
60

In modern IP routers, Internet Pro-
tocol (IP) lookup forms a bottleneck in pack-
et forwarding because the lookup speed
cannot catch up with the increase in link
bandwidth. Ternary content-addressable
memories (TCAMs) have emerged as viable
devices for designing high-throughput for-
warding engines on routers. Called ternary
because they store don’t-care states in addition
to 0s and 1s, TCAMs search the data (IP
address) in a single clock cycle. Because of this
property, TCAMs are particularly attractive
for packet forwarding and classifications.
Despite these advantages, large TCAM arrays
have high power consumption and lack scal-
able design schemes, which limit their use.

Today’s high-density TCAMs consume 12
to 15 W per chip when the entire memory is
enabled. To support the superlinearly increas-
ing number of IP prefixes in core routers, ven-
dors use up to eight TCAM chips. Filtering and
packet classification would also require addi-
tional chips. The high power consumption of
using many chips increases cooling costs and

also limits the router design to fewer ports.1

Recently, researchers have proposed a few
approaches to reducing power consumption
in TCAMs,1,2 including routing-table com-
paction.3,4 Liu presents a novel technique to
eliminate redundancies in the routing table.3

However, this technique takes excessive time
for update because it is based on the Espres-
so-II minimization algorithm,5 which expo-
nentially increases in complexity with the
number of prefixes in a routing table. Thus,
our work’s main objective is a TCAM-based
router architecture that consumes less power
and is suitable for the incremental updating
that modern IP routers need. Additionally, the
approach we will describe minimizes the
memory size required for storing the prefixes.

We propose a two-level pipelined architec-
ture that reduces power consumption through
memory compaction and the selective enable-
ment of only a portion of the TCAM array. We
also introduce the idea of prefix aggregation
and prefix expansion to reduce the number of
routing-table entries in TCAMs for IP lookup.

Ravikumar V.C.
Rabi N. Mahapatra
Texas A&M University

TERNARY CONTENT-ADDRESSABLE MEMORY (TCAM) IS A POPULAR

HARDWARE DEVICE FOR FAST ROUTING LOOKUP. THOUGH USEFUL, TCAM

ARRAYS HAVE HIGH POWER CONSUMPTION AND HEAT DISSIPATION,

PROBLEMS ALLEVIATED BY REDUCING THE NUMBER OF ROUTING-TABLE

ENTRIES. THE AUTHORS PRESENT AN APPROACH THAT EXPLOITS TWO

PROPERTIES OF PREFIXES TO COMPACT THE ROUTING TABLE.

TCAM ARCHITECTURE FOR
IP LOOKUP USING

PREFIX PROPERTIES

Published by the IEEE Computer Society 0272-1732/04/$20.00 2004 IEEE

Today, TCAM vendors provide mechanisms
to enable a chunk of TCAM much smaller than
the entire TCAM array. Exploiting this tech-
nology reduces power consumption during
lookup in the TCAM-based router. We also
discuss an efficient incremental update scheme
for the routing of prefixes and provide empir-
ical equations for estimating memory require-
ments and proportional power consumption
for the proposed architecture. Finally, we use
traces from bbnplanet, attcanada,
utah, and is routers to validate the proposed
TCAM architecture’s effectiveness.

Background and related work
We can categorize approaches to perform-

ing IP lookup as either software or hardware
based. Researchers have proposed various soft-
ware solutionsfor routing lookup.6,7 Howev-
er, these software approaches are too slow for
use in complex packet processing at every
router, mainly because they require too many
memory accesses: Independent of their design
or implementation techniques, software
approaches take at least four to six memory
accesses for a single lookup operation. Today’s
packet processing requires speeds of about 40
Gbps; software approaches achieve no more
than 10 Gbps.8

Hardware approaches typically use dedi-
cated hardware for routing lookup.9,10 More
popular techniques use commercially avail-
able content-addressable memory (CAM).
CAM storage architectures have gained in
popularity because their search time is O(1)—
that is, it is bounded by a single memory
access. Binary CAMs allow only fixed-length
comparisons and are therefore unsuitable for
longest-prefix matching. The TCAM solves
the longest-prefix problem and is by far is the
fastest hardware device for routing. In con-
trast to TCAMs, ASICs that use tries—digi-
tal trees for storing strings (in this case, the
prefixes)—require four to six memory access-
es for a single route lookup and thus have
higher latencies.1 Also, TCAM-based routing-
table updates have been faster than their trie-
based counterparts.

