
Legacy Code Matters
•  Since maintenance consumes ~60% of

software costs, it is probably the most
important life cycle phase of software…
�Old hardware becomes obsolete; 

old software goes into production every
night.�

Robert Glass, Facts & Fallacies of Software Engineering  
(fact #41)

How do we understand and safely modify
legacy code?

1

Maintenance ≠ Bug Fixes
•  Enhancements: 60% of maintenance costs
•  Bug fixes: 17% of maintenance costs

Hence the �60/60 rule�:
•  60% of software cost is maintenance
•  60% of maintenance cost is enhancements

Glass, R. Software Conflict. Englewood Cliffs, NJ: Yourdon Press, 1991

2

Code maintenance …

5

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

• Purposes:

• fixing bugs

• improving performance

• improving design

• adding features

Code maintenance …

5

• Code maintenance: modification of a software product
after it has been delivered.

• Purposes:

• fixing bugs

• improving performance

• improving design

• adding features

• ~80% of maintenance is for non-bug-fix-related activities
such as adding functionality (Pigosky 1997)

What Makes Code �Legacy�?
•  Still meets customer need, AND:
•  You didn’t write it, and it’s poorly

documented
•  You did write it, but a long time ago (and it’s

poorly documented)
•  It lacks good tests (regardless 

of who wrote it) - Feathers 2004

3

Two Ways to Think About Modifying
Legacy Code

•  Edit & Pray
– �I kind of think I probably  

didn’t break anything�

•  Cover & Modify
– Let test coverage be your  

safety blanket

4

introcode maintenance is hard …

Problem: bit rot

4

• After several months and new versions, many codebases
reach one of the following states:

• rewritten: nothing remains from the original code.

• abandoned: the original code is thrown out and rewritten
from scratch.

• …even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

Problem: bit rot

4

• After several months and new versions, many codebases
reach one of the following states:

• rewritten: nothing remains from the original code.

• abandoned: the original code is thrown out and rewritten
from scratch.

• …even if the code was initially reviewed and well-designed,
and even if later checkins are reviewed

• Why is this?

• Systems evolve to meet new needs and add new features

• If the code's structure does not also evolve, it will "rot"

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

• Maintenance is how developers spend most of
their time

• Many developers hate code maintenance. Why?

Code maintenance is hard

6

• It's harder to maintain code than write new code.

• You must understand code written by another
developer, or code you wrote at a different time with
a different mindset

• Danger of errors in fragile, hard-to-understand code

• Maintenance is how developers spend most of
their time

• Many developers hate code maintenance. Why?

• It pays to design software well and plan ahead so
that later maintenance will be less painful

• Capacity for future change must be anticipated

5

How Agile Can Help
1.  Exploration: determine where you need to

make changes (change points)
2.  Refactoring: is the code around change

points (a) tested? (b) testable?
–  (a) is true: good to go
–  !(a) && (b): apply BDD+TDD cycles to improve

test coverage
–  !(a) && !(b): refactor

How Agile Can Help, cont.

3.  Add tests to improve coverage as needed
4.  Make changes, using tests as ground truth
5.  Refactor further, to leave codebase better

than you found it

•  This is �embracing change� on long time
scales
�Try to leave this world a little better than you found it.�

Lord Robert Baden-Powell, founder of the Boy Scouts
6

Exploration
•  �Size up� the overall code base
•  Identify key classes and relationships
•  Identify most important data structures
•  Ideally, identify place(s) where change(s) will be

needed
•  Keep design docs as you go

–  diagrams
–  GitHub wiki
–  comments you insert using RDoc

7

idealrefactoring: what, when, why, and how

What is refactoring?

8

• Refactoring: improving a piece of software's internal
structure without altering its external behavior.

• Incurs a short-term overhead to reap long-term benefits

• A long-term investment in overall system quality.

• Refactoring is not the same thing as:

• rewriting code

• adding features

• debugging code

Why refactor?

9

Why refactor?

9

• Why fix a part of your system that isn't broken?

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

• If the code does not do these, it is broken.

Why refactor?

9

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

• to execute its functionality,

• to allow change,

• to communicate well to developers who read it.

• If the code does not do these, it is broken.

• Refactoring improves software's design

• to make it more extensible, flexible,
understandable, performant, …

• but every improvement has costs (and risks)

When to refactor?

10

When to refactor?

10

• When is it best for a team to refactor their code?

• Best done continuously (like testing) as part of the process

• Hard to do well late in a project (like testing)

When to refactor?

10

• When is it best for a team to refactor their code?

• Best done continuously (like testing) as part of the process

• Hard to do well late in a project (like testing)

• Refactor when you identify an area of your system that:

• isn't well designed

• isn't thoroughly tested, but seems to work so far

• now needs new features to be added

Code “smells”: signs you should refactor

11

• Duplicated code; dead code

• Poor abstraction

• Large loop, method, class, parameter list

• Module has too little cohesion

• Modules have too much coupling

• Module has poor encapsulation

• A "middle man" object doesn't do much

• A “weak subclass” doesn’t use inherited functionality

• Design is unnecessarily general or too specific

Low-level refactoring

12

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

• Procedures:

• Extracting code into a method

• Extracting common functionality (including
duplicate code) into a module/method/etc.

