, barrel
shifter, find-first-one unit, logic unit, multiplier, and branch
adder are all preceded by latches that conditionally open
based on the currently executing instruction. Gated clocks
control these latches, and in contrast to the approach in [38],
the latches actually form part of the instruction pipeline,
thus introducing no additional overhead. Fig. 8 illustrates
an example of the input and output gating for the address
adder. Delayed clocks are used to allow inputs or outputs of
a unit to settle before being propagated to downstream logic.
For example, when calculation of a load or store address is
being performed, the calculation begins following the rising
edge of the clock. Since the adder is allocated about 60% of
the clock cycle to compute the result, driving of the output
value onto the highly loaded address bus is delayed until
partway into the low portion of the clock cycle to allow the
adder to complete its evaluation. The delay is set such that
the adder has completed the result calculation for a large
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Fig. 8. Address adder input and output gating.

majority of input value cases, but not for all cases. By doing
so, critical path timing is not affected by the delay circuit,
but a large majority of calculations are completed prior to
the delay interval.

Precomputation is used in the address calculation logic for
load and store instructions to detect when the displacement
field of the instruction is zero. In this case, no addition of
displacement to the base register is required, so the adder is
bypassed and remains idle. Fig. 8 shows the bypass logic.
From our measurements, almost 50% of load and stores have
a zero displacement field.

Floorplanning of the datapath elements was driven by
switching activity measurements gathered while executing
a set of embedded benchmarks. Relative utilization of each
function unit was coupled with capacitive loading of the units,
and block placement was performed to minimize the overall
bus loading and effective switching frequency of source and
destination buses. Source and destination bus segmentation
allowed infrequently utilized function units to be placed
farther from the centralized register file, and decoupled such
that bus segments attached to these units are only driven
when the function unit is required for instruction execution.

Branch instruction execution is well recognized as a
critical factor in processor performance due to the need
to discard operations following a taken branch and then
refill the instruction pipeline. Due to the relatively high
frequency of change of flow events (18% in our systems),
branch acceleration techniques are an important element
of a microarchitecture. Increased complexity must be
balanced with increased power consumption. Our initial
implementations of the MCORE ISA include a dedicated
branch adder specifically designed for high-speed branch
target calculations. Since the branch displacement is limited
to a signed 11-bit value, a specialized design results in
faster target calculations than a generalized 32-bit adder. We
implement an aggressive branch taken instruction timing of

Fig. 9. Two-level clock distribution network.

two cycles, with single cycle branch not taken timing. No
branch prediction logic is required in this approach. This
allows increased performance and less wasted processing to
occur, but has some significant circuit timing implications.
One implication is that the input values to the branch adder
cannot be completely clock gated based on fully decoding
a branch instruction and still meet timing requirements.
Instead, we perform an incomplete decoding of the branch
opcode by combining it with the infrequently executed en-
codings for Add and Subtract with Carry (ADDC, SUBC).
This reduces the gating function delay to a single gate.

Noting that many embedded applications spend a signif-
icant portion of execution inside program loops, we have
augmented the branch unit with a program loop folding
capability that captures information about program loops
for use during successive iterations of the loop. This loop
folding hardware removes the need to fetch, decode, or exe-
cute loop branches for most loop iterations, thus increasing
performance and lowering power [44].

C. Clock Distribution

Clock power represents a large portion of overall power
consumption in a design optimized for low power. Efficient
distribution and gating mechanisms are essential for reducing
this component. By adopting a two-level structure for this
task, improved power efficiency is realized. The first level
of logic is used to align clock edges at various points in the
circuitry and to generate two nonoverlapped phases. These
nonoverlapped phases are then distributed to a set of clock
regenerating cells with clock gating control inputs. Gating
of clocks can be performed at both levels depending on the
granularity required. Fig. 9 illustrates the two-level approach.

Clock tree generation algorithms have been adopted that
allow an unbalanced H-tree structure to be used. As opposed

MOYER: LOW-POWER DESIGN FOR EMBEDDED PROCESSORS 1585



Fig. 10. Clock aligner and low-capacitance balancing nodes.

to traditional clock trees that balance loading at all nodes of
the H-tree by adding additional routing capacitance to short
nodes, a loading algorithm is adopted that resizes interme-
diate devices in the clock aligner and regenerator cells to
obtained balanced delays. These intermediate device nodes
have much lower capacitance than the routing, so small in-
creases in capacitance can be used to obtain the balancing,
thus resulting in lower wasted power relative to the tradi-
tional tree generation approaches. Delayed clocks are also
produced using a similar sizing approach. Fig. 10 illustrates
the clock aligner structure and the balancing nodes.

V. CONCLUSION

Low-power design requires attacking the power dissipa-
tion problem at all levels of the design hierarchy. No single
target will be sufficient to extract the efficiency required for
future handheld products. Voltage scaling has limits that will
require additional advanced techniques to be applied at the
algorithmic and architectural level for additional power sav-
ings. Dynamic voltage scaling based on system loading and
processing requirements is an emerging technique with great
promise. Clock power optimizations will remain a challenge
as higher frequencies and increased pipelining are applied
to extract increased performance. Parallelism must be effi-
ciently extracted without sacrificing the goal of low power.
Software generation strategies that are based on power cost
functions will be increasingly common in these future sys-
tems. Even though a broad range of power reducing tech-
niques have been proposed, the challenge still remains to in-
tegrate them into a design flow in which power plays as large
a role as performance.
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