The number of routing-table entries is
increasing superlinearly.8 Today, routing tables
have approximately 125,000 entries and will
contain about 500,000 entries by 2005, so the
need for optimal storage is also very impor-

tant. Yet CAM vendors claim to handle a max-
imum of only 8,000 to 128,000 prefixes, tak-
ing allocators and deallocators into account.11

The gap between the projected numbers of
routing-table entries and the low capacity of
commercial products has given rise to work
on optimizing the TCAM storage space by
using the properties of lookup tables.3, 4

However, even though TCAMs can store
large numbers of prefixes, they consume large
amounts of power, which limits their useful-
ness. Recently, Panigrahy and Sharma intro-
duced a paged-TCAM architecture to reduce
power consumption in TCAM routers.2 Their
scheme partitions prefixes into eight groups
of equal size; each group resides on a separate
TCAM chip. A lookup operation can then
select and enable only one of the eight chips
to find a match for an incoming IP address.
In addition, the approach introduces a pag-
ing scheme to enable only a set of pages with-
in a TCAM. However, this approach achieves
only marginal power savings at the cost of
additional memory and lookup delay.

Other work describes two architectures, bit
selection and trie-based, which use a paging
scheme as the basis for a power-efficient
TCAM.1 The bit selection scheme extracts the
16 most significant bits of the IP address and
uses a hash function to enable the lookup of
a page in the TCAM chip. The approach
assumes the prefix length to be from 16 to 24
bits. Prefixes outside this range receive special
handling; the lookup searches for them sepa-
rately. However, the number of such prefixes
in today’s routers is very large (65,068 for the
bbnplanet router), and so this approach
will result in significant power consumption.

61MARCH–APRIL 2004

Today, routing tables have

approximately 125,000 entries

and will contain about

500,000 entries by 2005,

making optimal storage

important.

In addition, the partitioning scheme cre-
ates a trie structure for the routing table pre-
fixes and then traverses the trie to create
partitions by grouping prefixes having the
same subprefix. The subprefixes go into an
index TCAM, which further indexes into sta-
tic RAM to identify and enable the page in
the data TCAM that stores the prefixes. The
index TCAM is quite large for smaller page
sizes and is a key factor in power consump-
tion. The three-level architecture, though
pipelined, introduces considerable delay.

It is important to note that both the
approaches1,2 store the entire routing table,
which is unnecessary overhead in terms of
memory and power. Although the existing
approaches reduce power either by compact-
ing the routing table or selecting a portion of
the TCAM, our approach reduces power by
combining the two approaches and exploit-
ing the observable properties of prefixes.

Prefix properties for compaction
The two purposes for delving into the pre-

fix properties are

• to further compact the routing table
beyond the compaction provided by
existing techniques, and

• to derive an upper bound on minimiza-
tion time to prevent it from becoming a
bottleneck in the routing lookup.

Previous attempts to reduce the routing-
table size using prefix properties used prefix
overlapping and minimization techniques.3

Prefix overlapping achieves compaction by stor-
ing only one of many overlapping prefixes that
have the same next hop. Two prefixes overlap
if one is an enclosure of the other. Let Pi be a
prefix, with |Pi| denoting the length of prefix
Pi. Then Pi ∈ P is called an enclosure of Pj, if
Pj ∈ P, j ≠ i and |Pi| < |Pj|, such that Pi is a sub-
prefix of Pj. If Pi and Pj have the same next hop,
then Pi can represent them. Thus, set of over-
lapping prefixes {P1, P2, P3, … Pn}, such that
any |P1| < |P2| < |P3| … < |Pn| having the same
next hop is replaceable with single entry P1. If
an update deletes entry P1, entry P2 should
represent set of overlapping prefixes {P2, …
Pn}. When an update adds new entry Pi such
that |Pi| <| P1| < |P2| … < |Pn|, then Pi replaces
existing entry P1. However, if new entry Pi

arrives such that |Pi| > |P1|, then the routing
table should not change, except for an update
of the set of overlapping prefixes.