• Inlining a method/procedure

• Changing method signatures

Low-level refactoring

12

• Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

• Procedures:

• Extracting code into a method

• Extracting common functionality (including
duplicate code) into a module/method/etc.

• Inlining a method/procedure

• Changing method signatures

• Reordering:

• Splitting one method into several to improve
cohesion and readability (by reducing its size)

• Putting statements that semantically belong
together near each other

See also
refactoring.com/
catalog/

http://refactoring.com/catalog/

IDE support for low-level refactoring

13

• Eclipse / Visual Studio support:

• variable / method / class renaming

• method or constant extraction

• extraction of redundant code snippets

• method signature change

• extraction of an interface from a type

• method inlining

• providing warnings about method  
invocations with inconsistent parameters

• help with self-documenting code  
through auto-completion

High-level refactoring

14

High-level refactoring

14

• Deep implementation and design changes

• Refactoring to design patterns

• Exchanging risky language idioms with safer alternatives

• Performance optimization

• Clarifying a statement that has evolved over time or is
unclear

High-level refactoring

14

• Deep implementation and design changes

• Refactoring to design patterns

• Exchanging risky language idioms with safer alternatives

• Performance optimization

• Clarifying a statement that has evolved over time or is
unclear

• Compared to low-level refactoring, high-level is:

• Not as well-supported by tools

• Much more important!

How to refactor?

15

• When you identify an area of your system that:

• is poorly designed

• is poorly tested, but seems to work so far

• now needs new features

• What should you do?

How to refactor? Have a plan!

16

Refactoring plan (1/2)

17

• Write unit tests that verify the code's external correctness.

• They should pass on the current poorly designed code.

• Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

Refactoring plan (1/2)

17

• Write unit tests that verify the code's external correctness.

• They should pass on the current poorly designed code.

• Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

• Analyze the code to decide the risk and benefit of refactoring.

• If it is too risky, not enough time remains, or the refactor will not
produce enough benefit to the project, don't do it.

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

• Code review the changes.

Refactoring plan (2/2)

18

• Refactor the code.

• Some tests may break. Fix the bugs.

• Code review the changes.

• Check in your refactored code.

• Keep each refactoring small; refactor one unit at a time.

• Helps isolate new bugs and regressions.

• Your checkin should contain only your refactor.

• Your checkin should not contain other changes such as
new features, fixes to unrelated bugs, and other tweaks.

realityrefactoring in the real world

Barriers to refactoring: “I don’t have time!”

20

• Refactoring incurs an up-front cost.

• Some developers don't want to do it

• Most managers don't like it, because they lose time and
gain “nothing” (no new features).

• However …

• Clean code is more conducive to rapid development

• Estimates put ROI at >500% for well-done code

• Finishing refactoring increases programmer morale

• Developers prefer working in a “clean house”

Refactoring: Idea
•  Start with code that has 1 or more problems/

smells
•  Through a series of small steps, transform

to code without those smells
– But be careful not to introduce new smells

•  Protect each step with tests
•  Minimize time during which tests are red

8

Quantitative: Metrics

•  �Hotspots�: places where multiple metrics raise
red flags
–  add require 'metric_fu' to Rakefile
–  rake metrics:all

•  Take metrics with a grain of salt
–  Like coverage, better for identifying where improvement

is needed than for signing off
9

Metric Tool Target score
Code-to-test ratio rake stats ≤ 1:2
C0 (statement) coverage SimpleCov 90%+
Assignment-Branch-
Condition score

flog < 20 per method

Cyclomatic complexity saikuro < 10 per method (NIST)

Cyclomatic Complexity  
(McCabe, 1976)

•  # of linearly-independent paths thru code =
E– N+2P (edges, nodes, connected components)
def mymeth
 while(...)

 end
 if (...)
 do_something
 end
end
•  Here, E=9, N=8, P=1, so CC=3
•  NIST (Natl. Inst. Stds. & Tech.): ≤10 /module

10

Barriers to refactoring: company/team culture

21

• Many small companies and startups skip refactoring.

• “We're too small to need it!”

• “We can't afford it!”

• Reality:

• Refactoring is an investment in quality of the company's
product and code base, often their prime assets.

• Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code.

• If a key team member leaves (common in startups) …

• If a new team member joins (also common) …

Refactoring and teamwork: communicate!

22

• Amount of overhead/communication needed depends on size of refactor.

• Small: just do it, check it in, get it code reviewed.

• Medium: possibly loop in tech lead or another dev.

• Large: meet with team, flush out ideas, do a design doc or design review, get
approval before beginning, and do a phased refactoring.

• Avoids possible bad scenarios:

• Two devs refactor same code simultaneously.

• Refactor breaks another dev's new feature they are adding.

• Refactor actually is not a very good design; doesn't help.

• Refactor ignores future use cases, needs of code/app.

• Tons of merge conflicts and pain for other devs.