Prefix minimization logically reduces two or
more prefixes to a minimal set, if these prefix-
es have the same next hop. The logic mini-
mization is an NP-complete problem, solvable
using the Espresso-II algorithm. Espresso-II
can minimize prefixes {P1, P2, P3, … Pn} to
{P ′1, P ′2, P ′3, … P ′m}, such that m ≤ n.

Although the prefix overlapping and mini-
mization techniques together compact about
30 to 45 percent of the routing table, these
techniques have an overhead when it comes to
prefixes that require fast updates. The time
taken for prefix overlapping is bounded and
independent of the router’s size. However, the
logic minimization algorithm using Espresso-
II has a runtime that increases exponentially
with input size. Based on Liu’s techniques,3 the
Espresso-II input can be as high as 15,146 pre-
fixes for the attcanada router. Thus, the
runtime for such a large amount of input data
can be several minutes and is very expensive
for incremental updates. We propose tackling
this problem by establishing an upper bound,
independent of router size, on the input to the
minimization algorithm. We introduce anoth-
er property, called prefix aggregation, to help
us fix the upper bound. Based on this proper-
ty, prefix minimization is time bounded.

Prefix aggregation
Figure 1 presents a portion of the routing-

table traces from the bbnplanet router. It
represents all the prefixes in the routing table,
starting with 129.66 and having prefix
length l, for 16 < l ≤ 24. The number 129.66
is the largest common subprefix (LCS) for
the set of those prefixes. The LCS for any
prefix is the subprefix with a length nearest
to the multiple of eight, such that |Si| < |Pi|,
where Si is the LCS of prefix Pi or LCS(Pi).
The prefixes having a different LCS are least
likely to have the same next hop. According
to this observation, applying minimization
to a set of prefixes having the same LCS
should achieve a compaction nearly equal to
that achieved by applying minimization to
the entire lookup table.

So without sacrificing much compaction,
the use of prefix aggregation can provide an
upper bound on the number of possible pre-

62

TCAM ARCHITECTURE

IEEE MICRO

fixes for input to the minimization algorithm.
This input set is the largest set of prefixes such
that each prefix in the set has the same LCS.
These prefixes, which have LCS value S, can
have prefix lengths from |S| to |S| + 8. This range
contains a maximum of 512 prefixes; however,
all these combinations are not possible. For
example, the assignment 120.255.0.0/12 pre-
cludes the combinations 120.255.0.0/13 through
120.255.0.0/16. So to calculate the maximum
possible number of prefixes having the same LCS,
we assign all combinations of 120.x.0.0/16
prefixes so that no assignments are possible for
prefixes of length less than 16. Thus, a maxi-
mum of 256 prefixes can share the same LCS.

Prefix expansion
Researchers have presented the property of

prefix expansion for IP lookup using software
approaches.12 We adopt this property to fur-
ther compact the routing table and can repre-
sent the prefix expansion property as follows.
If Pi represents a prefix, such that |Pi| is not a
multiple of eight, then the prefix expansion
property expands Pi to Pi·Xm, where X is a
don’t-care and m = 8 − (|Pi| mod 8). The oper-
ator “⋅” represents the concatenation opera-
tion. For example, the prefix 100000010100
expands to 100000010100XXXX using the
prefix expansion property.

The Espresso-II algorithm will provide
more compaction if all Pi are of same length.
However, all the prefixes corresponding to the

same LCS are not necessarily the same length.
Hence, to increase the compaction, we
expand prefixes to a size that is the nearest
multiple of eight.

Just as the number of inputs governs Espres-
so-II’s runtime, so does the input’s bit lengths.
We have already limited the input set to the set
of prefixes with the same LCS. We next
observe that, in terms of Espresso-II’s calcu-
lations, the LCS is redundant. So it would be
useful to further compact the prefixes by elim-
inating the LCS from each prefix and using
the remainder, which is the least-significant 8
bits after prefix expansion.

Routing-table compaction
During router initialization, our approach

compacts the routing table using the prop-
erty of prefix overlapping and also removes
redundant entries (prefix minimization). We
then use the property of prefix aggregation
to form sets of prefixes based on their LCS
values. Each of these sets goes through pre-
fix expansion before serving as input to
Espresso-II.

Prefix overlapping. Prefix overlapping applies
to all the prefix entries in the routing table
with the same next hop. The routing table
then stores only one of the many overlapping
prefixes. Figure 2 is the result of applying pre-
fix overlapping to the trace in Figure 1. In this
case, prefix overlapping reduces the table by
seven entries.

Prefix minimization and prefix expansion.
Figure 3 shows that prefix minimization
and prefix expansion reduce the number of

63MARCH–APRIL 2004

PPrreefifixx NNeexxtt hhoopp

129.66.6.0/24 4.0.6.142

129.66.8.0/24 4.0.6.142

129.66.12.0/24 4.0.6.142

129.66.20.0/24 4.0.6.142

129.66.21.0/24 4.0.6.142

129.66.30.0/23 4.0.6.142

129.66.31.0/24 4.0.6.142

129.66.32.0/19 4.0.6.142

129.66.34.0/24 4.0.6.142

129.66.47.0/24 4.0.6.142

129.66.48.0/24 4.0.6.142

129.66.64.0/18 4.0.6.142

129.66.88.0/24 4.0.6.142

129.66.95.0/24 4.0.6.142

129.66.111.0/24 4.0.6.142

129.66.128.0/22 4.0.6.142

129.66.132.0/24 4.0.6.142

129.66.172.0/24 4.0.6.142

Figure 1. Sample trace of routing table from
bbnplanet.

PPrreefifixx NNeexxtt hhoopp

100000010100001000000110XXXXXXXX 4.0.6.142

100000010100001000001000XXXXXXXX 4.0.6.142

100000010100001000001100XXXXXXXX 4.0.6.142

100000010100001000010100XXXXXXXX 4.0.6.142

100000010100001000010101XXXXXXXX 4.0.6.142

10000001010000100001111XXXXXXXXX 4.0.6.142

1000000101000010001XXXXXXXXXXXXX 4.0.6.142

100000010100001001XXXXXXXXXXXXXX 4.0.6.142

1000000101000010100000XXXXXXXXXX 4.0.6.142

100000010100001010000100XXXXXXXX 4.0.6.142

100000010100001010101100XXXXXXXX 4.0.6.142

Figure 2. Result of applying prefix overlapping to Figure 1
trace.

prefixes by nine. Figure 4 shows that prefix
minimization without prefix expansion
reduces the number of prefixes by eight.

Proposed architecture
The prefix properties reduce the IP lookup

table’s length (vertically) as described earlier.
Here, we propose an architectural technique
that reduces the IP lookup table laterally. This
technique adopts the two-level routing lookup
architecture in Figure 5.

Level 1 consists of a decoder and a recon-
figurable page-enable block (PEB). The PEB
is a combinational circuit consisting of a dri-
ver network to drive the output port, which
connects directly to TCAM pages through
page-enable lines. The size of the PEB’s out-
put port (in bits) equals the number of pages
in the TCAM. The PEB is also reconfigurable
to accommodate changes during a page over-
flow. Level 2 is a 256-segment TCAM array.
In addition to the assigned pages, the TCAM
array contains many empty pages; an imple-
mentation will use these pages for memory
management.

For each incoming IP address, the first octet

(A) goes to the decoder-PEB, which enables
only one segment in the TCAM array. The
decoder-PEB then sends page-enable signals to
each TCAM page. The TCAM then compares
the enabled pages with the next three incoming
octets (B, C, and D) of the IP address.

The overhead of the decoder-PEB hardware
is insignificant compared to that of the
TCAM array. Avoiding the storage of the first
octet in the TCAM array also reduces the total
TCAM storage space by 25 percent. This sav-
ings is significant, especially when routing
tables are as large as 125,000 entries. Also, the
architecture enables only one segment of the
TCAM array at any time, significantly reduc-
ing power consumption.

The lookup latency is the TCAM read
access time plus small gate delays because of
the decoder-PEB hardware. But gate delays
should be less than the memory access time,
so the TCAM’s access time would limit lookup
throughput. To increase the lookup through-
put, the architecture could select more than
one segment in the TCAM and simultane-
ously perform multiple IP lookups. This is
possible by duplicating the decoder-PEB logic
in level 1 and resolving additional IP prefixes
in the TCAM array. Similarly, concurrent
lookup and update are also feasible using such
architecture. However, the more TCAM seg-
ments the lookup enables, the more power the
TCAM consumes, so a designer must trade off
power consumption and throughput.

Empirical model for memory and power
We now present empirical formulas to com-

pute the total memory requirement and
power consumption of our proposed archi-
tecture. Let rowsi represent the number of
entries in the ith TCAM segment; and tagbits,
the TCAM word length (24 bits). The pro-
posed architecture’s minimum memory
requirement (for 32-bit entries) is

(1)

We base our empirical model for power esti-
mation on the number of entries enabled dur-
ing the lookup process. Based on this model,
the power consumption (for 32-bit entries) in
a TCAM with its ith segment enabled is

(/)rows tagbitsi

i

×
=

∑ 32
1

256

64

TCAM ARCHITECTURE

IEEE MICRO

PPrreefifixx eennttrriieess NNeexxtt hhoopp

100000010100001010101100XXXXXXXX 4.0.6.142

100000010100001000011111XXXXXXXX 4.0.6.142

100000010100001000001X00XXXXXXXX 4.0.6.142

10000001010000100001010XXXXXXXXX 4.0.6.142

100000010100001010000100XXXXXXXX 4.0.6.142

100000010100001000000110XXXXXXXX 4.0.6.142

10000001010000100001111XXXXXXXXX 4.0.6.142

1000000101000010100000XXXXXXXXXX 4.0.6.142

1000000101000010001XXXXXXXXXXXXX 4.0.6.142

100000010100001001XXXXXXXXXXXXXX 4.0.6.142

Figure 4. Result of applying prefix minimization without prefix expansion to
Figure 1 trace.

PPrreefifixx eennttrriieess NNeexxtt hhoopp

1000000101000010X0101100XXXXXXXX 4.0.6.142

10000001010000100XX1010XXXXXXXXX 4.0.6.142

10000001010000100XX01X00XXXXXXXX 4.0.6.142

100000010100001010000X00XXXXXXXX 4.0.6.142

10000001010000100XX00110XXXXXXXX 4.0.6.142

10000001010000100XX1111XXXXXXXXX 4.0.6.142

1000000101000010100000XXXXXXXXXX 4.0.6.142

10000001010000100X1XXXXXXXXXXXXX 4.0.6.142

100000010100001001XXXXXXXXXXXXXX 4.0.6.142

Figure 3. Result of applying prefix minimization and prefix expansion to
Figure 1 trace.

P (rows,tagbits) = k × (rowsi × tagbits/32) (2)

where k is the power constant.
The largest segment in the TCAM array

determines the maximum power consump-
tion for the lookup process.

Fast incremental update
Approximately 100 to 1,000 updates per

second take place in core routers today.13

Thus, the update operation should be incre-
mental and fast to avoid becoming a bottle-
neck in the search operation.

A router receives information—routing
updates—about the route changes from its
nearby routers. During each routing update
(an insertion or deletion), we apply com-
paction techniques to avoid any redundant

storage in the TCAM. However, it is possible
that more than one prefix in the TCAM will
need updating, a situation called TCAM
update.14 In Liu’s technique, for a routing
update, compaction would require the mini-
mization of about 10,000 prefixes at a time.
Minimizing such a large set of prefixes intro-
duces two types of delays: The first delay
comes from Espresso-II’s computation time.
The second delay comes from TCAM entry
updates. If M is the size of the prefix set to be
minimized, then it takes O (M) time for a
TCAM insert operation. This is because the
TCAM must scan the minimized set of pre-
fixes and update only those prefixes that have
changed. Deleting an entry from the TCAM
is even costlier, taking O (M2) time. In our
technique, because the maximum value of M

65MARCH–APRIL 2004

Figure 5. TCAM architecture for routing lookup.

B, C, and D

Level 2Level 1

Reconfigurable
PEBDecoder

256

PE1 = 0

PE2 = 0

PE3 = 0

PEi = 0

PEi+1 = 0

PEi+n = 0

24

Segment

Page

Enabled
segment

is 256 (rather than 10,000), the insertion and
deletion steps are fast and truly incremental.

For any routing update, our approach
restricts TCAM updates to a segment. So it is
possible to update several segments simulta-
neously by modifying the decoder-PEB unit.
Our technique can achieve a higher number
of updates per second than what a single
TCAM chip supports by using several TCAM
chips and placing each on a separate bus.

In our architecture, it is possible for the seg-
ment size to grow during update, possibly
leading to an overflow. Rebuilding the entire
routing table would take care of the overflow.
However, a rebuild is time consuming, so
unsuitable for fast lookup. Providing empty
pages in the TCAM array will help manage
the overflow. Reconfiguring the PEB on the
fly will permit an empty page to become part
of the overflowing segment. This reconfigu-
ration takes microseconds.

Experimental setup and results
We simulated our approach using a chipset

containing two 1.6-GHz AMD Athlons to
compute the prefix minimizations. The prefix
traces for minimization came from four

routers (is, utah, bbnplanet, and
attcanada), and we evaluated memory
compaction, minimization time, and worst-
case power consumption. For memory com-
paction and minimization time, we compared
our approach to Liu’s.3 We also compare our
worst-case power consumption to the results
of Liu;3 Zane, Narlikar, and Basu;1 and Pani-
grahy and Sharma.2

Memory compaction
Table 1 indicates the compaction achieved

by prefix overlapping. For example, the case
of attcanada shows a 29-percent com-
paction.

Table 2 shows the compaction from our
prefix minimization approach, and com-
pares it to Liu’s results. The second column
shows the number of prefixes remaining if
we were to minimize as many prefixes as pos-
sible in the given routing table. Our
approach and Liu’s group the prefixes before
minimization; columns three and four show
the number of prefixes remaining after min-
imization, for each approach. Although nei-
ther approach eliminates all the prefixes
possible, each significantly compacts the
routing tables.

However, for large routing tables, we could
not determine the prefix minimization of Liu’s
approach, even after running the simulation
for two days. Also, our approach compacts the
smaller routing tables of is and utahmore
than Liu’s approach, because our approach
uses prefix expansion. In fact, our approach
achieves more than 33 percent compaction
for the attcanada, bbnplanet, and is
routers, as column five of Table 2 shows.

We also determined the compaction of both

66

TCAM ARCHITECTURE

IEEE MICRO

Table 1. Compaction using prefix overlapping.

 No. of prefixes
Before After Compaction

Router compaction compaction (percentage)

is 801 648 19.1
utah 145 133 8.3
attcanada 112,412 79,769 29.0
bbnplanet 124,538 92,774 25.5

Table 2. Compaction using prefix minimization.

 No. of prefixes
After minimizing After prefix After prefix Compaction of

all possible minimization minimization our approach
Router prefixes (our approach) (Liu’s approach) (percentage)
is 434 505 562 36.9
utah 123 123 132 15.2
attcanada Hangs* 70,368 Hangs* 37.4
bbnplanet Hangs* 83,468 Hangs* 33.0

* The minimization processes do not complete within two days.

approaches when they include prefix overlap-
ping followed by prefix minimization. Col-
umn 2 of Table 3 shows the number of entries
remaining after our approach minimizes every
prefix possible; we compute this number using
equation 1. Column 3 shows the results that
Liu reported earlier. Column 4 indicates our
approach’s total routing table compaction, and
column 5 shows the percentage improvement
in compaction over Liu’s results. Our
approach offers significant improvements
because it exploits the compaction opportu-
nities inherent in our architecture and the pre-
fix properties.

Minimization time
Table 4 shows the runtime for minimizing

the prefixes using Espresso-II in both
approaches. The results indicate the maxi-
mum possible time that the 1.6-GHz Athlon,
dual-processor chipset takes to minimize the
prefixes when the neighboring router requests
the addition of a new prefix. The worst-case
minimization time for Liu’s approach was
1,098.47 seconds for the attcanada router
(15,146 prefixes), which is very expensive for
incremental updates. Our approach, on the
other hand, took a worst-case time of 0.006
seconds for bbnplanet. This value is not
only small and practical for real-life updates,
but also bounded because at any point of time

the number of inputs to Espresso-II will never
exceed 256. Espresso-II’s runtime also increas-
es with the number of bits in the prefixes
under consideration. Our approach uses eight
bits as opposed to the 32 bits for Liu’s
approach, further reducing runtime.

Worst-case power consumption
TCAM power consumption is proportion-

al to the number of bits enabled in the TCAM
during the search operation.1 Table 5 shows the
worst-case power consumption (32-bit equiv-
alent) for several approaches. Liu’s approach
enables the entire TCAM (N prefixes) during
every lookup operation, making it very costly.
Panigrahy and Sharma’s approach enables a
large number of entries (16,000)2 and 8,000
group IDs. In the bitmap technique, although
the number of entries enabled during search
(Cmax) is very small, the entries with prefixes of
less than 16 and greater than 24 bits are always
enabled during every lookup operation. The
number of these entries, Pb, is very large
(65,068) for the bbnplanet router. The par-
tition technique uses an index TCAM and a
data TCAM. It enables only a page of size N/b
in the data TCAM, where b is the number of
pages in the TCAM. For every lookup, how-
ever, this technique searches the entire index
TCAM of size Sd, which is large if the page size
is small. When the page size is large, the index

67MARCH–APRIL 2004

Table 3. Compaction using prefix minimization and overlapping.

 No. of prefixes
Our Liu’s Our approach’s Improvement

Router approach approach compaction (percentage) (percentage)
is 348 460 56.6 24.7
utah 87 123 40.0 62.1
attcanada 43,378 54,476 61.4 15.2
bbnplanet 53,625 69,646 56.9 22.6

Table 4. Timing analysis for minimization.

 Our approach Liu’s approach
Time No. of prefixes Time No. of prefixes

Router (seconds) updated (seconds) updated
is 0.003 34 0.159 373
utah 0.002 8 0.008 44
attcanada 0.005 143 1,098.47 15,146
bbnplanet 0.006 171 63.04 7,580

TCAM has few entries; however, it is the size of
the page enabled in the data TCAM that makes
the main contribution to power consumption.
Our approach enables only a segment (Si) of
the TCAM, which is quite small compared to
the entire TCAM. For example, in the bbn-
planet router, the enabled segment has
about 5,600 prefixes. Because most segments
in our TCAM are very small, the average power
consumption is quite small. It might be impor-
tant to mention that the word length of the
TCAM in our architecture is 24 bits as opposed
to the 32 bits in conventional TCAMs.

Table 6 shows the worst-case power con-
sumption per lookup in terms of the number
of bits enabled; we calculate this value using
equation 2. Our approach saves significant
power compared to approaches that enable
entire TCAMs.

The proposed architecture enables only a
small portion of TCAM array during the

lookup operation and achieves significant
power savings. Results indicate that such an
architecture holds promise in supporting
storage- and energy-efficient router designs.
We plan to further reduce the update time to
increase the throughput of incremental
updates using a new approach on minimiza-
tion (other than Espresso-II) that will need
reduced minimization time. MICRO

References

1. F. Zane, G. Narlikar, and A. Basu,
“CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines,” Proc. IEEE Infocom
2003, IEEE Press, 2003, pp. 42-52.

2. R. Panigrahy and S. Sharma, “Reducing
TCAM Power Consumption and Increasing
Throughput,” Proc. 10th Symp. High-
Performance Interconnects (HOTI 02), IEEE
CS Press, 2002, p. 107-112.

3. H. Liu, “Routing Table Compaction in
Ternary CAM,” IEEE Micro, Jan.-Feb. 2002,
vol. 22, no. 1, pp. 58-64.

4. M.J. Akhbarizadeh and M. Nourani, “An IP
Packet Forwarding Technique Based on
Partitioned Lookup Table,” Proc. IEEE Int’l
Conf. Comm. (ICC 02), IEEE Press, 2002, pp.
2263-2267.

5. R.K. Brayton et al., Logic Minimization
Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, 1984.

6. S. Nilsson and G. Karlsson, “IP-Address
Lookup Using LC-Tries,” IEEE J. Selected
Areas Comm., vol. 17, no. 6, June 1999, pp.
1083-1092.

7. M. Waldvogel et al., “Scalable High-Speed
IP Routing Table Lookups,” Computer
Comm. Rev., vol. 27, no. 4, Oct. 1997, pp.
25-36.

8. P. Gupta, Algorithms for Routing Lookups
and Packet Classification, doctoral
dissertation, Dept. Computer Science,
Stanford Univ., 2000.

9. P. Gupta, S. Lin, and N. McKeown, “Routing
Lookups in Hardware at Memory Access
Speeds,” Proc. IEEE Infocom 1998, IEEE
Press, 1998, pp. 1240-1247.

10. M. Kobayashi, T. Murase, and A. Kuriyama,
“A Longest Prefix Match Search Engine for
Multigigabit IP Processing,” Proc. IEEE Int’l
Conf. Comm. (ICC 00), IEEE Press, 2000, pp.
1360-1364.

11. S. Sikka and G. Varghese, “Memory-
Efficient State Lookups with Fast Updates,”
Proc. ACM Special Interest Group on Data
Comm. (SIGCOMM 00), ACM Press, 2000,
pp. 335-347.

12. V. Srinivasan and G. Varghese, “Fast
Address Lookups Using Controlled Prefix
Expansion,” ACM Trans. Computer
Systems, vol. 17, no. 1, Oct. 1999, pp. 1-40.

13. C. Labovitz, G.R. Malan, and F. Jahanian,

68

TCAM ARCHITECTURE

IEEE MICRO

Table 5. Worst-case bounds on the number of

enabled entries.

Worst-case no. of
Approach enabled entries
Liu 0(N)
Panigrahy and Sharma 0(16,000 + p × 6/32)
Bitmap 0(Cmax + Pb)
Partition 0(N/b + Sd)
Proposed 0(Si)

Table 6. Relative power consumption per lookup.

No. of Total no. of bits Savings
Router enabled bits in the TCAM (percentage)
is 205 × 24 460 × 32 67
utah 17 × 24 123 × 32 90
attcanada 4,582 × 24 544,476 × 32 99
bbnplanet 5,596 × 24 69,646 × 32 94

“Internet Routing Instability,” IEEE/ACM
Trans. on Networking, vol. 6, no. 5, Oct.
1998, pp. 515-528.

14. D. Shah and P. Gupta, “Fast Updating
Algorithms for TCAMs,” IEEE Micro, vol. 21,
no. 1, Jan.-Feb. 2001, pp. 36-47.

Ravikumar V.C. is a system designer at
Hewlett-Packard. His research interests include
networking, operating systems, and embedded
systems. He has an MS degree in computer
science from Texas A&M University.

Rabi N. Mahapatra is an associate professor
with the Department of Computer Science at

Texas A&M University. His research interests
include embedded-system codesign, system on
chips, VLSI design, and system architectures.
Mahapatra has a PhD from the Indian Insti-
tute of Technology, Kharagpur. He is a senior
member of the IEEE Computer Society.

Direct questions and comments to Rabi N.
Mahapatra, Dept. of Computer Science,
Texas A&M Univ., College Station, TX
77845; rabi@cs.tamu.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

69MARCH–APRIL 2004

WE’RE ONLINE
Submit your manuscript to Micro on the Web!

Our new Manuscript
Central site lets you

monitor your submission
as it progresses through
the review process. This
new Web-based systems
helps our editorial board

and reviewers track
your manuscript.

For more information, see us at http://cs-ieee.manuscriptcentral.com

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

